
HAL Id: hal-01953276
https://hal.science/hal-01953276

Preprint submitted on 12 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing the impact of geometrical uncertainties in flow
computations using velocity measurements

David Nolte, Cristóbal Bertoglio

To cite this version:
David Nolte, Cristóbal Bertoglio. Reducing the impact of geometrical uncertainties in flow computa-
tions using velocity measurements. 2018. �hal-01953276�

https://hal.science/hal-01953276
https://hal.archives-ouvertes.fr


Reducing the impact of geometrical uncertainties in
flow computations using velocity measurements

David Nolte1,2, Cristóbal Bertoglio1,2
1Bernoulli Institute, University of Groningen, Groningen, Netherlands
2Center of Mathematical Modeling, University of Chile, Santiago, Chile

December 12, 2018

Abstract

Numerical blood flow simulations are typically set up from anatomical medical images
and calibrated using velocity measurements. However, the accuracy of the computational
geometry itself is limited by the resolution of the anatomical image. We first show that ap-
plying standard no-slip boundary conditions on inaccurately extracted boundaries can cause
large errors in the results, in particular the pressure gradient. In this work, we therefore
propose to augment the flow model calibration by slip/transpiration boundary conditions,
whose parameters are then estimated using velocity measurements. Numerical experiments
show that this methodology can considerably improve the accuracy of the estimated pres-
sure gradients and 3D velocity fields when the vessel geometry is uncertain.

1 Introduction
The pressure drop (PD) across stenotic blood vessels is a standard clinical diagnostic quantity.
It is used to assess the severity of the pathology and to stratify patients for therapy. Examples
include the use of PD in aortic coarctation patients [23], cases of valve stenosis [3, 12] and
congenital heart diseases [34]. The current gold standard procedure in the clinical practice for
measuring the PD is invasive X-ray guided pressure catheterization. However, due the inva-
sive nature of the method, it is often preferred to estimate the PD from non-invasive velocity
measurements. In the clinical practice, PD is most often computed from doppler echocardiog-
raphy [33] by using a simplified Bernoulli equation, which however does not take the particular
patient’s anatomy into account.

Phase-Contrast Magnetic Resonance Imaging (PC-MRI) permits non-invasive, time- and
space-resolved measurements of the blood flow velocity in anatomically complex regions, ei-
ther in selected planes (2D) [21] or in the whole thorax (3D) [27]. PC-MRI allows measuring
the velocity field with spatial and temporal resolutions in the range of 1mm to 3mm and 20ms
to 40ms, respectively, and noise levels of around 15% of the maximal velocity [14]. The ability
of PC-MRI velocity measurements to capture spatially and temporally distributed flow charac-
teristics allows using the Navier-Stokes equations to estimate the blood pressure gradient.
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The available methods of pressure gradient reconstruction from PC-MRI can be classified
in two groups:

• Direct estimation methods compute the pressure gradient or difference directly from the
fully resolved velocity data. The classical method is the obtaining a pressure Poisson
equation (PPE) by taking the divergence of the Navier-Stokes equations and inserting
the velocity measurements in the right-hand-side [17]. More recently, several additional
methods have been introduced, see a comprehensive review in [9]. In particular, the STE
method [32], using a Stokes equation by including an auxiliary, non-physical velocity
field, and the WERP method [13], based on an integral energy balance of the Navier-
Stokes equation, were presented. These methods are computationally less expensive than
solving the Navier-Stokes equation, but require full 3D measurements, the acquisition of
which is prohibitive in the clinical practice due to large scan times and the rare availability
of 3D PC-MRI sequences. It is also important to remark that the performance of such data
driven methods is strongly dependent on the image resolution and is susceptible to noise
and image artifacts [9].

• PDE-constrained optimization methods require additionally to 2D or 3D velocity data
the anatomy of the vessel. An inverse problem is then formulated where unknown model
parameters of the Navier-Stokes equations, typically as boundary conditions, are com-
puted by minimizing the discrepancy between the numerical solution and the velocity
measurements, cf. for instance [15, 16, 8, 19, 22, 29]. This methodology can handle
partial 2D PC-MRI measurements, which are routinely available in clinical practice. The
cost is a higher computational complexity of the inverse problemwith respect to the direct
estimation methods from 3D data, since several solutions of the Navier-Stokes equations
are required. It furthermore offers a high robustness to measurement noise and resolution,
but the quality of the results depends largely on the fidelity of the flow model.

In this work, we study the performance of the PDE-constrained optimization approach from
2D PC-MRI in numerical test cases when geometrical errors in the reconstructed 3D domain are
present. In cardiovascular modeling, geometry errors arise unavoidably from the segmentation
of anatomical medical images (i.e., CT or MRI), which are of limited resolution, contain mea-
surement noise, include partial volume effects. Figure 1 illustrates this issue with white pixels
denoting interior and black pixels exterior regions of a blood vessel. The separation between
both is blurred due to the aforementioned imaging limitations (gray pixels). The blue lines mark
possible segmentations of the vessel wall.

To the authors’ best knowledge, no previous study has considered the effect of inaccuracies
in the domain geometry in the present context, andmost importantly, there is nomethod reported
to cope for these inaccuracies.

In this work we introduce a flow reconstruction methodology which considers alternative
slip/transpiration boundary conditions estimated from velocity data, which are able compensate
the geometrical errors. The methodology is detailed in section 2. In section 3 the method is
tested in numerical experiments. The results are discussed in section 4, followed by conclusions
in section 5.
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Figure 1: Illustration of potential segmentation errors in a medical image.

2 Methodology

2.1 Fluid Flow Model
2.1.1 Geometry definitions

Assume that an approximation of the geometry of a blood vessel is obtained by segmenting
medical images. We consider both the true geometry and the segmented, approximate version.
The true domain of the vessel is denoted byΩ, such that )Ω = Γw∪Γi∪Γo, with Γw representing
the true vessel wall. The segmented domain is denoted by Ω̃ and bounded by )Ω̃ = Γ̃w∪Γ̃i∪Γ̃o.
We further assume that Ω̃ ⊂ Ω. This assumption is relevant for the method proposed in this
work, which will be detailed later. Both the true and the segmented domains of a sample vessel
are illustrated in Figure 2.

Ω̃
Γ̃i

Γo

Ω

Γ̃w

Γw

Γi

Γ̃o

Figure 2: ‘Approximate’ segmented domain Ω̃ (gray) and cut plane of true domain Ω (blue).
Γi, Γ̃i are proximal to the heart, Γo, Γ̃o distal. Γw, Γ̃w denote the vessel wall.

