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Part I

Sobol-Hoeffding decomposition
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Sobol-Hoeffding decomposition

Sobol-Hoeffding decomposition

Framework. X = (X1, . . . ,Xd ) is a vector of independent input variables with
distribution µ1 ⊗ · · · ⊗ µd , and g : ∆ ⊆ Rd → R is such that g(X ) ∈ L2(µ).

Theorem [Hoeffding, 1948, Efron and Stein, 1981, Sobol, 1993]

There exists a unique expansion of g of the form

g(X ) = g0 +
d∑

i=1

gi (Xi ) +
∑

1≤i<j≤d

gi,j (Xi ,Xj ) + · · ·+ g1,...,d (X1, . . . ,Xd )

such that E [gI(XI)|XJ ] = 0 for all I ⊆ {1, . . . ,d} and all J ( I.

Moreover:

g0 = E[g(X )]

gi (Xi ) = E[g(X )|Xi ]− g0

gI(XI) = E[g(X )|XI ]−
∑
J(I

gJ(XJ) (recursion)

=
∑
J⊆I

(−1)|I|−|J|E[g(X )|XJ ] (inclusion-exclusion)
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Sobol-Hoeffding decomposition

Variance decomposition

The non-overlapping condition

E[gI(XI)|XJ ] = 0 for all J ( I

avoids one term to be considered as a more complex one.

It implies that gI(XI) is orthogonal to L2(XJ) such that J ∩ I ( I:

E[gI(XI)h(XJ)] = E[E[gI(XI)hJ(XJ)|XJ ]]

= E[h(XJ)E[gI(XI)|XJ∩I ]] = 0

In particular the decomposition is orthogonal (ANOVA):

D := Var(g(X )) =
∑

I⊆{1,...,d}

Var(gI(XI))
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Sobol-Hoeffding decomposition

Orthogonal projections

Property

For each I ⊆ {1, . . . ,d}, the map ΠI : g 7→ gI is an orthogonal projection

Proof.
Using the non-overlapping condition:

Projection: applying twice the decomposition leaves it unchanged.
Orthogonality:

〈ΠIg,h〉 = E(gI(XI)h(X ))

=
∑

J⊆{1,...,d}

E(gI(XI)hJ(XJ)) = E(gI(XI)hI(XI)) = 〈g,ΠIh〉

since if J 6= I, then I ∩ J ( I or I ∩ J ( J, thus E(gI(XI)hJ(XJ)) = 0.
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Sobol-Hoeffding decomposition

Multivariate decompositions with commuting projections

S.-H. dec. is an example of multivariate decompositions obtained with (a class
of) commuting projections P1, . . . ,Pd ([Kuo et al., 2010]), here orthogonals:

Pj (g)(x) =

∫
g(x)dµj (xj ) = E[g(X )|X−j = x−j ]

The form of the decomposition is simply obtained by expansion:

Id = (P1 + (Id − P1)) . . . (Pd + (Id − Pd ))

=
∑

I⊆{1,...,d}

∏
j /∈I

Pj

∏
k∈I

(I − Pk )

︸ ︷︷ ︸
ΠI

The non-overlapping condition is written here Pi (gI) = 0 for all i ∈ I.
We find again that ΠI is an orthogonal projection.

O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 7 / 50



Sobol-Hoeffding decomposition

Multivariate decompositions with commuting projections

S.-H. dec. is an example of multivariate decompositions obtained with (a class
of) commuting projections P1, . . . ,Pd ([Kuo et al., 2010]), here orthogonals:

Pj (g)(x) =

∫
g(x)dµj (xj ) = E[g(X )|X−j = x−j ]

The form of the decomposition is simply obtained by expansion:

Id = (P1 + (Id − P1)) . . . (Pd + (Id − Pd ))

=
∑

I⊆{1,...,d}

∏
j /∈I

Pj

∏
k∈I

(I − Pk )

︸ ︷︷ ︸
ΠI

The non-overlapping condition is written here Pi (gI) = 0 for all i ∈ I.
We find again that ΠI is an orthogonal projection.

