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1 Introduction

Recently, B. Basso and L. Dixon obtained an elegant explicit expression for a specific,

conformal planar Feynman graph of fishnet type [1], having N rows and L columns, and

thus (N+1)(L+1)−4 loops. This graph is presented on figure 1. It has four external fixed

coordinates and, similarly to the conformal 4-point functions, has a non-trivial dependence

on two cross-ratios u, v. This Basso-Dixon (BD) formula takes the form of an N × N

determinant of explicitly known “ladder” integrals [2, 3]. It is one of very few examples of

explicit results for Feynman graphs with arbitrary many loops.

The BD formula appeared in the context of its application to the four dimensional

conformal theory which emerged as a specific double scaling limit of γ-deformed N = 4

SYM theory combining weak coupling and strong imaginary γ-twists [4, 5]. In particular,

in one-coupling reduction of this theory — the so called bi-scalar, or “fishnet” CFT —

the BD integral represents indeed a particular single-trace correlation function (described
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below). In general, the bulk structure of planar graphs in fishnet CFT is that of the

regular square lattice of massless propagators. Such a graph represents an integrable two-

dimensional statistical mechanical system [6] which can be studied via integrable quantum

spin chain with the symmetry of 4D conformal group SU(2, 2) [4, 5, 7, 8].

Two of the current authors recently proposed the D-dimensional generalization of bi-

scalar fishnet theory [9]. Its action is given in terms of two interacting complex Nc × Nc

matrix scalar fields X(x), Z(x):

S = Nc

ˆ
dDx tr

(
X†(−∂µ∂µ)D/4+ωX + Z†(−∂µ∂µ)D/4−ωZ + (4π)2ξ2X†Z†XZ

)
, (1.1)

where ω is an arbitrary “anisotropy” parameter producing different powers of propaga-

tors along two axis of the fishnet square lattice and ξ is the coupling constant.1 At

D = 4, ω = 0 it reduces to the local bi-scalar action following from the double scaling

limit of N = 4 SYM [4]. The BD-type integral corresponds to the following single-trace

correlation function:

IBD
L,N (z0, z1, w0, w1) =

〈
tr
(
XL(z0)ZN (z1)X†L(w0)Z†N (w1)

)〉
. (1.2)

It is easy to see that, due to the chiral nature of interaction of two scalars, this correlation

function is given in the planar limit by a single, fishnet-type planar graph of BD-type drawn

in figure 1. Explicitly, this Feynman graph is given by expression

IBD
L,N (z0, z1, w0, w1) =

ˆ ∏
(l,n)∈LL,N

dDzl,n

 ∏
(l,n)∈LL,N+1

1

|zl,n−1 − zl,n|D/2+2ω

 (1.3)

×

 ∏
(l,n)∈LL+1,N

1

|zl−1,n − zl,n|D/2−2ω

 .

This integral was computed explicitly in D = 4, for “isotropic” case ω = 0, in [1]. The

derivation is based on certain assumptions, typical for the S-matrix bootstrap methods

inherited from the integrability of planar N = 4 SYM [15]. It would be important to derive

this formula from the first principles, based on the conformal spin chain interpretation of

fishnet graphs, but in four dimensions such a derivation is so far missing.

In this paper, we will derive from the first principles the explicit expression for the two-

dimensional analogue, D = 2, of Basso-Dixon formula for the “fishnet” Feynman integral2

IBD
L,N (z0, z1, w0, w1) =

ˆ ∏
(l,n)∈LL,N

dDzl,n

 ∏
(l,n)∈LL,N+1

1

[zl,n−1 − zl,n]γ

 (1.4)

×

 ∏
(l,n)∈LL+1,N

1

[zl−1,n − zl,n]1−γ

 ,

1Strictly speaking, to tune this theory to the conformal point at any ξ one should add to this action the

double-trace interactions with specific ξ-dependent coefficients [7, 10–14].
2Here and in the following we adopt the notation [z − w]α ≡ (z − w)α(z∗ − w∗)ᾱ for propagators, see

appendix A for details.
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Figure 1. Basso-Dixon type Feynman diagram for N = 4, L = 3. The propagators have the form

[w − z]−α where α = 1/2± ω for vertical and horizontal lines, respectively.

Figure 2. Basso-Dixon type diagram IBD
L,N (z0, z1, w0, w1) (on the left), its reduction GL,N (z|w)

(in the middle) and generalization DL,N (z|w) (on the right) described in section 2. We integrate

only the coordinates in the vertices marked by black blobs. Sending w0 →∞ in the original Basso-

Dixon type diagram, we remove the upper row of propagators and obtain the reduced diagram (in

the middle). Using conformal invariance of the original graph (on the left), we can always restore

it from the graph on the right, by inversion and shift of coordinates w1, z1, z0. Further on, we

generalize the middle diagram by splitting the end point coordinates of left and right columns of

external propagators, to separate coordinates z1 → (z1, z2, . . . , zN ) and w1 → (w1, w2, . . . , wN ),

and then add at the left a column of vertical propagators [zi− zi+1]−γ , thus getting the generalized

configuration (on the right).

where the coordinates (z0, z1, w0, w1) are defined as after the eq. (1.3). We took here

propagators transforming in the spinless complementary series of representations (γ̄ =

γ ∈ (0, 1)) under SL(2,C) group action (3.1). The propagators for D = 2, ω = γ − 1/2

are [w − z]−1/2∓ω, where ∓ is chosen for vertical and horizontal lines, i.e. for the fields

X,Z, respectively.
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Our derivation is based on integrable SL(2,C) spin chain methods worked out in [16–

18], using the Sklyanin separation of variables (SoV) method [19–21]. The result can be

presented in explicit form, in terms of N ×N determinant of a matrix with the elements

which are explicitly computed in terms of hypergeometric functions of cross-ratios.3 Our

main formula looks as follows:

IBD
L,N (z0, z1, w0, w1) =

[z1 − z0](γ−1)N [w1 − w0](γ−1)N

[z0 − w0](γ−1)N+γL
[η]

γ−1
2
NB

(γ)
L,N (η) (1.5)

where

B
(γ)
L,N (η, η̄) = (2π)−Nπ−N

2
det

1≤j,k≤N

[
(η∂η)

i−1(η̄∂η̄)
k−1I

(γ)
N+L(η, η̄)

]
,

η =
z0 − w1

w1 − w0

z1 − w0

z0 − z1
, (1.6)

and

I
(γ)
M (η, η̄) =

2πM+1

(M − 1)! [η]
γ−1

2

ΓM (γ)

ΓM (1− γ)
×

× ∂M−1
ε

∣∣
ε=0

[
ΓM (1− γ − ε)

ΓM (γ + ε)

ΓM (1 + ε)

ΓM (1− ε) [η]−ε (1.7)

×
∣∣∣∣∣M+1FM

(
1− γ − ε · · · 1− γ − ε 1

1− ε · · · 1− ε

∣∣∣∣∣ η
)∣∣∣∣∣

2 ]
.

Formula (1.6) is also generalized in sections 4, 5 to the principal series representations of

SL(2,C), see (3.1).

In the next section, we will define the basic building blocks for construction of the

Basso-Dixon configuration in operatorial way. In section 3, we will introduce the generalized

“graph-building” operator related to the transfer-matrix of the integrable open SL(2, C)

quantum spin chain. We will diagonalize there this operator by means of the SoV method

and describe the full system of its eigenfunctions. In section 4 the result for 2d Basso-

Dixon-like N ×L graph will be presented in terms of an N ×N determinant of the matrix

constructed from 1×M such graph called the ladder graph. In section 5, the ladder graph

will be computed explicitly, in terms of the hypergeometric functions and their derivatives,

thus completing the explicit result for the full two-dimensional Basso-Dixon-like N × L

graph presented above. The ladder graph is employed to compute the so-called simple

wheel graph in two dimensions. A particular case of N = L = 1 (the two-dimensional

“cross” graph) will be explicitly given in terms of the elliptic functions of the cross ratio.

2 Transformations of Basso-Dixon type graph and L ↔ N duality

In order to apply powerful methods of SL(2,C) spin chain integrability, such as the sepa-

ration of variables (SoV), we will use the conformal symmetry to reduce the BD graph on

3Or alternatively, due to the obvious L↔ N symmetry of the integral, in terms of the (L− 1)× (L− 1)

determinant of the same matrix elements, which will depend only on L+N combination.