2.1.2 The incompressible Navier-Stokes equations

Restricting the analysis to large vessels and neglecting elastic effects of the vessel walls, the
unsteady Navier-Stokes equations of an incompressible, Newtonian fluid [31] are a suitable
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model to compute the blood flow inside the vessel Ω (and therefore also valid in Ω̃),

�)u
)t
+ �(u ⋅ ∇)u + ∇p − �Δu = 0 in Ω (1a)

∇ ⋅ u = 0 in Ω (1b)
u(0) = u0 in Ω (1c)

u = gd(x, t) on Γi (1d)
n ⋅ [�∇u − 1p] = gn(x, t)n on Γo (1e)

with the velocity vector u ∶ Ω → ℝ3, the pressure p ∶ Ω → ℝ, the density � and dynamic
viscosity �. Γi denotes inflow boundaries, where the velocity profile gd(x, t) is specified by
means of a Dirichlet boundary condition. Boundary patches denoted by Γo are those where
Neumann boundary conditions are given. As boundary conditions for the vessel walls, Γw and
Γ̃w, two models will be used in this work, which are detailed in the following sections.

2.1.3 No-slip boundary conditions

The most used wall boundary condition is the no-slip condition, namely
u = 0 on Γw or Γ̃w.

In the remainder of this work, we will assume that this is the correct boundary condition at the
true vessel wall Γw. We will study the errors which no-slip boundary conditions on Γ̃w induce
in the results computed in the approximate geometry Ω̃.

2.1.4 Slip/transpiration boundary conditions

If the boundaries Γ̃w reside inside of the flow region, it may be more appropriate to allow for
some slip along and transpiration (leakage) across the wall. This situation is illustrated in Fig-
ure 3, where a virtual boundary, Γ̃w, is immersed in the fluid region Ω.

ΩΩ̃

Γ̃w
Γw

Figure 3: Sketch of slip and transpiration at a virtual boundary Γ̃w of the domain Ω̃, embedded
in a ‘physical’ domain Ω with the physical boundary Γw.

Robin-type boundary conditions on such artificial domain boundaries allow for flow in wall-
normal and tangential directions, controlled by coefficients, which in the general case may vary
in space and time. The coefficients can be defined in such a way that the solution is equal
to the corresponding portion of the solution computed on the complete domain with no-slip
conditions on the ‘true’ wall. These boundary conditions, which we refer to as slip/transpiration
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conditions, can be written in the following form, separating the contributions in the normal and
in the tangential directions:

d−1
∑

k=1
n ⋅ [�∇u − 1p] ⋅ tk + u ⋅ tk = 0 on Γ̃w (2a)

n ⋅ [�∇u − 1p] ⋅ n + �u ⋅ n = 0 on Γ̃w. (2b)
Here, n denotes the outward unit normal vector and tk, k = 1,… , d − 1 are orthogonal unit
tangent vectors. The number d ∈ {2; 3} denotes the geometrical dimension of the problem.

Equation (2a) is a slip-friction (also called Navier-slip) boundary condition, see, e.g., [25].
The coefficient  controls the ratio the of tangential stress to the tangential velocity. For  = 0,
this boundary condition is equal to a free slip condition. In the limit  → ∞, the no-slip
boundary condition (for the tangential velocity component) ∑d

k=1 u ⋅ tk = 0 is recovered. Thetranspiration boundary condition, Equation (2b), allows for flow perpendicular to the wall. The
amount of transpiration through the wall is controlled by the parameter �. The limit � → ∞
approaches no-penetration boundary conditions. In the case of � = 0, the fluid is allowed to
freely pass through the wall in normal direction. Both conditions can be set independently,
for instance a free-slip condition in the tangential directions and a no-penetration condition
for the normal velocity component. In particular,  = � = 0 characterizes a free outflow
condition, whereas , � → ∞ asymptotically recovers no-slip boundary conditions. Hence, the
combined slip/transpiration boundary conditions are able to represent very different types of
boundary conditions, depending only on the coefficients � and  . A theoretical analysis of slip/
transpiration boundary conditions in the context of the finite element method was presented in
[24].

For cases where an analytical solution to the Navier-Stokes equations is known, the param-
eters can be determined exactly. In Appendix A the slip model is applied to a Poiseuille flow
and the slip parameter computed. Note that in the general case, the values of these coefficients
are unknown. Estimating � and  from velocity measurements is the subject of section 2.2.

2.1.5 Fractional step scheme

For the sake of computational efficiency, in particular since solving the inverse problem requires
flow computations for several parameter combinations, we employ a fractional step scheme,
splitting the original coupled system (1a)–(2b) into a sequence of decoupled, easier to solve
PDEs. In particular we use a version of the classical Chorin-Temam non-incremental pressure
correction scheme [20].

The method is given in linearized, time-semidiscretized form in algorithm 1, for the case
where slip/transpiration boundary conditions are applied on the boundary patch Γ̃w. Note that
the algorithm is stated for the segmented domain, Ω̃ with )Ω̃ = Γ̃w ∪ Γ̃i ∪ Γ̃o. For the reference
domain, simply replace Ω̃ by Ω and the boundaries Γ̃∗ by Γ∗. No-slip boundary conditions can
be defined on Γ̃w (or Γw) by replacing Eqs. (5d)-(5e) by the condition ũk+1 = 0 on Γ̃w (or Γw).Note further that the algorithm starts with the projection and velocity correction steps instead
of the tentative velocity step due to the fact that the pressure is required by the slip/transpiration
conditions in the tentative velocity step. The given formulation is also convenient with re-
gard to the optimization problem introduced in the subsequent section, since an iteration of the
algorithm depends only on the previously computed tentative velocity, representing the state
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Algorithm 1 Restarting fractional step algorithm using slip/transpiration boundary conditions.
Given an initial field ũ0, compute for k = 0,… , N :

1. Projection step:
∇2pk = �

Δt
∇ ⋅ ũk in Ω̃ (3a)

n ⋅ ∇pk = 0 on Γ̃i (3b)
pk = gkn on Γ̃o (3c)

n ⋅ ∇pk + �
Δt
�−1pk = �

Δt
ũk ⋅ n on Γ̃w (3d)

2. Velocity correction step:

uk = ũk − Δt
�
∇pk in Ω̃ (4)

3. Tentative velocity step:
�
Δt
(ũk+1 − uk) + �(uk ⋅ ∇)ũk+1 + �

2
(∇ ⋅ uk)ũk+1 − ∇ ⋅ (�∇ũk+1) = 0 in Ω̃ (5a)

ũk+1 = gk+1d on Γ̃i (5b)
�n ⋅ ∇ũk+1 = 0 on Γ̃o (5c)

d−1
∑

k=1
n ⋅

[

�∇ũk+1 − 1pk
]

⋅ tk + ũk+1 ⋅ tk = 0 on Γ̃w (5d)

n ⋅
[

�∇ũk+1 − 1pk
]

⋅ n + �ũk+1 ⋅ n = 0 on Γ̃w. (5e)

variable of the system. Optionally, steps 1 and 2 (computationally inexpensive compared to
step 3) of the algorithm can be repeated at the end of each iteration to obtain pk+1 and uk+1 for
post-processing purposes.