O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 7 / 50



Sobol-Hoeffding decomposition

Multivariate decompositions with commuting projections

S.-H. dec. is an example of multivariate decompositions obtained with (a class
of) commuting projections P1, . . . ,Pd ([Kuo et al., 2010]), here orthogonals:

Pj (g)(x) =

∫
g(x)dµj (xj ) = E[g(X )|X−j = x−j ]

The form of the decomposition is simply obtained by expansion:

Id = (P1 + (Id − P1)) . . . (Pd + (Id − Pd ))

=
∑

I⊆{1,...,d}

∏
j /∈I

Pj

∏
k∈I

(I − Pk )

︸ ︷︷ ︸
ΠI

The non-overlapping condition is written here Pi (gI) = 0 for all i ∈ I.
We find again that ΠI is an orthogonal projection.

O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 7 / 50



Sobol-Hoeffding decomposition

An example: separable functions

Consider g(x) = f1(x1) . . . fd (xd ), and denote mj = E(Xj ). Then:

gI(xI) =
∏
i∈I

(fi (xi )−mi )
∏
j /∈I

mj

gtot
I (x) =

∏
i∈I

(fi (xi )−mi )
∏
j /∈I

fj (xj )

Proof. The Sobol-Hoedding decomposition is obtained by expanding:

g(x) = ((f1(x1)−m1) + m1) . . . ((fd (xd )−md ) + md )

For each bracket,
for gI , choose (fi (xi )−mi ) if i ∈ I, and mj otherwise
for gtot

I , choose (fi (xi )−mi ) if i ∈ I
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Sobol-Hoeffding decomposition

Sensitivity indices

Sobol indices
Partial variances: DI = Var(gI(XI)), and Sobol indices SI = DI/D

D =
∑

I

DI , 1 =
∑

I

SI

Dtot
i =

∑
J⊇{i} DJ , Stot

i =
Dtot

i
D Total index

Dtot
I =

∑
J⊇{I} DJ , Stot

I =
Dtot

I
D Total interaction, superset importance

Derivative Global Sensitivity Measure (DGSM)

νi =

∫ (
∂g(x)

∂xi

)2

dµ(x), νI =

∫ (
∂|I|g(x)

∂xI

)2

dµ(x)
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Sobol-Hoeffding decomposition

Usage for screening

Assume that:
g is continuous on ∆ = [0,1]d

for all i , the support of µi contains [0,1]

Variable screening
If either Dtot

i = 0 or νi = 0, then Xi is non influential

Interaction screening
If either Dtot

i,j = 0 or νi,j = 0, then (xi , xj ) 7→ g(x) is additive

Total interactions can be visualized on the FANOVA graph, where the
edge size is proportionnal to the index value.
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Sobol-Hoeffding decomposition

Illustration on a toy example

8D g-Sobol function, with uniform inputs on [0,1]:

g(x) =
8∏

j=1

|4xj − 2|+ aj

1 + aj

with a = c(0,1,4.5,9,99,99,99,99).

Figure: 1st order analysis (left) and 2nd order analysis (right) with 105 simulated data
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Sobol-Hoeffding decomposition

Illustration on a toy example

A 6D block-additive function, with uniform inputs on [−1,1]:

g(x) = cos([1, x1, x2, x3]>β) + sin([1, x4, x5, x6]>γ))

with β = (−0.8,−1.1, 1.1, 1)> and γ = (−0.5, 0.9, 1,−1.1)>.

Figure: 1st order analysis (left) and 2nd order analysis (right) with 105 simulated data
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Part II

Upper bounds for Sobol indices
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Upper bounds

Variance-based and derivative-based measures

Usage for screening.
If either Dtot

i = 0 or νi = 0, then Xi is non influential

Advantages / Drawbacks
Computational cost Interpretability

Sobol indices - +
DGSM + -

↓

Can we use DGSM to do screening based on Sobol indices?
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Upper bounds

Poincaré inequality

Poincaré inequality (1-dimensional case)

A distribution µ satisfies a Poincaré inequality if the energy in L2(µ) sense of
any centered function is controlled by the energy of its derivative:

For all h in L2(µ) such that
∫

h(x)dµ(x) = 0, and h′(x) ∈ L2(µ):∫
h(x)2dµ(x) ≤ C(µ)

∫
h′(x)2dµ(x)

The best constant is denoted CP(µ).
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Upper bounds