– 4 –
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figure 1 to a more convenient quantity for our purposes. First of all, we send w0 →∞ and

drop the corresponding propagators containing this variable:

IBD
L,N (z0, z1, w0, w1) →

w0→∞
[w0]−γLGL,N (z1, w1|z0)

where GL,N (z1, w1|z0) =

ˆ L∏
l=1

N∏
n=1

d2zln

 ∏
1≤l≤L
1≤n≤N

1

[zl,n−1 − zl,n]γ × [zl,n − zl+1,n]1−γ


×
N−1∏
n=0

1

[z0,n − z1,n]1−γ
,

where we take {zj,0 = z0, z0,k = z1, zL+1,k = w1} for j = 1, . . . , L and k = 1, . . . , N .

We can always restore the original quantity IBD
L,N (z0, z1, w0, w1) from GL,N (z1, w1|z0), pre-

sented on figure 2(middle), using the conformal symmetry of IBD
L,N , i.e. by applying the

inversion+shift transformation and thus getting the original quantity (1.5) (see appendix B

for derivation and examples).

Now we are going to generalize the quantity GL,N (z1, w1|z0), in order to apply the

integrability techniques. To that end, we introduce a more general quantity drawn on

figure 2(right):

DL,N (z0)(z|w) =

ˆ L∏
l=1

N∏
n=1

d2zln

 ∏
(l,n)∈LL+1,N

1

[zl−1,n−1 − zl−1,n]γ × [zl−1,n − zl,n]1−γ

 ,

(2.1)

where all the external legs on the left and on the right of figure 2(left) have different

coordinates: {zj,0 = z0, z0,k = zk, zL+1,k = wk} for j = 0, 1, . . . , L and k = 1, . . . , N .

We introduced in the r.h.s. of (2.1) the vector notations: z = {z1, z2, . . . , zN},w =

{w1, w2, . . . , wN}. Notice that, after point-splitting, we multiplied, for the future con-

venience, the middle diagram of figure 2 by the vertical propagators on the left, without

altering the essential part of the quantity, since the coordinates in the left column are

exterior and they are not integrated.

The last expression (2.1), representing the diagram on the right of figure 2, is the most

appropriate for the application of integrability methods. Namely, we can represent it as

a consecutive action of a “comb” transfer matrix “building” the graph, as shown on the

figure 3. In the next section, we will define yet a more general transfer matrix ΛN (x)(z|w)

depending on a spectral parameter x and diagonalize it by means of eigenfunctions using

separation of variable (SoV) method of Sklyanin. The lattice of propagators can be inho-

mogeneous in L-direction, since each transfer matrix, corresponding to an open spin chain

of length N “building” the BD configuration by L consecutive applications, as on figure 3,

can have its own spectral parameter. Its particular, homogeneous case will give the explicit

formula for 2D BD graph.4

4Still containing the anisotropy parameter γ.
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Figure 3. The “comb” transfer matrix for an open spin chain of length N (N = 3 on the picture)

is applied L times to itself as an integral kernel. The resulting structure is a Fishnet of the type of

figure 2(right) with L+ 1 vertical and 3 horizontal lines.

Now we will comment on the obvious L↔ N duality of the original BD diagram:

IBD
L,N (z0, z1, w0, w1; γ) = IBD

N,L(z1, w0, z0, w1, 1− γ), (2.2)

where we explicitly introduced among the arguments the anisotropy parameter γ. It is

useful to represent the same quantity in a more explicitly conformally symmetric way:

IBD
L,N (z0, z1, w0, w1; γ) = [w0 − z0]−Lγ [w1 − z1]N(γ−1) [η]N

γ−1
2 [1− η]N(1−γ)B

(γ)
L,N (η). (2.3)

Then the L↔ N duality reads as follows:

B
(1−γ)
N,L (1/η) = [η]

γ
2

(N+L)−N
2 [1− η]−(N+L)γ+N B

(γ)
L,N (η). (2.4)

3 “Graph building” operator ΛN(x|z0) and its diagonalization

Our main goal in the rest of this paper is the computation of the quantity B
(γ)
L,N (η) directly

related to the BD integral by (2.3). To that end, we define a more general transfer matrix of

an open SL(2,C) spin chain, building the generalized BD graph. The explicit computations

will be carried out for values of γ corresponding to the principal series of representations

of SL(2,C). Then the original quantity (1.4) is obtained by analytic continuation to real

γ = 1
2 + ω in the final result.

First of all, we fix our parameters:

• Definition of the conformal spin:

s =
1 + ns

2
+ iνs , s̄ =

1− ns
2

+ iνs (3.1)

where ns ∈ Z is the SO(2) spin and νs ∈ R, so that 1 + 2iνs is the scaling dimension

in the principal series of representations [22].

• Definition of the xk-parameters which will play the role of spin chain inhomogenieties

in spectral parameter, and then also of Sklyanin separated variables:

xk =
nk
2

+ iνk , x̄k = −nk
2

+ iνk (3.2)

where nk ∈ Z and νk ∈ R.

– 6 –
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Figure 4. The diagrammatic representation for the kernel of ΛN (y|z0). The arrow with index α

from z to w stands for [w− z]−α. The indices are given by the following expressions: α = 1− s− y,

β = 1− s+ y, γ = 2s− 1.

• The spin s and the parameter x (or y) will enter almost everywhere in special com-

binations,5 so that for simplicity we shall use the shorthand notations and define the

α , β , γ-parameters

α = 1− s− y , β = 1− s+ y , γ = 2s− 1 (3.3)

ᾱ = 1− s̄− ȳ , β̄ = 1− s̄+ ȳ , γ̄ = 2s̄− 1 (3.4)

Now let us define the integral operator ΛN (y|z0) by its explicit action on a function

Φ(z1 , . . . , zN ) by the formula

[ΛN (y|z0)Φ] (z1 , . . . , zN , z0) =

N∏
k=1

[zk − zk+1]−γ × (3.5)

×
ˆ
d2w1 · · · d2wN

N∏
k=1

[wk − zk]−α[wk − zk+1]−β Φ(w1 , . . . , wN , z0) ,

where by definition zN+1 = z0, and we introduced the symbol [z]α ≡ zα(z∗)ᾱ (see the details

for this notation in appendix A). Note that the operator ΛN (y|z0) maps the function of

N variables to the function of N + 1 variables, but the last variable z0 plays some special

role of an external variable. The diagrammatic representation for the kernel of the integral

operator ΛN (y|z0) is shown schematically on the figure 4. proof of the commutation relation

ΛN (y1|z0) ΛN (y2|z0) = ΛN (y2|z0) ΛN (y1|z0) (3.6)

is equivalent to the proof of the corresponding relation for the kernels which is demonstrated

on the figure 5. The proof is presented there diagrammatically, with the help of cross

relation (A.7). In this way, we proved the integrability of our open spin chain since both

5In what follows, we will always use the notation y,yk when the separated variables appear as spectral

parameters of an operator, while x,xk when they label an eigenfunction. Both notations refer to objects of

the kind (3.2).

– 7 –
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Figure 5. The proof of commutation relation (3.6) for two operators ΛN (y|z0): (1) The diagram

for the kernel of Λ3(y|z0). (2) The diagram for Λ3(y1|z0) Λ3(y2|z0): α1 = 1−s−y1, α2 = 1−s−y2,

β1 = 1 − s + y1, β2 = 1 − s + y2, γ = 2s − 1. (3) Triangle-star transformations inside the right

column of triangles, leading to Λ3(y2) (4) Movement of the line with index β2 − β1 upstairs using

cross relations. (5) Star-triangle transformations back to Λ3(y2|z0) Λ3(y1|z0).

operators on each side of the last relation contain different spectral parameter, y1 or y2.

[Λk(y)Φ] (z1 , . . . , zk, zk+1) =
k∏
i=1

[zi − zi+1]−γ × (3.7)

×
ˆ
d2w1 · · · d2wk

k∏
i=1

[wi − zi]−α[wi − zi+1]−β Φ(w1 , . . . , wk) ,

The variable zk+1 plays here a special role and the diagrammatic representation for

the kernel of Λk(y) is the same as for ΛN (y|z0) with the evident substitutions N → k

and z0 → zk+1.