The slip/transpiration boundary conditions appear in both the tentative velocity step, Eqs. (5d)
and (5e), and in the pressure projection step, Equation (3d). In the tentative velocity step, the
slip/transpiration conditions are treated semi-implicitly with implicit velocity and explicit pres-
sure from the previous time step. In the pressure projection step, while the slip part does not
contribute, the transpiration boundary condition can be expressed via a Robin condition for the
pressure with implicit treatment of the velocity and the pressure. This Robin condition, Equa-
tion (3d), is derived by considering the normal projection of the velocity correction equation (4)
and rearranging,

n ⋅ ∇pk = �
Δt
(ũk − uk) ⋅ n on Γ̃w. (6)

Assuming that the corrected velocity uk and the unknown pressure pk satisfy the transpira-
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tion boundary condition,
n ⋅

[

�∇uk − 1pk
]

⋅ n + �uk ⋅ n = 0 on Γ̃w, (7)
we can replace uk ⋅ n in (6) by (7), assuming � > 0 and obtain

n ⋅ ∇pk = �
Δt

(

ũk ⋅ n − �−1
(

pk − n ⋅ �∇uk ⋅ n
)) on Γ̃w.

As is usual in fractional stepmethods applied to blood flows [18, 6], we neglect the viscous term.
This results in the final form in Equation (3d). A similar discretization scheme was presented
in [10] in the context of immersed porous interfaces.

Note that the implicit treatment of the velocity in the slip/transpiration condition in the ten-
tative velocity step avoids the need of a (in practice very restrictive) stability criterion on the
time step. This is particularly reasonable in the context of the Chorin-Temam method, where
additionally very small time steps can cause spurious pressure oscillations if equal order.

2.2 The Parameter Estimation Problem
2.2.1 PDE-constrained optimization

Let us introduce the following short-hand notation for the discretized numerical model,
Xk = k(Xk−1, �),

where k is the model operator. In the case of the fractional step algorithm 1 given in sec-
tion 2.1.5, the state corresponds to the discrete tentative velocity, Xk ∶= ũkℎ ∈ ℝn and k ∶
ℝn×ℝp ↦ ℝn represents one time iteration of the discrete fractional step scheme. The physical
parameters related to the boundary conditions are summarized in � ∈ ℝp, p ≥ 1 denoting the
number of parameters.

The aim of this work is to estimate � from a sequence of N partial velocity measurements
Zk ∈ ℝm, k = 1,… , N by means of PDE-constrained optimization. Here we assume that the
measurements are related to the (true) state variable Xt

k ∈ ℝn of the fluid model by means of a
measurement operator  ∶ ℝn ↦ ℝm, such that

Zk = Xt
k + �,

where � ∈ ℝm represents uncertainty due to measurement errors. The superscript t in Xt
kindicates the ground truth, whereas Xk refers to the state computed by the numerical model.

The time-discrete PDE-constrained optimization problem then reads: find
�̂ = arg min

�
J (�),

J (�) = 1
2
‖

‖

� − �0‖‖
2
P−10

+
N
∑

k=1

1
2
‖

‖

Zk −Xk(�)‖‖
2
W −1 .

(8)

�0 is an initial guess for the parameters and P0 the associated covariance matrix. W is the
covariance matrix associated to the measurement noise.

In this work we solve problem (8) approximately with the Reduced-order Unscented Kalman
Filter (ROUKF), described in [28, 5].

The estimation procedure consists in the following steps: given a sequence of measurements
and an approximation of the vessel geometry,
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1. estimate the boundary coefficients with the ROUKF,
2. solve the forward problem with the optimized parameters,
3. post-process the optimized velocity and pressure solution of the forward problem.

2.2.2 Parameters

The inlet velocity (to be set via a Dirichlet boundary condition) is a priori unknown. In this
work we assume a pulsating plug flow,

gd(x, t) = −Ūnf (t),

where Ū is the velocity amplitude and n is the outward normal vector at the boundary. f (t) is
the waveform of the temporal oscillation, for instance

f (t) =
M
∑

k=1
ak sin(!kt), a1 = 1.

The amplitude Ū is an unknown constant and needs to be recovered by the parameter estima-
tion procedure. The waveform can easily be estimated prior to solving the inverse problem by
postprocessing the measurements. Different parameterizations than the one given are possible.
It is assumed here that f (t) is known beforehand. In practice, a simple approach to obtain the
waveform is computing the spatial mean of the velocity data given at the inlet boundary (assum-
ing there are measurements at the inlet) for every measurement time and fitting the time profile.
Otherwise, for some chosen small value of M , ak and !k can be included in the parameter
estimation.

If the slip/transpiration wall-model is used, the corresponding coefficients � and  need to
be estimated and are included in the parameter vector.

Summarizing, the parameter vector � consists of the following boundary parameters:
• inflow condition, plug flow parameter Ū
• slip parameter  (if slip/transpiration BC, per boundary patch),
• transpiration parameter � (if slip/transpiration BC, per boundary patch).