Link between total Sobol indices and DGSM

Theorem [Lamboni et al., 2013], [Roustant et al., 2014]

If µi and µj admit a Poincaré inequality, then:

Di ≤ Dtot
i ≤ C(µi )νi , Di,j ≤ Dtot

i,j ≤ C(µi )C(µj )νi,j

Proof 1. Denote gtot
i (x) :=

∑
J⊇{i} gJ(xJ). Then:

∂g(x)

∂xi
=
∂gtot

i (x)

∂xi

Dtot
i = Var(gtot

i (x)) =

∫ (
gtot

i (x)
)2

dµ(x)

≤ C(µi )

∫ (
∂gtot

i (x)

∂xi

)2

dµ(x) = C(µi )νi
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Upper bounds

Getting optimal Poincaré constants on intervals

Assume that dµ1(t)/dt = e−V (t) > 0 on a bounded interval [a,b]. Then, the
smallest Poincaré constant C(µ1) is obtained by solving a spectral problem:

Lf := f ′′ − V ′f ′ = −λf with f ′(a) = f ′(b) = 0

Comments.
For some (rare) pdf, C(µ1) can be computed semi-analytically.
For many other ones, a finite element method can be used.
Adaptations are possible for unbounded intervals and pdf vanishing at the
boundaries.

See technical details in [Roustant et al., 2017].
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Upper bounds

Optimal Poincaré constants: Examples

pdf Support Copt Form of fopt(x)
Uniform [a,b] (b − a)2/π2 cos

(
π(x−a)

b−a

)
N (µ, σ2) R σ2 x − µ

[rn,i , rn,i+1] 1/(n + 1) Hn+1(x)
[a,b] related to Kummer hypergeom. func.

Db. exp. e−|x|dx/2 R 4 ×
(*) [a,b],ab > 0

( 1
4 + ω2

)−1
ex/2 cos(ωx + φ)

(*, **) [a,b],ab ≤ 0 >
( 1

4 + ω2
)−1

e|x|/2× trig. spline
Logistic ex

(1+ex )2 dx R 4 ×
Triangular [−1,1] ≈ 0.1729 linked to Bessel J0

(*) For the truncated Exponential on [a,b] ⊆ R+, we use ω = π/(b − a)
(**) If a < 0 < b, the spectral gap is the zero in ]0,min(π/|a|, π/|b|)[ of
x 7→ cotan(|a|x) + cotan(|b|x) + 1/x
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Upper bounds

Optimal Poincaré constants: Examples

Truncated normal distribution – Symmetric case: I = [-b,b]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ(I)

µ(I)2

Copt

σI
2

Figure: Poincaré constant of µ = N (0, 1) truncated on I = [−b, b], vs µ(I)

σ2
I : variance of the truncated normal on I – Black points: Hermite polynomials of even degree.
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Upper bounds

A case study for global sensitivity analysis

A simplified flood model [Iooss, 2011], [Iooss and Lemaitre, 2015].
1 output: maximal annual overflow (in meters), denoted by S:

S = Zv + H − Hd − Cb with H =

 Q

BKs

√
Zm−Zv

L

0.6

where H is the maximal annual height of the river (in meters).
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Upper bounds

A case study for global sensitivity analysis

8 inputs variables assumed to be independent r.v., with distributions:

Input Description Unit Probability distribution
X1 = Q Maximal annual flowrate m3/s Gumbel G(1013, 558),

truncated on [500, 3000]
X2 = Ks Strickler coefficient - Normal N (30, 82),

truncated on [15,+∞[
X3 = Zv River downstream level m Triangular T (49, 50, 51)
X4 = Zm River upstream level m Triangular T (54, 55, 56)
X5 = Hd Dyke height m Uniform U [7, 9]
X6 = Cb Bank level m Triangular T (55, 55.5, 56)
X7 = L River stretch m Triangular T (4990, 5000, 5010)
X8 = B River width m Triangular T (295, 300, 305)

Aim: To detect unessential Xi ’s, to quantify the influence of Xi ’s on S, . . .