3.1 Eigenfunctions of the operator ΛN(y|z0)

The eigenfunctions of the operator ΛN (y|z0) are constructed explicitly and they admit the

following representation

Ψ(x|z) = Λ̃N−1 (x1) Λ̃N−2 (x2) · · · Λ̃1 (xN−1) [z1 − z0]−s+xN (3.8)

where the operators Λ̃N−k (xk) differ from the operators ΛN−k (xk) by a simple factor

Λ̃N−k (xk) = [zN−k − z0]−s+xk rN−k(xk, x̄k) ΛN−k (xk) , (3.9)

with rN−k defined according to

rk(x, x̄) =

(
Γ(1− s̄+ x̄)Γ(1− s+ x)

Γ(s+ x)Γ(s̄− x̄)

)k−1

. (3.10)

and where we introduce a shorthand vector notation for the whole set of variables

x = {x1, . . . ,xN}, xk =

(
xk =

nk
2

+ iνk , x̄k = −nk
2

+ iνk

)
z = {z1, . . . , zN}, zk ∈ C (3.11)

– 8 –
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The presence of the pre-factor (3.10) in the definition of Λ̃N−k(x) operators (3.9) is crucial

to prove the exchange relation

Λ̃n(x1) Λ̃n−1(x2) = Λ̃n(x2) Λ̃n−1(x1) , (3.12)

from which follows that Ψ(x|z) are symmetric functions of the x-variables

Ψ(x|z) = Ψ(x1, . . . xk, . . . xh, . . . , xN |z) = Ψ(x1, . . . xh, . . . xk, . . . , xN |z) . (3.13)

The vector of variables x is used as quantum numbers (separated variables) to label the

eigenfunction and z is the set of complex coordinates in our initial representation. We will

prove that

ΛN (y|z0) Ψ(x|z) = λ(y, x1) · · ·λ(y, xN ) Ψ(x|z) , (3.14)

where

λ(y, xk) = π a(1− s− y, s+ xk, 1 + y − xk) (−1)[y+xk] . (3.15)

and the function a(α, β, γ) is defined in appendix A. We should note that functions Ψ(x|z)

are generalized eigenfunctions of the operator A + z0B where A,B are standard matrix

elements of the monodromy matrix [21, 23].

Note that the detailed notation for the eigenfunction should be ΨN (x|z) but we shall

skip N almost everywhere for sake of brevity.

In the simplest case N = 1 we have

Ψ(x1|z1) = [z1 − z0]−s+x1 ,

Λ1(y|z0) [z1 − z0]−s+x1 = λ(y, x1)[z1 − z0]−s+x1 . (3.16)

The relation (3.16) can be derived by using the chain integration rule (A.4). The general

proof of the relations (3.14)–(3.15) is based on the exchange relation

ΛN (y|z0) Λ̃N−1(x1) = λ(y, x1) Λ̃N−1(x1) ΛN−1(y|z0) (3.17)

The proof of the relation (3.17) for N = 3 is shown in figure 6 and the generalization is

obvious. Notice that after exchange, the operator defining the eigenfunction enters with

the reduced length N of the effective spin chain. Using the exchange relation step by step

it is easy to derive the formula

ΛN (y|z0)Λ̃N−1 (x1) Λ̃N−2 (x2) · · · Λ̃1 (xN−1) (3.18)

= λ(y, x1)λ(y, x2) · · ·λ(y, xN−1) Λ̃N−1 (x1) Λ̃N−2 (x2) · · · Λ̃1 (xN−1) Λ1(y|z0) .

Then the proof that Ψ(x|z) from (3.8) is eigenfunction of the operator ΛN (x|z0) with the

eigenvalues given by (3.14) is reduced to the relation (3.16) in the form6

Λ1(y|z0) [z1 − z0]−s+xN = λ(y, xN )[z1 − z0]−s+xN .

We will see that these eigenfunctions form the complete orthonormal basis. Using

them, as well as the explicit eigenvalues of ΛN (y|z0) give above, we will compute the

Basso-Dixon type two-dimensional integral.

6This computation, based on uniqueness relation, can also be checked at nk = 0, 1 conwith the soft-

ware [24].
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Figure 6. The proof of diagonalization procedure for the operator ΛN (y|z0) for N = 3, pushing

the operator through the first row of the eigenfunction: (1) The diagram for Λ3(y|z0) Λ̃2(x1):

α = 1 − s − y, α1 = 1 − s − x1, β = 1 − s + y, β1 = 1 − s + x1, γ = 2s − 1. (2) Star-triangle

transformations inside Λ̃2(x1) and two lines β and 1 − β1 ending at z0 joint to the one line (3)

Movement of the line with index β1 − β upstairs using cross relations leads to Λ̃2(x1) Λ2(y|z0), (4).

3.2 Orthogonality and completeness

The functions Ψ(x|z) form a complete orthonormal basis in the Hilbert space HN . Any

function Φ ∈ HN can be expanded w.r.t. this basis as follows

Φ(z) =

ˆ
DNxµ(x)C(x) Ψ(x|z) . (3.19)

The symbol DNx stands for the measure in the principal series representation of

SL(2,C) group

DNx =

N∏
k=1

( ∞∑
nk=−∞

ˆ ∞
−∞

dνk

)
. (3.20)

Depending on the value of spin in the quantum space, ns = s− s̄, the sum over nk goes over

all integers (integer ns) or half-integers (half-integer ns). The coefficient function C(x) is

given by the scalar product

C(x) =

ˆ
d2NzΨ(x|z) Φ(z) . (3.21)

The weight function µ(x)

µ(x) =
(2π)−Nπ−N

2

N !

∏
k<j

[xk − xj ] (3.22)

is the so-called Sklyanin measure [19, 20]. It is related to the scalar product of the eigen-

functions ˆ
d2NzΨ(x′|z) Ψ(x|z) = µ−1(x) δN (x− x′) . (3.23)
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Here the delta function δN (x− x′) is defined as follows:

δN (x− x′) =
1

N !

∑
s∈SN

δ(x1 − x′s(1)) . . . δ(xN − x′s(N)) , (3.24)

where summation goes over all permutations of N elements and we define

δ(x− x′) ≡ δnn′δ(ν − ν ′) . (3.25)

These formulae were obtained in [17, 18] and the corresponding diagrammatic calcula-

tions are discussed at length in these papers. The completeness condition for the functions

Ψ(x|z) has the following form

(2π)−Nπ−N
2

N !

ˆ
DNx

∏
k<j

[xk − xj ] Ψ(x|z) Ψ(x|z′) =

N∏
k=1

δ2(~zk − ~z′k) . (3.26)

A similar formula was proven in the case of SL(2,R) Toda spin chain by [25], in the case

of modular XXZ magnet in [26] and for b-Whittaker functions in [27]. It is commonly

believed to work for our SL(2,C) spin chain as well, though the proof is still missing.

4 SoV representation of generalized Basso-Dixon diagrams and

reductions

We have now the necessary instrumentary to reduce the Basso-Dixon type Feynman inte-

grals to the SoV form. First we present the most general, inhomogeneous generalization

of our construction and then reduce it to homogeneous anisotropic, or even isotropic case.

The last one will be the 2D analogue of the standard fishnet graph considered in D = 4

dimensions in [1]. We will suggest for it an explicit determinant representation.

4.1 SoV representation for general inhomogeneous lattice

Using the completeness (3.26) and the relation (3.14) we can represent the most general

“graph-generating” kernel, operator

B̂(y1, y2, · · · , yL, yL+1; z0) = ΛN (y1|z0) ΛN (y2|z0) · · ·ΛN (yL+1|z0), (4.1)

which “builds” a lattice formed by a repeated action of the operator (3.5). The integral

kernel of the operator (4.1) in coordinate representation looks as follows

B̂(y1, y2, · · · , yL, yL+1; z0)(z|w)

=
(2π)−Nπ−N

2

N !

ˆ
DNx

∏
k<j

[xk − xj ]
N∏
k=1

L+1∏
l=1

λ(yl, xk) Ψ(x|z) Ψ(x|w) (4.2)

The graphical representation for the left hand side (4.2) for this general case is given in

the left picture on figure 7. This operator is represented there in the form of a lattice

with inhomogeneities defined by spectral parameters y1, y2, . . . , yL+1. Later in this section
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Figure 7. (1) The diagram for Λ3(y1|z0)Λ3(y2|z0)Λ3(y3|z0)Λ3(y4|z0): αk = 1−s−yk, βk = 1−s+yk,

γ = 2s− 1. (2) Reduction of the diagram for yk → s− 1, or βk → 0.

we will perform the reduction of this formula to the homogeneous lattice of propagators

as in the Basso-Dixon integral (1.3) by taking equal spectral parameters in each column:

y1 = y2 = · · · = yL+1 = y, or even a more particular case of homogeneous but anisotropic

lattice of propagators (different powers in two directions), putting y = s − 1. But so far

we consider the most general configuration.