3 Setup of the numerical experiments
Numerical experiments are conducted with the goal of comparing the slip/transpiration ap-
proach with standard no-slip boundary conditions in cases where geometrical errors are present
in the vessel wall. Three realistic synthetic test cases are analyzed, representing arteries with
different degrees of stenoses. The setup of the test cases and the numeric solvers used for the
forward and the inverse problems are explained in this section.
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3.1 Geometries
Three geometries with different obstruction ratios of the stenosis of 40%, 50% and 60% are
considered. The latter case is illustrated in Figure 2. For each stenosis, three computational
domains are generated: a reference domain with radius R = 10mm in the unconstricted parts,
which is considered the true domain, and two domains with the outer vessel walls shifted inward
by Δ = 1mm and Δ = 2mm. These offsets are considered segmentation errors with respect to
the reference, due to uncertainty—e.g., limited resolution (of the order of Δ) and noise—in the
medical images. In addition to the reference domain, Figure 2 shows the approximate domain
for Δ = 2mm. In this case, the difference in the radius is 20% in the unconstricted sections,
whereas in the throat of the stenosis with 60% obstruction ratio, the radius is halved due to the
errors in the geometry.

The true domain,Ω, is used to compute a reference solution for comparison with the estima-
tion framework and to generate synthetic measurements. We pretend that for the pressure drop
estimation, this true domain is unknown, but that one of the approximate domains is available
(Ω̃).

3.2 Reference solution
3.2.1 Configuration

The reference solution is obtained by solving the fractional step system in the true domain Ω,
with no-slip boundary conditions imposed on the lateral walls Γw. At the distal boundary, Γo,intersecting the flow, a homogeneous Neumann boundary condition is used, i.e., gn = 0 in
Eq. (3c) and (5c). On the proximal boundary, Γi, a pulsating plug flow profile is set via a
Dirichlet boundary condition,

gd(x, t) = −Ūn sin(!t).

Note that u = 0 on Γi ∩ Γw due to the no-slip boundary conditions. As above, n denotes the
outward normal vector on the boundary. To mimic physiologically relevant conditions, we set
! = 2.5� s−1 and consider the time interval t ∈ [0 s, 0.4 s], approximating the first half of a
cardiac cycle, with the peak systole at t = 0.2 s. The viscosity of blood (treated as a Newtonian
fluid) is � = 0.035 g∕(cm s) and the density � = 1 g∕cm3. The amplitude of the pulsating inflow
velocity is set to Ū = 43.75 cm∕s, resulting in a peak Reynolds number based on the inlet of
Re = �2ŪR

�
= 2500. The Reynolds numbers based on the throat of the stenoses, Res, at the time

of peak systole is (obtained from the solution presented below) are listed in Table 1.
Table 1: Reynolds numbers at peak systole based on the maximum velocity.

obstruction ratio 40% 50% 60%

Res 4063 4863 6055

3.2.2 Discretization and numerical solution

The partial differential equations that constitute the fractional step scheme (3a)–(5e) are dis-
cretized in space with the finite element method, using ℙ1∕ℙ1 basis functions for the velocity
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and the pressure on an unstructured tetrahedral mesh. Furthermore, streamline-diffusion stabi-
lization is used with the formula for the stabilization parameter given in [4]. Since backflow is
likely to occur at the outflow boundary, velocity-penalizing backflow stabilization [7] is added
on Γo.The meshes use a reference cell size of ℎ = 0.25mm and consist of 3 086 306 to 3 606 417
tetrahedrons and 561 761 to 655 858 vertices, depending on the geometry. The constant time
step size is Δt = 1ms.

The solver is implemented using the finite elements library FEniCS [1]. Preconditioned
Krylov methods are used to solve the linear systems, provided by the PETSc package [2]. We
make use of the fact that in the case of no-slip boundary conditions the velocity components are
completely decoupled in the discretized versions of Eqs. (4) and (5a), and solve three smaller
problems for each component separately with the same system matrix, instead of one large
system for the complete velocity vector. For solving the tentative velocity equation we use
BICGSTAB preconditioned with diagonal scaling. The pressure Poisson equation is solved
with the CG method in the no-slip case and GMRES if slip/transpiration boundary conditions
are used, in both cases with an algebraic multigrid preconditioner. The velocity correction
system is solved using CG with a diagonal scaling preconditioner (cf. [30]).

3.3 Inverse solutions
3.3.1 Measurements

Synthetic partial measurements are generated from the reference solutions in such a way that the
measurements are representative for typical 2D PC-MRI images. This means that 2D planes,
intersecting with the 3D domain, are chosen on which the velocity is measured in one specified
direction d. I.e., the measurement is a scalar projection

c = u ⋅ d, |d| = 1.

Since the inflow velocity is unknown and needs to be estimated, one plane will be placed at
the inlet (Figure 4a). We consider here the x velocity component, orthogonal to the plane. A
second plane intersects the domain lengthwise with an inclination of ≈ 10° with respect to the
xz-plane. It connects points at the inlet, in the throat of the stenosis and at the outlet, as shown in
Figure 4b. The velocity component is chosen tangential to the plane in the streamwise direction
(i.e., parallel to the longer edge).

These slices have a finite thickness and consist in one layer of 3D voxels. The measurement
data is represented on a mesh of uniform, equally sized tetrahedra. The thickness of the slices
equals the element edge length on the plane, H . The element length is chosen to match typ-
ical voxel sizes for PC-MRI, namely H = 1mm and 2mm. We limit this study to the cases
where the geometry error Δ is equal to the voxel size of the measurements, supposing that the
same hypothetical image resolution was used to obtain the 3D vessel geometry and the PC-MRI
velocity images. We refer to the case Δ = H = 1mm as ‘Δ1’ and Δ = H = 2mm as ‘Δ2’.The measurements are obtained by interpolating the selected component of the reference
velocity to the barycenters of the tetrahedra of the slice meshes. The measurement data is
considered constant within each tetrahedron, as can be seen in Figure 4 for noisy example data.
The temporal sampling of the measurements is ΔT = 20ms, representing a typical value for
2D-PCMRI.
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(a) Inlet slice
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(b) Interior slice
Figure 4: Measurement slices with reference geometry (60%) at the peak time t = 0.2 s, with
resolutionH = 2mm.

The noise intensity in the velocity data in PC-MRI is proportional to the VENC parameter
of the scan, which encodes the intensity of the velocity encoding magnetic gradients [11, 26].
Therefore, in practice the VENC is chosen as small as possible to reduce the noise in the velocity
image. However, this parameter has to be set for each measurement sequence to a value higher
than the expected maximum velocity in order to avoid velocity aliasing [11, 26]. Since the
VENC is fixed for the entire duration of a MRI scan, the noise level in all voxels is proportional
to the global maximum velocity in space and time in the measurement region, regardless of
the measured instantaneous local velocities. It is therefore realistic to assume that in practice,
in order to improve the velocity-to-noise ratio, different values of the VENC parameter would
be used for the different slices, according to the anticipated flow conditions. In the clinical
practice it can be expected that high-quality acquisitions contain a velocity noise of 10% of the
peak velocity [14].