First, we have to perform amputation of the most left vertical lines, then the reduction

of all zk → z1 in the function Ψ(x|z) and finally the reduction of all wk → w1 in the function

Ψ(x|w) in the right hand side of (4.2). We will see that such a reduction leads to a

significant simplification of the eq. (4.2), allowing to perform at the end all the integrations

and summations over separated variables explicitly.

Let us start from the function ΨN (x1 , x2 . . . xN |z). All the needed steps are illustrated

in the figure 8 for N = 3. Before the reduction zk → z1 we have to perform the amputation

of the factors

[z0 − z1]−γ [z1 − z2]−γ · · · [zN−1 − zN ]−γ .

After amputation and reduction zk → z1 we obtain the diagram for the action of the

operator ΛN (x) for x = s−1 on the function Ψ(N−1)(x2 , x3 . . . xN |z). It is an eigenfunction

for this operator, with the eigenvalue λ(y1, x2)λ(y1, x3) · · ·λ(y1, xN ) . The next step is

similar but for a reduced chain N → N − 1 and we obtain the next eigenvalue which is

λ(y2, x3)λ(y2, x4) · · ·λ(y2, xN ) , etc.

After all these manipulations we obtain the following formula for the reduction of the

amputated eigenfunction

N−1∏
k=0

[zk − zk+1]γ Ψ(x|z)→ [z0 − z1]−α1−...−αN
∏N
k=1 rN−k+1(xk, x̄k)λ(xk)

k−1 , (4.3)

where we introduced

λ(xk) = πa(2− 2s, s+ xk, s− xk) (−1)[s+xk] , (4.4)

and used the factor rn(xk, x̄k) defined in (3.10).
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Figure 8. Amputation of propagators from the eigenfunction Ψ(x1, x2, x3|z1, z2, z3) and then

reduction in the limit zk → z1 to the simple power [z0 − z1]−α1−α2−α3 . We perform amputation of

[z1−z2] and [z2−z3] lines in (1), then (2) we reduce the first row z2, z3 → z1 leading to (3). We can

open the triangle in (3) to a star, so that integrations in upper-left, and then lower-left vertex are

performed using chain relation and star-triangle relation. At the next step (4) we join propagators

with coinciding coordinates on the left, and performing the last integration (5) via chain relation,

the eigenfunction is reduced to a simple line (6).

Figure 9. Reduction of the eigenfunction Ψ(x1, x2, x3|z1, z2, z3) in the limit zk → z1 to simple

power [z0− z1]β1+β2+β3−3. Dashed lines stand for δ(2)(z), see also (A.5). We reduce z3, z2 → z1 in

(1). By applying triangle-star relations to the first row of triangles (1) we obtain δ function kernels.

We integrate out δ functions (2) and we open the triangle in (3) to a a star and put together

the points z1 obtaining (4). The δ function is integrated (4), leading to the full reduction of the

eigenfunction to a simple line (5).

The reduction zk → z1 for the eigenfunction Ψ(x|z) without amputations of the lines

is shown step by step in the figure 9. First of all we use the star-triangle relation and

reduce the triangle to the corresponding delta-function. This elementary reduction

[z2 − z1]−γ [w − z1]−α [w − z2]−β → −π
2

γγ̄

1

λ(x)
δ2(z1 − w)

is shown on the right in figure 2. Using this elementary reduction it is possible to reduce

the first layer of the diagram for the general eigenfunction Ψ(x|z) to the product of the

corresponding delta-functions and [z0− z1]β1−1 with the coefficient
(
−π2

γγ̄
1

λ(x1)

)N−1
. After

integrations in the corresponding vertices in the second layer all delta-functions disappear

so that it is possible to repeat the same procedure. After all iterations one obtains the
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following expression for the reduced eigenfunction

Ψ(x|z)→
N∏
k=1

(
rN−k+1(xk)

(
−π

2

γγ̄

1

λ(xk)

)N−k)
[z0 − z1]β1+...+βN−N .

Note that we have to perform such reduction also in the function Ψ(x|w) so that it remains

to perform the complex conjugation and evident substitution z → w. Using the rules of

the complex conjugation

s∗ = 1− s̄ , (xk)
∗ = −x̄k ;

α∗ = 1− ᾱ , β∗ = 1− β̄ , γ∗ = −γ̄ (4.5)

rk(xh)∗ = rk(xh)−1 ;
(

[z]β
)∗

= [z]1−β ; λ∗(x) = −π
2

γγ̄

1

λ(x)

and substituting z → w we obtain

Ψ(x|w)→
N∏
k=1

(
λN−k(xk) / rN−k+1(xk)

)
[z0 − w1]−β1−...−βN . (4.6)

Finally, as a result of amputation-reduction on Ψ(x|z) and reduction of Ψ(x|w), by the

use of (4.3) and (4.6) the projector Ψ(x|z)Ψ(x|w) is transformed into

N∏
k=1

λN−1(xk) [z0 − z1]−α1−...−αN [z0 − w1]−β1−...−βN . (4.7)

We point out that the way we reduce the N coordinates z = {zk} to a single point in

the functions Ψ(x|z) and Ψ(x|z) can be alternatively obtained by inserting the complete

basis (3.26) between two Λ-kernels in (4.1), and repeating their diagonalization after the

reduction of the last kernel ΛN (yL+1|z0) and the amputation and reduction of the first

ΛN (y1|z0).

From formula (4.7) we obtain the following representation for the two-dimensional

analogue of generalized Basso-Dixon diagram:

Gy
N,L(z1 , w1 , z0) =

(2π)−Nπ−N
2

N !

ˆ
DNx

∏
k<j

[xk − xj ]
N∏
k=1

(
λN−1(xk)

L+1∏
l=1

λ(yl, xk)

)

×[z0 − z1]−α1−...−αN [z0 − w1]−β1−...−βN . (4.8)

We recall that αk = 1− s− xk , βk = 1− s+ xk and xk = nk
2 + iνk , x̄k = −nk

2 + iνk.

Introducing the amputated cross ratio

η|w0→∞ =
z0 − w1

z0 − z1
(4.9)

we rewrite the last expression for inhomogeneous and anisotropic 2D Basso-Dixon type

integral in a concise form

Gy
L,N (z1 , w1 , z0) = ([z0 − z1] [z0 − w1])N(s−1) By

L,N (η) (4.10)
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where

By
L,N (η) =

(2π)−Nπ−N
2

N !

ˆ
DNx

N∏
k=1

(
[η]−xkλN−1(xk)

L+1∏
l=1

λ(yl, xk)

) ∏
k<j

[xk − xj ] .

(4.11)

and by superscript y we mean the vector of inhomogeneity parameters y = (y1, y2, . . . , yN ).

4.2 Determinant representation

We notice that in (4.11) we deal with the multiple integral of a special type which can be

transformed, similarly to the eigenvalue reduction of the hermitian one-matrix integral [28,

29], to the determinant form

By
L,N (η) =

(2π)−Nπ−N
2

N !

ˆ
DNx

∏
k<j

[xk − xj ]
N∏
k=1

f{y}(xk) = N ! det M (4.12)

where we introduced the momenta

Mik =

ˆ
Dx xi−1x̄j−1f{y}(x) ; i, k = 1 , . . . , N (4.13)

with the weight function given in our case by the expression

f{y}(x) = [η]−xλN−1(x)
L+1∏
l=1

λ(yl, x) = η−xη̄−x̄λN−1(x)
L+1∏
l=1

λ(yl, x) (4.14)

where λ(x) and λ(y, x) are defined in eqs. (4.4), (3.15). So for any pair of integers L,N the

problem is reduced to the computation of momenta (4.13), which we will do explicitly in

the section 5 after the reduction to Basso-Dixon configuration of the general formula (4.10).

4.3 Reductions

In particular case, leading to the homogenous Basso-Dixon lattice configuration, we put

y1 = y2 = · · · = yL = y and obtain for the reduced quantity

By(z0)(z|w) |y1=y2=···=yL=y ≡ B(y; z0)(z|w) = ΛL(y|z0)(z|w) (4.15)

the following SoV representation:

B(y; z0)(z|w) =
(2π)−Nπ−N

2

N !