Therefore, in the numerical experiments presented here, Gaussian white noise is added to
each of the slices independently with a standard deviation of 15% of the maximum velocity
of the reference solution in the measurement region. Table 2 lists the values of the maximum
velocities of the reference configurations (the complete results are presented in section 4.1) and
the corresponding measurement noise intensities in terms of the standard deviation for the inlet
slice and the interior slice with different coarctation ratios of the stenosis.
Table 2: Maximum velocities and standard deviation of Gaussian noise at the inlet and in the
interior image slices, for different obstruction ratios of the stenosis.

inlet slice interior slice
all stenosis 40% stenosis 50% stenosis 60% stenosis

max U 43.75 cm∕s 140 cm∕s 200 cm∕s 320 cm∕s
�noise 6.56 cm∕s 21 cm∕s 30 cm∕s 48 cm∕s

3.3.2 Forward solution

The optimization procedure requires evaluations of the forward model, i.e., the fractional step
algorithm. The configuration of the forward model and solvers is identical to the reference
simulations, with the following exceptions:
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• the ‘approximate’ computational domains Ω̃ with geometrical errors are used,
• no-slip or slip/transpiration boundary conditions on Γ̃w,
• boundary parameters are unknown and estimated (see the next paragraph).

Note that using slip/transpiration boundary conditions in implicit form, the velocity components
in the momentum equation (5a) are coupled and cannot be solved for separately. This results in
an increase in CPU time compared to the no-slip case. In the case of slip/transpiration bound-
ary conditions, the momentum equation is solved with GMRES, preconditioned with algebraic
multigrid. With no-slip boundary conditions the same solvers are used as for the reference
solution, see section 3.2.2.

3.3.3 Physical model parameters

We compare two wall models:
1. standard no-slip boundary conditions and
2. slip/transpiration boundary conditions.

The only parameter of the no-slip model is the plug flow parameter at the inlet. It seems there-
fore reasonable to estimate the plug flow parameter only from measurements given at the inlet.
Regarding the geometrical errors, it will be examined if the results can be improved by pro-
viding additional measurements in the interior of the domain, i.e., by using both measurement
slices discussed above. In the case of slip/transpiration boundary conditions, measurements at
the inlet and in the interior will be used in order to estimate the plug flow parameter and the
boundary coefficients � and  .

Summarizing, the parameters to be estimated are:
• no-slip

� = Ū ,

• slip/transpiration
� =

(

Ū , �, 
)

.

3.3.4 Kalman filter parameters

The physical parameters to be estimated (see paragraph above) are reparameterized as �′ =
log2(�). By optimizing �′, it is ensured that the physical parameters �, which enter the fluid
model, stay positive. This is required to guarantee the positivity of the variational formulation
of the forward problem and in agreement with basic physical intuition, since, for instance, with
a negative slip parameter the wall-tangential flow would be accelerated by the traction, instead
of slowed.

Initial guesses for the parameters and the associated uncertainties have to be provided for
the ROUKF algorithm. We choose

�0 =
⎧

⎪

⎨

⎪

⎩

40
0.001
5000

⎫

⎪

⎬

⎪

⎭

plug flow,
slip parameter,
transpiration parameter.
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The initial variances of the reparameterized parameters �′ are set to �20 = 1. The weights W
in (8), representing the uncertainty in the measurements, is set to the known noise intensity in
each of the slices, i.e., W = diag(�), with � ∈ ℝm the vector of the noise standard deviations
in all m measurement data points. In practice, � is the estimated noise level proportional to the
VENC value used for each measurement.

3.4 Summary
The cases included in this study are summarized in Table 3. In total, 540 optimization problems

Table 3: Summary of numerical experiments
model obstruction ratio measurement

slices
Δ,H parameters random

samples
no-slip {40%, 50%, 60%} inlet only {Δ1, Δ2} Ū 30
no-slip {40%, 50%, 60%} inlet +

interior
{Δ1, Δ2} Ū 30

slip/
transpiration

{40%, 50%, 60%} inlet +
interior

{Δ1, Δ2} Ū , �,  30

with subsequent forward simulations with each optimized set of parameters are solved. Each
simulation is computed on 16 Intel Xeon 2.5GHz cores on the Peregrine HPC cluster of the
University of Groningen.

4 Numerical results
The results obtained with no-slip and with slip/transpiration boundary conditions are mainly
analyzed in terms of the pressure drop and the velocity error. The pressure drop is defined as
the difference in the pressure averages at two cross-sections, upstream and downstream of the
stenosis,

�pk = 1
|Γi| ∫Γi

pk − 1
|Γo| ∫Γo

pk, (9)
with |Γ⋄| denoting the area of a boundary patch and the superscript k the kth time step. Note that
the pressure drop is determined by the pressure gradient alone and does not depend on fixing the
pressure constant. The velocity error is considered in the L2-norm over the whole approximate
domain, scaled by the global maximum velocity, and defined as

k ∶=
‖ûk − uk‖L2(Ω̃)
maxk‖uk‖L2(Ω̃)

. (10)

Here  is the operator which interpolates the reference velocity uk to the space of the optimized
velocity ûk, i.e., from the reference geometry Ω to the approximate geometry, Ω̃.

We proceed by first presenting the numerical solutions of the reference setups, followed by a
discussion of the results of the inverse problems using no-slip boundary conditions on the walls.
Lastly, we present the results of the slip/transpiration model and compare them to the no-slip
results.
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4.1 Reference solution and measurements
We briefly discuss the numerical solutions of the reference cases. These form the basis of
the subsequent analysis of the results of the optimization problems, because they serve as the
ground truth which the solutions of the inverse problems are compared to. In addition, the
measurements are generated from the velocity solution of the reference, as was explained above.

Streamlines of the velocity field are shown in Figs. 5–7, for peak systole, t = 0.2 s. The
domain is cut along the XZ plane and only one half is shown, since the flow is approximately
symmetrical with respect to that plane. The figures furthermore include the interior measure-
ment plane with a resolution ofH = 2mm.