ˆ
DNx

∏
k<j

[xk − xj ]
N∏
k=1

λL(y, xk) Ψ(x|z) Ψ(x|w) . (4.16)

The further reduction of this expression, βk → 0, or yk = y → s − 1, will lead to

anisotropic Basso-Dixon type D = 2 integral (1.4) with parameters γ = 2s− 1, γ̄ = 2s̄− 1.

After this reduction we obtain the second diagram in figure 7, with the different propagators

[z−z′]1−2s and [z−z′]2s−2 in vertical and horizontal directions of the lattice. In this case, we

have to substitute into the formula (4.2) representing this diagram the reduced eigenvalues

λ(y, xk) = πa(1− s− y, s+ xk, 1 + y − xk) (−1)[y+xk] y=s−1−→
−→ λ(xk) = πa(2− 2s, s+ xk, s− xk) (−1)[s+xk] . (4.17)
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This leads, after the identification of external coordinates: zk → z1, wk → w1, described

above, to the following representation for the two-dimensional analog of (anisotropic)

Basso-Dixon diagram BL ,N (η) in terms of the multiple integral over N separated variables

BL,N (η) =
(2π)−Nπ−N

2

N !

ˆ
DNx

N∏
k=1

[η]−xkλN+L(xk)
∏
k<j

[xk − xj ] . (4.18)

Notice that the parameters of the representation (s, s) can be chosen in the principal

series (3.1), or even in the imaginary strip ν(s) ∈ (−i/2 , 0) by analytic continuation. With

the choice of parameters ns = 0 and ν(s) = −i/4 ± i ω/2 in (3.1) we describe the 2D

Basso-Dixon type integral with real propagators |z−z′|−1∓ω, where ± signs corresponds to

two different axis of the square lattice shaped Feynman graph, according to the bi-scalar

Lagrangian (1.1). The isotropy of the lattice is restored at s = s̄ = 3/4, that is ω = 0.

The determinant formula (4.12) reads for this reduction as follows

B
(γ,γ̄)
L,N (η) = (2π)−Nπ−N

2
det

1≤j,k≤N
mjk , (4.19)

where

mik =

ˆ
Dx xi−1x̄j−1f(x) ; i, k = 1 , . . . , N (4.20)

and

f(x) = [η]−xλN+L(x) = η−xη̄−x̄λN+L(x) (4.21)

where λ(x) is defined in eqs. (4.4).

5 Explicit computation of ladder integral

In this section, we will explicitly compute the momenta mik given by (4.20) in terms of

hypergeometric functions, which leads to explicit expressions of Basso-Dixon type integrals

via the determinant representation (4.19). Some details of the derivation can be found in

appendix C.

Noticing that

mik = (η∂η)
i−1(η̄∂η̄)

k−1IN+L , where IM =

ˆ
Dx η−xη̄−x̄λM (x) (5.1)

we are led to compute the following sum and integral:7

IM =

ˆ
Dx η−xη̄−x̄λM (x)

= πMaM (2− 2s)(−1)M [s]

ˆ
Dx aM (s+ x, s− x) (−1)M [x]η−xη̄−x̄

= πMaM (2− 2s)
∑
n∈Z

ˆ +∞

−∞
dν

ΓM (1− s̄− n
2 + iν)ΓM (1− s̄+ n

2 − iν)

ΓM (s− n
2 − iν)ΓM (s+ n

2 + iν)

×(−1)M(n+ns)η−
n
2
−iν η̄

n
2
−iν , (5.2)

7We use here and in the following the notation (−1)[α], see (A.2).
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Figure 10. Structure of poles and zeroes of the integrand in (5.2), at different values of the discrete

variable n, for ns = 0. Superposition of zeroes and poles occurs in such a way that there is only

one semi-infinite series of poles (and zeroes) in upper- and lower- half-planes.

where in the last line we substituted explicit parameters. We can close the integration

contour on the upper/lower half-plane under the condition |η| < 1, respectively |η| > 1,

ensuring the exponential suppression of the integrand at ±i∞. Consider first the case

|η| < 1. In the upper half-plane there is one infinite sequence of poles of the order M. After

the change of variables n→ −n+ ns + 1 in the sum over n and ν → ν + νs in the integral

over ν, the integral (5.2) reads

IM =
πMaM (2− 2s)(−1)M

ηsη̄s̄−1

×
∑
n∈Z

ˆ +∞

−∞
dν

ΓM (2− 2s̄− n
2 − iν)ΓM (n2 + iν)

ΓM (2s− n
2 + iν)ΓM (n2 − iν)

(−1)Mnη
n
2
−iν η̄−

n
2
−iν (5.3)

We close the contour in the upper half-plane and calculate the ν-integral as the sum of
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residues. Due to the mechanism illustrated in figure 10, this is equivalent to take residues

at the points ν = in
2 + ik , k = 0 , 1 , 2 , . . ., i.e. the series of the poles created by the function

ΓM (n2 + iν). The residue at the point ν = in
2 + ik can be represented in the following form

Resν= in
2

+ik = − i

(M − 1)!
∂M−1
ε

∣∣
ε=0

[
ΓM (1 + ε)ΓM (1− ε)

ΓM (2s+ ε)ΓM (1− 2s− ε) [η]−ε (5.4)

×ΓM (1− 2s+ n+ k − ε)
ΓM (n+ k − ε)

ΓM (2− 2s̄+ k − ε)
ΓM (1 + k − ε) ηn+k η̄k

]
.

Using this formula one obtains the following relation∑
n∈Z

ˆ +∞

−∞
dν

ΓM (2− 2s̄− n
2 − iν)ΓM (n2 + iν)

ΓM (2s− n
2 + iν)ΓM (n2 − iν)

(−1)Mnη
n
2
−iν η̄−

n
2
−iν

=
2π

(M − 1)!
∂M−1
ε

∣∣
ε=0

[
ΓM (1 + ε)ΓM (1− ε)

ΓM (2s+ ε)ΓM (1− 2s− ε) [η]−ε

×
∑
n∈Z

+∞∑
k=0

ΓM (1− 2s+ n+ k − ε)
ΓM (n+ k − ε)

ΓM (2− 2s̄+ k − ε)
ΓM (1 + k − ε) ηn+k η̄k

]
Remarkably enough, since we take derivative at ε = 0 the last double sum can be equiva-

lently rewritten in a factorized form, setting p = n+ k − 1

η
+∞∑
p=0

ΓM (2− 2s+ p− ε)
ΓM (1 + p− ε) ηp

+∞∑
k=0

ΓM (2− 2s̄+ k − ε)
ΓM (1 + k − ε) η̄k

and we obtain the following expression for the ladder integralˆ
DxλM (x)[η]−x =

2πM+1aM (1− γ)(−1)M

(M − 1)! [η]
γ−1

2

∂M−1
ε

∣∣
ε=0

ΓM (1 + ε)ΓM (1− ε)
ΓM (γ + 1 + ε)ΓM (−γ − ε)

×[η]−ε FM (1− γ , ε|η)FM (1− γ̄ , ε|η̄) (5.5)

where γ = 2s− 1 and the function FM (λ , ε|η) is given by the hypergeometric series

FM (λ , ε|η) =

∞∑
k=0

ΓM (λ+ k − ε)
ΓM (1 + k − ε) η

k (5.6)

=
Γ(λ− ε)M
Γ(1− ε)M × M+1FM (1, λ− ε, . . . , λ− ε︸ ︷︷ ︸

M

; 1− ε, . . . , 1− ε︸ ︷︷ ︸
M

; η)

Therefore we can write in a more compact notation, for |η| < 1:

IM =
2πM+1aM (1− γ)

(M − 1)! [η]
γ−1

2

∂M−1
ε

∣∣
ε=0

aM (γ + ε)ΓM (1 + ε)

ΓM (1− ε) [η]−εFγ,γ̄M (η, η̄|ε),

where

Fγ,γ̄M (η, η̄|ε) = M+1FM

(
1− γ − ε · · · 1− γ − ε 1

1− ε · · · 1− ε

∣∣∣∣∣ η
)

×M+1FM

(
1− γ̄ − ε · · · 1− γ̄ − ε 1

1− ε · · · 1− ε

∣∣∣∣∣ η̄
)
. (5.7)
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In the opposite case of |η| > 1 the same kind of computation can be repeated picking

residues in the lower half plane. After redefinition n→ −n+ 2ns + 2, this is equivalent to

pick the series of poles ν = 2is+ in
2 − ik , k = 0 , 1 , 2 , . . ., and the residues are

Resν=2is+ in
2
−ik =

i

(M − 1)!
η2sη̄2s̄−2 ∂M−1

ε

∣∣
ε=0

ΓM (1 + ε)ΓM (1− ε)
ΓM (2s+ ε)ΓM (1− 2s− ε) [η]ε (5.8)

×ΓM (1− 2s+ n+ k − ε)
ΓM (n+ k − ε)

ΓM (2− 2s̄+ k − ε)
ΓM (1 + k − ε) η−n−k η̄−k .

It follows from (5.8) that the final expression of the ladder for |η| > 1 is the same as (5.7)

after replacing η with 1/η. For a generic cross-ratio |η| ≶ 1 the M -ladder is, respectively

IM =
2πM+1aM (1− γ)

(M − 1)! [η]±( γ−1
2

)
∂M−1
ε

∣∣
ε=0

aM (γ + ε)ΓM (1 + ε)

ΓM (1− ε) [η]∓εFγ,γ̄M (η±1, η̄±1|ε). (5.9)

and it shows explicitly the invariance under exchange z1 ↔ w1; in fact

IM (η) = IM

(
1

η

)
(5.10)

The result (5.9), obtained under the assumption of (s, s̄) in the principal series of

SL(2,C), can be remarkably extended by analytic continuation to s = s̄ ∈ (1/2 , 1), that is

setting γ = γ̄ ∈ (0, 1) in (5.9). The direct computation of ladder integrals is more involved

in this last case, since analytic continuation leads to the failure of the cancelation of poles

by zeros presented on figure 10, and integration in (5.2) must be carried out under an

appropriate contour deformation prescription. The explicit result for the particular choice

of weights γ = γ̄ = 1/2, corresponding to the isotropic fishnet theory (the case considered

by Basso and Dixon in [1] for D = 4) reads:

IM =
2πM+1

(M − 1)! |η|± 1
2

∂M−1
ε

∣∣
ε=0

aM
(

1
2 + ε

)
ΓM (1 + ε)

ΓM (1− ε) [η]∓εF
1
2
, 1
2

M (η±1, η̄±1|ε),

(5.11)

F
1
2
, 1
2

M (η, η̄|ε) =M+1FM

(
1
2 − ε · · · 1

2 − ε 1

1− ε · · · 1− ε

∣∣∣∣∣ η
)

M+1FM

(
1
2 − ε · · · 1

2 − ε 1

1− ε · · · 1− ε

∣∣∣∣∣ η̄
)
.

Moreover in the isotropic case γ = 1− γ, and for the simple “cross” N = 1, L = 1 diagram

(computed below in terms of elliptic functions), the duality (2.4) is a mere consequence

of (5.10)

B
(1/2)
1,1 (η) = I

(1/2)
2 (η) = I

(1/2)
2

(
1

η

)
= B

(1/2)
1,1

(
1

η

)
For the sake of duality in the more involved anisotropic case we will need also the relation

between ladders with exchange of γ ↔ 1−γ. This relation can be easily checked and looks

as follows

I
(1−γ)
2

(
1

η

)
= [η]γ−

1
2 [1− η]1−2γ I

(γ)
2 (η),

and due to B
(γ)
1,1 = I

(γ)
2 the duality (2.4) is also proved.
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In the simplest particular case M = 1 we can simply put ε = 0 everywhere and then

reduce to the simple power

F1(λ , 0|η) =

∞∑
k=0

Γ(λ+ k)

k!
ηk =

Γ(λ)

(1− η)λ
,

so that

GL=0,N=1(z1 , w1 , z0) = (2π2)−1 ([z0 − z1] [z0 − w1])
γ−1

2 B
(γ,γ̄)
0,1 (η)

= ([z0 − z1] [z0 − w1])
γ−1

2
a(1− γ, γ)

[η]
γ−1

2 [1− η]1−γ

=
1

[w1 − z1]1−γ
(5.12)

which is precisely the single propagator in the trivial case of the Basso-Dixon type formula,

with no integrations.

In order to get a better feeling of the structure of our result (5.7) at generic N +

L, it is instructive to compute the first non-trivial graph GL=1,N=1(z1, w1, z0) - the two-

dimensional “cross” integral. In four dimensions, the cross integral can be computed in

terms of the Bloch-Wigner function (di-logarithm function) [2]. We will see that in our

two-dimensional case the answer for cross can be expressed through elliptic functions. Since

it involves only N = 1 separated variable, it is simply related to the ladder I2:

GL=1,N=1(z1, w1, z0) = (2π2)−1([z0 − z1][z0 − w1])
γ−1

2 I2(η). (5.13)

For M = 2 the ladder integral (5.7) reads:

2π3a2(1− γ)

[η]
γ−1

2

∂ε|ε=0 a
2(γ + ε)

Γ2(1 + ε)

Γ2(1− ε) [η]−ε

×3 F2

(
1− γ − ε 1− γ − ε 1

1− ε 1− ε

∣∣∣∣∣ η
)

3F2

(
1− γ − ε 1− γ − ε 1

1− ε 1− ε

∣∣∣∣∣ η̄
)

Choosing the conformal weights for isotropic fishnets γ = γ̄ = 1/2, the ladder simplifies to

2π3 ∂ε|ε=0

Γ2(1 + ε)Γ2(1/2− ε)
Γ2(1− ε)Γ2(1/2 + ε)

[η]
1
4
−ε

×2 F1

(
1

2
− ε, 1

2
− ε; 1− 2ε

∣∣∣∣ η) 2F1

(
1

2
− ε, 1

2
− ε; 1− 2ε

∣∣∣∣ η̄) . (5.14)

We can recall the expression of the 2D conformal cross integral [30] (e.g. see the formula

(1.7) of [31]); after amputation of one line by sending w0 to infinity, we get

G̃h,h̄ =

ˆ
d2ρ

[w1 − ρ]h[z0 − ρ]h[z1 − ρ]1−h

=
2F1(h, h; 2h|η) 2F1(h̄, h̄; 2h̄|η̄) [η]h

[w1 − z0]hB(1− h)
+ (h↔ 1− h); (5.15)

B(h) =
2−2iσ(−2iσ)

π

Γ
(

1
2 + iσ

)
Γ (−iσ)

Γ
(

1
2 − iσ

)
Γ (iσ)

; h =
1

2
+ iσ.
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In order to compare with (5.13) we should set h = 1/2, that is σ = 0. Due to the vanishing

of B(1/2), this expression is an ill-defined sum of two divergent terms. The issue is solved

by taking the limit σ → 0 in (5.15), which gives the well defined function

π

2 |w1 − z0|
lim
σ→0

[
Γ
(

1
2 + iσ

)2
Γ (1− iσ)2

Γ
(

1
2 − iσ

)2
Γ (1 + iσ)2

[η]iσ F (σ|η) F (σ|η̄) + (σ ↔ −σ)

]
,

where F (σ|x) = 2F1

(
1

2
+ iσ,

1

2
+ iσ; 1 + 2iσ

∣∣∣∣x)
and reproduces the result of plugging (5.14) into (5.13). The problem reduces to computing

F (σ|η) and ∂σ|σ=0F (σ|η) which reduce to elliptic integrals. Then the cross integral can

be presented in explicit form:

IBD
1,1 (z0, z1, w0, w1) ≡

ˆ
d2ρ

|z0 − ρ||w0 − ρ||z1 − ρ||w1 − ρ|

=
4 |1− η|

|w1 − z1||w0 − z0|
[K(η)K(1− η̄) + K(η̄)K(1− η)] , |η| < 1

(5.16)

where here:

η =
z0 − w1

w1 − w0

z1 − w0

z0 − z1

and K(x) is the elliptic K integral:

K(x) =

ˆ 1

0

dt√
(1− t2)(1− x t2)

.

This result for the cross integral suggests that even for any L,N the formula for

two-dimensional Basso-Dixon integral can be presented in terms elliptic poly-logarithms

encountered [32] in various Feynman graph calculations.