Since the flow is of pulsating character, dynamical effects are very pronounced. We restrict
the discussion here to the flow situation at peak systole, t = 0.2 s, where the maximum velocities
and pressure drops can be expected. Round jets are formed due to the constrictions, surrounded

X
Y

Z

measurement, abs (cm/s)

18050 100 1500
(a) 3D view

velocity magnitude (cm/s)
1401000

X
Y

Z

40
(b) XZ view

Figure 5: Streamlines of the reference flow and sample noisy velocity measurement (in-plane
component, Δ2) at peak systole for 40% obstruction ratio.
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280100 2000
(a) 3D view

velocity magnitude (cm/s)
200100 1502.5

X
Y

Z

50
(b) XZ view

Figure 6: Streamlines of the reference flow and sample noisy velocity measurement (in-plane
component, Δ2) at peak systole for 50% obstruction ratio.

by annular recirculation zones. The jets impinge on the curved wall and are mainly deflected
towards the outlet. Secondary circulations form in particular below the jets and are fed by
azimuthal wall-bound flow produced by the impingement. In the example with 40% obstruction
ratio, this effect is most pronounced. The recirculation velocities are considerable compared to
the velocities of the jet, and the strong recirculation bubble acts back on the jet flow by pushing
it upward. Such an interaction between recirculation zones and jets does not appear in the cases
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Figure 7: Streamlines of the reference flow and sample noisy velocity measurement (in-plane
component, Δ2) at peak systole for 60% obstruction ratio.

of more severe stenosis, 50% and 60%, where the jets remain unperturbed. The magnitude of
the secondary flow patterns seems negligible in comparison to the very high jet velocities. The
snapshot of the measurement of the 40% case, Figure 5a, shows that the recirculation is captured
to some degree in the measurements. There is a ‘dead region’ of low in-plane velocities in the
center, near the outlet, surrounded by higher magnitude wall-bound flow. Such features are
not recognizable in the 50% and 60% cases due to the high noise intensity. Weak backflow is
present at the outflow boundary in all examples, confirming the need for backflow stabilization.

Isosurfaces of the corresponding pressure fields are shown in Figure 8.

X
Y

Z

pressure (mmHg)

5.90 5-0.6 1 2 3 4

(a) 40% stenosis

X
Y

Z

pressure (mmHg)

140 10-1 2 4 6 8 12

(b) 50% stenosis

X
Y

Z

pressure (mmHg)

310 25-3 5 10 15 20

(c) 60% stenosis
Figure 8: Pressure isosurfaces of reference problems with different coarctation ratios at the peak
time t = 0.2 s.

The pressure is close to zero along the outflow boundaries, due to the homogeneous Neu-
mann boundary condition. As the flow accelerates in the stenosis, strong very localized pres-
sure minima appear at the wall in the narrowest section, and propagated downstream. The jet
impingement creates a region of relatively high pressure in the region of the impact. The max-
imum pressure is naturally located upstream of the stenosis, and distributed rather uniformly.
The maximum pressure is highest for the stenosis with 60% obstruction ratio.

4.2 Estimation results for the no-slip model
Consider first the scenariowheremeasurements are given only at the inlet. The PDE-constrained
optimization problem is solved with no-slip boundary conditions, estimating the plug flow pa-
rameter.
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Statistics of the plug flow parameters estimated frommeasurements at the inlet with different
resolutions and geometry errors in the computational domain Δ = H = 1mm and 2mm are
listed in Table 4 Since the ROUKF algorithm optimizes the log2-reparameterized parameter and
assumes � to be normally distributed, a lognormal distribution can be considered for the physical
parameters, 2�. The table shows the mean and the square root of the variance of the physical
non-logarithmized parameter assuming a lognormal distribution over 30 identical repetitions
of the experiment for independent random realizations of measurement noise. The plug flow
Table 4: Mean and square root of the variance of the estimated plug flow parameter, using
no-slip BCs and measurements only at the inlet. Statistics from 30 independent realizations of
noisy measurements. Ground truth: 43.75 cm∕s.

40% stenosis 50% stenosis 60% stenosis
Δ (mm) mean √

Var mean √

Var mean √

Var

1 43.98 0.06 43.98 0.06 43.93 0.05
2 43.67 0.15 43.61 0.20 43.71 0.13

parameter is recovered with a very good accuracy, with errors of less than 0.5% compared to
the ground truth. The variability of the parameter is generally very small, being largest for
Δ = 2mm in all investigated obstruction ratios, possibly due to the lower resolution of the
measurements and thus less data being available.

The mean pressure drop, obtained by forward-solving the Navier-Stokes equations with the
optimized parameters, is visualized in Figure 9 over time for the three investigated obstruction
ratios and for both geometry errors/measurement resolutions, Δ1 = 1mm and Δ2 = 2mm.
The standard deviation over 30 experiments is below 0.5% of the mean value at peak systole,
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0
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time (s)
(b) 50%

0 0.2 0.4
0

50

100

time (s)

no-slip Δ1
no-slip Δ2

ref.

(c) 60%
Figure 9: Mean pressure drop with no-slip BCs for 30 realizations of noise. The peak standard
deviation is of the order of 0.1% of the mean. Measurements were given at the inlet with
resolution H = Δ, Δ denoting the error in the geometry (cf. legend); Δ1 = 1mm and Δ2 =
2mm.

similarly to the plug flow parameter. This indicates that the procedure is very robust to noise
and with respect to small changes in the parameter.

On the other hand, it is immediately evident from the figures that the accuracy of the pressure
gradient reconstruction is very poor, especially for large obstruction ratios, when errors in the
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geometry are present. In the best scenario, the mildest stenosis with 40% obstruction and for
Δ1 (i.e., for the smaller geometry error and measurement resolution Δ = H = 1mm), the error
in the pressure drop at the peak is about 50%. With Δ2 (Δ = H = 2mm), the error exceeds
100%. For the more severe 50% and 60% stenoses, the peak error is of the order of 100% for
Δ1, and for Δ2 rises up to 300% to 400%.

The pressure drop estimates are improved by taking into account additional measurements
in the interior. Figure 10 shows the pressure drops obtained for the case where two measure-
ment slices were used (label ‘II’ in the figure), at the inlet and the lengthwise intersecting slice,
in comparison to measurements only at the inlet (label ‘I’, same curves as in Figure 9). The
discrepancy between the model and reference pressure gradient solutions is reduced by a large
factor in the case of Δ = 2mm, and to a lesser degree for Δ = 1mm.
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II Δ2
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(c) 60%
Figure 10: Mean pressure drop with no-slip BCs for 30 realizations of noise; standard deviation
of the order of 0.1% of the mean. Measurements given on two slices (labeled ‘II’) vs. measure-
ments only at the inlet (‘I’). Δ1 = 1mm and Δ2 = 2mm (cf. Figure 9).