6 The case of ladders N = 1, L > 1 and the simple wheel integral

The computation of 2-dimensional ladders carried out in the previous sections has other

interesting applications in the context of the theory (1.1). The simplest observables in

this theory are single trace operators tr(X l)(z), tr(Z l)(z). As explained in [4, 9], the

perturbative expansions of their correlators

〈trX l(z) tr(X†)l(w)〉 〈trZ l(z) tr(Z†)l(w)〉 (6.1)

consist, for l > 2, of only of the “globe”-shaped fishnet Feynman integrals:

Fl,N (x, y) =

ˆ l∏
j=1

1

|z0,j − zj,1|1+2ω|zj,N − zj,N+1|1+2ω

×
N∏
k=1

d2zj,k
|zj,k − zj,k+1|1+2ω|zj,k − zj+1,k|1−2ω

,
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Figure 11. Simple wheel at l = 6. The black blobs are integrated over, while the gray blob in the

center of the figure is the external point of Fl,N (z, w) left over after amputation.

where we set zj,0 ≡ z, zj,N+1 ≡ w, and the expansion itself reads:

Gl(z − w) =
∞∑
N=0

ξ2Nl Fl,N (z, w) (6.2)

For any value of the coupling ξ2 the correlators (6.1) are conformal, thus it is possible to

define the scaling dimension of the fields X and Z as:

∆(ξ2) = − lim
|z−w|→∞

log(Gl(z − w))

log(z − w)2
=

l

2
+ γ(ξ2) (6.3)

where the anomalous dimension γ is an expansion in the log-divergence of Fl,N graphs, i.e.

its coefficient of 1
ε in dimensional regularization.

Wl,N (z) =

ˆ l∏
j=1

1

|z0,j − zj,1|1+2ω

N∏
k=1

d2zj,k
|zj,k − zj,k+1|1+2ω|zj,k − zj+1,k|1−2ω

, (6.4)

we can write

−γ(ξ2) =

∞∑
N=1

ξ2NlW
(1)
l,N

where W
(1)
l,N stands for the 1/ε-divergence coefficient in the expansion of the (l, N) wheel in

dimensional regularization.8 The simple case N = 1 can be worked out explicitly, since the

integral (6.4) can be regarded as a ladder with periodic boundary conditions and L = l−1,

see figure 11. In the formalism of integral operators (3.5) we can write:

Wl,1(z) =

ˆ l∏
j=1

d2zj
[z0 − zj ]2s−1[zj − zj+1]2−2s

= Tr
[
Λl1(x|z0)

]
, (6.5)

8In general, the following wheel integral has 1
εN

divergency, so one has to extract the subleading 1
ε

term.
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where x = s − 1, s = s̄ = 3/2 − ω. We can insert inside the trace in (6.5) a complete

basis (3.23) in order to get an integral over one separated variable:

1

2π2

∞∑
n=−∞

ˆ +∞

−∞
dν Tr

[
Λl1(x|z0)Ψ(x|z)Ψ(x|z′)

]
=

1

2π2

( ∞∑
n=−∞

ˆ +∞

−∞
dν λl1(x)

) ˆ
d2zΨ(x|z)Ψ(x|z). (6.6)

The integration over z is the scalar product of two eigenfunctions with the same weights

x, thus carrying the log-divergence of (6.5), or the 1
ε divergence which is the leading one

at N = 1 in the ε-regularization. We can easily extract it:

ˆ
UV

d2+εzΨ(x|z)Ψ(x|z) = 2π

ˆ 1

0

dr

r1−ε =
2π

ε
,

and the resulting W
(1)
l,1 reads:

W
(1)
l,1 =

1

2π2

∞∑
n=−∞

ˆ +∞

−∞
dν λl1(x) =

1

π
Il(η)|η=1

The L-ladder at η = 1 is a finite quantity only for L = l − 1 > 1, and it isn’t otherwise

possible to close the integration contour in (5.2). Indeed the asymptotic expansion of λ1

in ν is

λL+1
1 (n, ν) = (−iν)−L−1 +O(ν−L) .

The divergence of the wheel diagram at l = L+1 = 2 is in agreement with our expectations:

in order to renormalize correlators (6.1) at l = 2 the specific double-trace counterterms are

needed [9, 12–14, 33, 34].

More explicitly, fixing the propagators along the frames and spokes to be the same

(ω = 0), we get:

W
(1)
l,1 =

2πl

(l − 1)!

dl−1

dεl−1

∣∣∣∣
ε=0

Γl(1 + ε)Γl(1− ε)
Γl(3/2 + ε)Γl(−1/2− ε)

( ∞∑
k=0

Γl(1/2 + k − ε)
Γl(1 + k − ε)

)2

(6.7)

The quantity (6.7) can be computed numerically and, hopefully, expressed in terms of

Elliptic Multiple Zeta Values.

7 Conclusions and prospects

In this paper, we derived an explicit formula for the two-dimensional analogue of Basso-

Dixon integral given by conformal fishnet Feynman graph represented by regular square

lattice of rectangular L×N shape, presented on figure 1 and figure 2(left). The definition

of this integral and the result are presented at the end of Introduction (section 1). Our

result represents a slightly more general quantity then Basso-Dixon graph: it concerns
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the anisotropic fishnet, i.e. with different powers for vertical and horizontal propagators,

corresponding to arbitrary spins s, s̄ of principal series representation of SL(2,C) group, or

for the analytic continuation to s = s̄ belonging to the real interval
(

1
2 , 1
)
. The particular

case of isotropic fishnet, a-la Basso-Dixon, corresponds to the case s = s̄ = 3/4. In

two-dimensional case the fishnet graph is built from propagators 1
|z1−z2| . Such graph is

a particular case of single-trace correlators introduced in [35, 36] for the study of planar

scalar scattering amplitudes in the bi-scalar fishnet CFT [4, 9]. In the simplest case N =

L = 1 (cross integral) we managed to present the result in terms of elliptic functions. It

seems plausible that even for general L,N the result can be expressed in terms of elliptic

functions. A probable full basis of such functions, in terms of which our quantity could

be presented, are the so-called multiple elliptic poly-logarithmic functions (see [37] and

references therein). It would be interesting to obtain it for a few smallest N,L.

Interestingly, in the case s → 1/2 (or, alternatively, s → 1, which is an equivalent

SL(2,C) representation for the graph’s propagators) this fishnet corresponds to one of the

conservation laws of Lipatov integrable (open) spin chain hamiltonian [38, 39] describing

the system of reggeized gluons for the Regge (BFKL) limit of QCD [18, 40–42]. It would

be interesting to understand what kind of BFKL physics it can describe.

The Basso-Dixon type configuration represents only one set of possible physical quan-

tities which can be, in principle, analyzed and computed in the planar bi-scalar fishnet

CFT due to integrability. To fix the OPE rules in such a theory, we have to compute

the spectrum of anomalous dimensions and the structure constants of all local operators.

Some of them have been analyzed and even computed in the literature. In particular, the

so-called wheel graphs, corresponding to operators trXL, have been computed in D = 4

dimensions in [4, 43] up to two wrappings at any L. In [7] they have been computed in

particular cases of L = 2, 3 (L = 4 case is to appear [44]) to any reasonable loop order

(for any wrapping there exists an iterative analytic procedure) or numerically with a great

precision, by means of the Quantum Spectral Curve method [45–48]. We think that, to

give a more general result for any L in rather explicit form, we have to employ a powerful

technique of separated variables, similarly to the one we employed here in two dimensions

for Basso-Dixon type graphs. The first step would be to compute the wheel graphs in two

dimensions using the techniques of this paper. To advance to D > 2 dimensions by inte-

grable spin chain methods, we have to understand the construction of separated variables

for higher rank symmetries, such as SU(2, 2). Some recent results in this direction might

provide the necessary computational tools [49–54]. It would be also good to generalize

our techniques, at least in two dimensions, to the computation of multi-magnon operators

related to “multi-spiral” Feynman graphs [5].

The computation of structure constants is an even more complicated task. Certain

explicit results for OPE of short protected operators have been obtained for fishnet CFT

in [9, 33, 34] (see also [55, 56] in BFKL limit) using solely the conformal symmetry. The

calculation of more complicated structure constant is a difficult task demanding the most

sophisticated techniques, such as SoV method. Since for the 2D case the SoV formalism

is well developed it would be interesting to apply the methods of the current paper to

computations of more complicated structure constants at least in two dimensions.
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Finally, it would be good to understand the role of separated variables in the non-

perturbative structure of the bi-scalar fishnet CFT. A good beginning would be to under-

stand in terms of SoV the strong coupling limit for long operators of the theory and to

relate it to the classical limit of the dual non-compact sigma model which will probably

arise in two-dimensional case similarly to the one which was observed in four-dimensional

bi-scalar fishnet CFT in [57].
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A Diagram technique

The functions and kernels of integral operators considered in the main body of the paper

are represented in the form of two-dimensional Feynman diagrams. The propagator which

is shown by the arrow directed from w to z and index α attached to it is given by the

following expression

1

[z − w]α
≡ 1

(z − w)α(z∗ − w∗)ᾱ =
(z∗ − w∗)α−ᾱ
|z − w|2α , (A.1)

where the difference α− ᾱ is integer: α− ᾱ ∈ Z.9 The flip of the arrow in propagator gives

an additional sign factor (−1)α−ᾱ for which we shall use the shorthand notation

(−1)[α] = (−1)α−ᾱ (A.2)

so that
1

[z − w]α
=

(−1)α−ᾱ

[w − z]α
=

(−1)[α]

[w − z]α
. (A.3)

The evaluation of Feynman diagrams is based on their transformation with the help of the

certain rules, namely:

• Chain relation:ˆ
d2w

1

[z1 − w]α[w − z2]β
= (−1)[γ]a(α, β, γ)

1

[z1 − z2]α+β−1
, (A.4)

where γ = 2− α− β, γ̄ = 2− ᾱ− β̄.

9Note that the star ∗ is used for the usual complex conjugation whether as the meaning of the bar is

explained in eq. (3.1), (3.2).
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= π(−1)γ−γ̄a(α, β, γ)
α β

= π a(α, β, γ)

α + β − 1

α

βγ

1− α

1− β 1− γ

Figure 12. The chain and star-triangle relations, α+ β + γ = 2.

=

α

1− α′

β

1− β ′

α
′ −

α

1− α

α′ β ′

1− β

β
−
β
′

a(α, β̄)a(α′, β̄′)

Figure 13. The cross relation, α+ β = α′ + β′.

• Special case of the chain relation

ˆ
d2w

1

[z1 − w]1−α[w − z2]1+α
= −π2 (−1)[α]

αᾱ
δ2(z1 − z2) , (A.5)

• Star– triangle relation:
ˆ
d2w

1

[z1 − w]α[z2 − w]β [z3 − w]γ
=

πa(α, β, γ)

[z2 − z1]1−γ [z1 − z3]1−β [z3 − z2]1−α
, (A.6)

where α+ β + γ = 2 and ᾱ+ β̄ + γ̄ = 2.

• Cross relation:

1

[z1 − z2]α′−α

ˆ
d2w

a(α′, β̄′)

[w − z1]α[w − z2]1−α′ [w − z3]β [w − z4]1−β′

=
1

[z3 − z4]β′−β

ˆ
d2ζ

a(α, β̄)

[w − z1]α′ [w − z2]1−α[w − z3]β′ [w − z4]1−β
, (A.7)

where α+ β = α′ + β′.

These relations are shown in diagrammatic form in figures 12, 13. Here the notation

a(α, β, γ, . . .) = a(α)a(β)a(γ) . . . is introduced for the product of special function a(α) for

different values of arguments. The definition of the function a(α) is the following

a(α) =
Γ(1− ᾱ)

Γ(α)
. (A.8)
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Note that this function depends on two parameters α and ᾱ, where the difference α − ᾱ
should be integer, but for the sake of simplicity we shall use the shorthand notation a(α).

There are some useful relations for this function

a(1 + α) = −a(α)

αᾱ
, a(α)a(1− α) = (−1)[α] , a(1 + α)a(1− α) = −(−1)[α]

αᾱ
(A.9)

B Reduction and duality

We start from the simplest example N = 1 , L = 1, make the reduction by sending w0 →∞
and drop the corresponding propagator. We want to reduce the original quantity

IBD
1,1 (z0, z1, w0, w1) =

ˆ
d2w

1

[w − z1]1−γ [w1 − w]1−γ [w − w0]γ [z0 − w]γ
→

→ G1,1(z1, w1|z0) =

ˆ
d2w

1

[w − z1]1−γ [w1 − w]1−γ [z0 − w]γ

We can always restore the original quantity IBD
1,1 (z0, z1, w0, w1) from G1,1(z1, w1|z0) using

its conformal symmetry, i.e. by applying the shift+inversion transformation:

G1,1

(
1

z1
,

1

w1

∣∣∣∣ 1

z0

)
=

ˆ
d2w

[w]2
1

[1/w − 1/z1]1−γ [1/w1 − 1/w]1−γ [1/z0 − 1/w]γ

= [z1]1−γ [w1]1−γ [z0]γ
ˆ

d2w

[w]γ [z1 − w]1−γ [w − w1]1−γ [w − z0]γ

= [z1]1−γ [w1]1−γ [z0]γ IBD
1,1 (z0, z1, 0, w1)

= [z1]1−γ [w1]1−γ [z0]γ IBD
1,1 (z0 + w0, z1 + w0, w0, w1 + w0)

or

IBD
1,1 (z0, z1, w0, w1) = [z1 − w0]γ−1[w1 − w0]γ−1[z0 − w0]−γ

×G1,1

(
1

z1 − w0
,

1

w1 − w0

∣∣∣∣ 1

z0 − w0

)
.

Analogously, the formula for the general N,L looks as follows:

IBD
L,N (z0, z1, w0, w1) = [z1 − w0]N(γ−1)[w1 − w0]N(γ−1)[z0 − w0]−Lγ

× GL,N

(
1

z1 − w0
,

1

w1 − w0

∣∣∣∣ 1

z0 − w0

)
, (B.1)

where

IBD
L,N (z0, z1, w0, w1) =

ˆ L∏
l=1

N∏
n=1

d2zln

 ∏
(l,n)∈LL,N

1

|zl,n − zl,n+1|1+2ω |zl,n − zl+1,n|1−2ω

 .

(B.2)
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Taking into account (4.10) and (4.18) and setting:

z′1 = (z1 − w0)−1, z′0 = (z0 − w0)−1, w′1 = (w1 − w0)−1, and η′ =
w′1 − z′0
z′1 − z′0

we can give an explicit expression for the last factor in (B.1) in terms of function BL,N (η):

GL,N (z′1, w
′
1|z′0) = ([z′0 − z′1][z′0 − w′1])N

γ−1
2 BL,N

(
η′
)

=

(
[z0 − z1]

[z0 − w0][z1 − w0]

)(γ−1)N

[η]
γ−1

2
NBL,N (η)

where η is the anharmonic ratio of the graph IBD
L,N :

η =
(w1 − z0)(z1 − w0)

(z1 − z0)(w1 − w0)
(B.3)

By definition (1.3) our graphs should have a duality symmetry, namely:

IBD
L,N (z0, z1, w0, w1) = IBD

N,L(z1, w0, w1, z0) (B.4)

Namely we can rotate the whole diagram anti-clockwise by an angle π
2 and repeat our

computation by eigenfunction expansion step by step with some changes:

• L� N

• γ � 1− γ, so that now horizontal lines have index γ and vertical 1− γ
and we derive a different representation for the same quantity

IBD
N,L(z0, z1, w0, w1) =

[w0 − z1]−γL[z0 − w1]−γL

[z1 − w1]−γL+(1−γ)N
[η]

γ
2
L B

(1−γ)
N,L

(
1

η

)
(B.5)

C Details of the derivation of the formula (5.4)

The derivation of the formula (5.4) contains three steps:

• calculate integrand at ν = in
2 + ik − iε

(−1)Mn ΓM (2− 2s̄+ k − ε)ΓM (−k + ε)

ΓM (2s− n− k + ε)ΓM (n+ k − ε) η
n+k−εη̄k−ε (C.1)

• use twice the Euler reflection formula

Γ(−k + ε) =
1

ε

(−1)k Γ(1 + ε)Γ(1− ε)
Γ(1 + k − ε) ,

1

Γ(2s− n− k + ε)
=

(−1)n+kΓ(2s+ ε)Γ(1− 2s− ε)
Γ(1− 2s+ n+ k − ε) ,

to transform (C.1) to the form

1

εM
ΓM (1 + ε)ΓM (1− ε)

ΓM (2s+ ε)ΓM (1− 2s− ε)

×ΓM (1− 2s+ n+ k − ε)
ΓM (n+ k − ε)

ΓM (2− 2s̄+ k − ε)
ΓM (1 + k − ε) ηn+k−εη̄k−ε

• extract the coefficient in front of 1
ε and multiply it by (−i).
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