Table 5 compares the corresponding estimated plug flow parameters for the cases with mea-
surements at the inlet (rows labeled ‘I’) and measurements at the inlet and in the interior slice
(‘II’). By considering measurements in the interior, the estimated plug flow parameter deviates
Table 5: Mean and square root of the variance of the estimated plug flow parameter, using
no-slip BCs and measurements only at the inlet. Statistics from 30 independent realizations of
noisy measurements. Ground truth: 43.75 cm∕s.

40% stenosis 50% stenosis 60% stenosis
Δ (mm) # slices mean √

Var mean √

Var mean √

Var

1 I 43.98 0.06 43.98 0.06 43.93 0.05
II 41.48 0.05 41.58 0.05 41.82 0.06

2 I 43.67 0.15 43.61 0.20 43.71 0.13
II 37.40 0.11 36.46 0.19 35.06 0.14

significantly from the ground truth, compared to inlet-only measurements, the error is largest
for the 60% stenosis with Δ = 2mm with 20% underestimation of the ground truth, compared
to 0.1% using only measurements at the inlet. Hence, the improved pressure drop estimation
comes at the cost of large errors in the inflow profile.
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Figure 11 shows the velocity error, defined by Equation (10), over time. The velocity error
globally increases slightly with augmenting obstruction ratios of the stenoses, but to a much
lesser degree than the error in the pressure drop. Computations with a bigger geometry error,
i.e., Δ2 instead of Δ1, lead to increased errors in the velocity by roughly 50% in all three cases.
By taking into account interior measurements (lines labeled ‘II’ in Figure 11), the errors are
slightly reduced, especially for Δ2. Again, the results are very robust to noise with relative
standard deviations of the velocity error of the order of 0.1% at peak systole.
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Figure 11: Mean velocity error with no-slip BCs for 30 realizations of noise; peak systole stan-
dard deviation of the order of 0.1% of the mean. Measurements given on two slices (‘II’)
vs. measurements only at the inlet (‘I’). Δ1 = 1mm and Δ2 = 2mm.

The observed poor pressure drop estimates and large errors in the inflow velocity render the
described procedure using no-slip boundary conditions inadequate for the application discussed
here. The decreased radius in the stenosis gives rise to a much higher pressure drop if the inflow
velocity is similar to the reference case. In order to fit interior measurements (for instance the
jet velocities), if given, the inflow velocity has to be strongly decreased.

This reasoning motivates investigating slip/transpiration boundary conditions. The results
of the numerical experiments using slip/transpiration boundary conditions are presented in the
following section.

4.3 Estimation results for the slip/transpiration model
Consider the case where measurements are given at the inlet and on the interior slice. The
pressure drop obtained with the slip/transpiration boundary conditions is displayed in Figure 12
in comparison to the no-slip results, also considering both measurement slices. The accuracy
of the pressure drop estimation is greatly improved in all cases. Especially with Δ = 1mm, for
the 40% and 50% cases, the estimated pressure drop now coincides almost perfectly with the
ground truth. In the most severe 60% stenosis, the pressure drop is overestimated by 15% for
both Δ1 and Δ2. Using the Δ2 geometry and measurements leads to a slight underestimation of
the pressure drop in the 50% example, and to a more pronounced underestimation for the 40%
case.

The figure also shows the variability of the pressure drop by means of ±2� bands computed
for 30 realizations of noise. The spread seems negligible for all cases except in the setting
of the 40% stenosis, using the slip/transpiration model and Δ2 measurements, where a larger
variability is present in the pressure drop than in the other experiments. Increasing the sample
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Figure 12: Pressure drop comparison, slip/transpiration (‘slip’) vs. no-slip. Mean values with
±2� bands over 30 samples of measurements, given at the inlet and in the interior plane, with
resolution/geometry error Δ1 = 1mm and Δ2 = 2mm.

size to 50 for this example did not significantly reduce the variance observed in the pressure drop.
Albeit the larger spread with the slip/transpiration model in this particular case, the estimated
pressure drop was still observed to be closer to the ground truth in all simulated cases. This is
shown in Figure 13, where the error in the pressure drop at peak systole is plotted for the 30
investigated realizations of noisy measurements. The slip/transpiration model underestimates
the ground truth by approximately 10% to 25% whereas the error with the no-slip model is
around 60%.
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Figure 13: Relative, signed pressure drop error at peak systole compared for no-slip and slip/
transpiration boundary conditions, for 40% obstruction ratio and Δ2. Each point corresponds
to the result obtained for one realization of noisy measurements.

The corresponding relativeL2 velocity errors are shown in Figure 14. In all cases, the error issmaller with the slip/transpiration model, the relative improvement being the most pronounced
for 40%. Some variability in the error can be observed after the peak time t = 0.2 s in the 40%
case for both values of Δ, using the slip/transpiration model.

Statistics of the estimated plug flow parameter are compared for both models in Table 6.
With slip/transpiration boundary conditions, the ground truth is recovered with very good ac-
curacy for both Δ1 and Δ2. In all settings the errors are significantly smaller compared to those
obtained with no-slip boundary conditions. The variability is generally small with the square
root of the variance below 1% of the mean. In the case of 40% obstruction ratio with Δ2 thesquare root of the variance is somewhat increased for slip/transpiration conditions, to 2% of the
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Figure 14: Velocity error comparison, slip/transpiration (labeled ‘slip’) vs. no-slip. Mean values
with ±2� bands over 30 samples of measurements, given at the inlet and in the interior plane,
with resolution/geometry error Δ1 = 1mm and Δ2 = 2mm.
Table 6: Mean and square root of variance of the estimated plug flow parameter �Ū , using slip/transpiration and no-slip BCs, for 30 independent realizations of noisy measurements at the inlet
and in the interior. Ground truth: 43.75 cm∕s.

40% stenosis 50% stenosis 60% stenosis
Δ (mm) model mean √

Var mean √

Var mean √

Var

1 noslip 41.48 0.05 41.58 0.05 41.82 0.06
slip 43.19 0.13 44.46 0.07 44.21 0.08

2 noslip 37.40 0.11 36.46 0.19 35.06 0.14
slip 44.01 1.03 44.80 0.16 45.40 0.13

mean. This coincides with the observation of an increased variability in the pressure drop for
the 40% case with Δ2.For the transpiration and slip parameters no ground truth values are available. The transpira-
tion parameter �, summarized by Table 7, increases with the obstruction ratio. The stronger the
Table 7: Transpiration parameter �. Mean and square root of variance for 30 samples of noisy
measurements (inlet & interior slices).

40% stenosis 50% stenosis 60% stenosis
Δ (mm) mean √

Var mean √

Var mean √

Var

1 6684.48 257.45 8654.17 150.88 20 425.33 475.04
2 2075.99 394.95 3573.48 147.31 8413.68 318.07

stenosis and jet, the higher is therefore the resistance to flow across the boundary in the normal
direction. The parameter is smaller for Δ2 than for Δ1, since in the former case the boundaries
are located deeper inside the true flow domain and more transpiration has to be permitted. For
the 40% case the variance-to-mean ratio is larger than for the 50% and 60% geometries.

The slip parameter exhibits a more complex behavior. Its statistics are summarized in Ta-
ble 8. While under Δ1 the mean of the slip parameter is of the same order of magnitude for
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Table 8: Slip parameter  . Mean and square root of variance for 30 samples of noisy measure-
ments (inlet & interior slices).

40% stenosis 50% stenosis 60% stenosis
Δ (mm) mean √

Var mean √

Var mean √

Var

1 0.41 0.36 0.43 0.04 0.24 0.43
2 0.59 0.97 6.23 × 10−8 4.09 × 10−7 2.75 × 10−5 1.08 × 10−5

40%, 50% and 60% stenoses, the mean values vary strongly with Δ2. Using the 50% and 60%
geometries in theΔ2 setting the slip parameter is smaller by orders of magnitude than the corre-
sponding values observed with Δ1, and tends towards free-slip conditions. A high variability in
the slip parameter is observed for 40%, in accordance with the behavior of the pressure drop and
the velocity error. For 50% obstruction ratio, the square root of the variance is much smaller
for Δ1, only about 10% of the mean value, and high for Δ2. In the 60% case the variance in the
parameter is elevated for both Δ1 and Δ2. In these scenarios the variability in the pressure dropand the velocity error was seen to be negligible.

The increased variability obtained with the slip/transpiration model in the case of 40% ob-
struction ratio, compared to the more severe stenoses with 50% and 60%, can most likely be
attributed to the more complex recirculating flow patterns in the former case. The wall-bound,
mainly azimuthally circulating flow of the 40% stenosis is very sensitive to the wall parameters.
The interior measurement slice, however, contains little information about these flow features,
as can be seen in Figure 5a. The optimized slip and transpiration parameters must accommodate
principally to the flow in the stenosis, the impingement region of the jet and also the recirculat-
ing flow caused by the impingement. In the 50% and 60% cases the secondary flow patterns
seem to be of negligible importance. The wall parameters only have to account mainly for the
correct behavior in the stenosis and in the impingement region of the jet.

5 Conclusions
We presented a framework for estimating quantities derived from the hemodynamic pressure
and/or velocity, using 2D-PCMRI velocity measurements, a reconstruction of the blood vessel
geometry of interest, and a suitable fluid model. The focus of the analysis was on the effect of
errors in the wall position, e.g., due to imperfect image segmentation, on the estimated pressure
drop in the case of arterial stenosis. To the best of the authors’ knowledge, this is the first
time that the effect of such errors is investigated, and most importantly, a methodology for
coping for geometrical uncertainties is proposed. In order to reduce the errors induced in the
pressure drop by using no-slip boundary conditions on inaccurate vessel walls, we employed
slip/transpiration boundary conditions, the coefficients of which were included in the parameter
estimation procedure.

Both wall models were compared for synthetic test cases of stenosis with different severities.
It was observed that no-slip conditions imposed on inaccurate walls (i.e., shifted with respect
to a ground truth) indeed induce huge errors in the estimated pressure drop. Optimized slip/
transpiration boundary conditions allowed the temporal evolution of the pressure drop to be
estimated with very good precision, and additionally delivered accurate estimates of the inlet
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velocity. The method proved capable of handling 2D-PCMRI-type measurements, i.e., a scalar
velocity component in a defined direction, on selected pseudo-2D planes, with realistic, coarse
image resolutions and suffering from strong random noise, especially in the regions of low
velocities.

In the presented study, the parameters of the slip/transpiration boundary conditions were
considered constant over the whole boundary and in time. Allowing for some variation in space
and time is likely to further improve the results, especially with regard to more complex realistic
geometries and real data.

The methodology is limited to large vessels, where 2D-PCMRI scans are feasible and the
assumption of blood as a Newtonian fluid is reasonable. Elastic deformation of the vessel walls
was neglected and combining the slip/transpiration model with fluid–structure interaction re-
mains a question for future work. Furthermore, the flow conditions are likely to be in the regime
of transition to turbulence. It seems worthwhile, especially with regard to real data, exploring
the discussed phenomena using turbulence models, i.e., large eddy simulation.
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A Slip boundary condition for the Poiseuille flow
In settings where an analytical solution of the incompressible Navier-Stokes equations is known,
the coefficients of the slip/transpiration boundary conditions can be determined exactly. For
instance, consider the simple Poiseuille flow example of steady state flow through a straight
tube with constant circular cross-section. In this situation, the Navier-Stokes equations simplify
to

1
r

(

rdu
dr

)

= −G
�
, (11)

in cylinder coordinates, where u is the axial velocity component. The radial and the angular
components are zero. G is a constant pressure gradient acting on the fluid in the axial direction.
Equation (11) can be solved by assuming a symmetry boundary condition du

dr
= 0 at r = 0, and

a no-slip boundary condition u(r = R) = 0, where R is the radius of the tube. The resulting
velocity profile along the radial coordinate r is given by

u(r) = G
4�
(R2 − r2). (12)

Consider now the situation where the (virtual) boundary of the domain is moved away from
the wall to r = R′ in the interior of the tube. Let us pretend that the velocity distribution is
unknown, but that we know R, R′, and the fact that u(R) = 0. A boundary condition at this
virtual boundary r = R′ can be defined in terms of a Robin condition:

� du
dr
|

|

|

|r=R′
+ u(R′) = 0. (13)
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The solution of Equation (11) with boundary conditions du
dr
= 0 at r = 0 and the Robin condition

(13) is given by Equation (12) if the proportionality factor  is chosen such that

 = 2� R′

R2 − R′2
.

Here,  depends only on the geometry.
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