O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 22 / 50



Upper bounds

A case study for global sensitivity analysis
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Figure: The 3 distributions types of the case study, here with mean 0 and variance 1
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Upper bounds

Results with optimal Poincaré constants
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Part III

Lower bounds for Sobol indices

Ongoing work with F. Gamboa and B. Iooss
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Lower bounds

Principle

Without loss of generality, assume g0 = 0. Define:

F1 = {g ∈ L2(µ) s.t. g = g1} functions depending exactly on x1

F tot
1 = {g ∈ L2(µ) s.t. g = gtot

1 } functions depending at least on x1

Notice that g1 and gtot
1 are obtained from g by orthogonal projection

g1 = ΠF1 (g) = E[g(X )|X1 = .]

gtot
1 = ΠF tot

1
(g) = g − E[g(X )|X2 = ., . . . ,Xd = .]

Hence, D1 = ‖ΠF1 (g)‖2 and Dtot
1 = ‖ΠF tot

1
(g)‖2.

Lower bounds of D1,Dtot
1 are obtained by projecting onto subspaces of F1,F tot

1
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Lower bounds

Main result

Let φ1, . . . , φm be orthonormal functions in F tot
1 . Then:

Dtot
1 ≥

m∑
j=1

(∫
g(x)φj (x)dµ(x)

)2

with equality iff g has the form g(x) =
∑m

j=1 αmφm(x) + h(x2, . . . , xm).

If all the φj ’s belong to F1 then the lower bound is for D1.

Proof.
Dtot

1 = ‖gtot
1 ‖2 = ‖ΠF tot

1
(g)‖2 ≥ ‖Πφ1,...,φm (g)‖2 =

∑m
j=1 (〈g, φj〉)2

Equality is when gtot
1 = Πφ1,...,φm (g), leading to the condition above.

Same arguments when all the φj ’s are in F1
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Lower bounds

Tensor-based lower bounds

For all j , let ψj,0 = 1, ψj,1, . . . , ψj,nj−1 be orthonormal functions in L2(µj ).
Consider tensors, i.e. separable functions:

φ`(x) =
d∏

j=1

ψj,`j (xj )

where ` = (`1, . . . , `d ) is a multi-index.

Let T1 = {` s.t. `1 ≥ 1}, the set of tensors φ` involving x1. Then:

Dtot
1 (f ) ≥

∑
`∈T1

(∫
f (x)φ`(x)ν(dx)

)2

with equality iff f has the form f (x) =
∑
`∈T1

α`φ`(x) + g(x2, . . . , xd ).
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Lower bounds

Tensor-based lower bounds

As an illustration, if µi admit the first two moments, denote:

ψi (x) = (xi −mi )/si

where mi is the mean and si the s.d.
Then ψ1, ψ1ψ2, . . . , ψ1ψj are orthonormal functions of F tot

1 .
Hence:

Dtot
1 ≥

(∫
g(x)ψ1(x)dµ(x)

)2

︸ ︷︷ ︸
lower bound for D1

+
m∑

j=2

(∫
g(x)ψ1(x)ψj (x)dµ(x)

)2
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Lower bounds

Derivative-based lower bounds

All the integrals above can involve derivatives by integrating by part.
But this often induce weights; Here is a partial solution to avoid weights.

Assume that µj is continuous with pdf pj ∈ H1(µj ) vanishing at the boundaries
but not inside, and such that p′j 6≡ 0 and p′j /pj ∈ L2(µj ). Denote:

Zj (Xj ) = (ln pj )
′(Xj ), Ij = Var(Zj (Xj ))

Then:

Dtot
1 ≥ I−1

1 c2
1︸ ︷︷ ︸

lower bound for D1

+ I−1
1

d∑
j=2

I−1
j c2

1,j

with

c1 =

∫
g(x)Z1(x1)dµ(x) = −

∫
∂g(x)

∂x1
dµ(x)

c1,j =

∫
g(x)Z1(x1)Zj (xj )dµ(x) = −

∫
∂g(x)

∂x1
Zj (xj )dµ(x) =

∫
∂2g(x)

∂x1∂xj
dµ(x)
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Lower bounds

Derivative-based lower bounds: examples

For normal variables N(mj , s2
j ):

Dtot
1 ≥ s2

1

(∫
∂g(x)

∂x1
dµ(x)

)2

︸ ︷︷ ︸
lower bound for D1

+ s2
1

d∑
j=2

s2
j

(∫
∂2g(x)

∂x1∂xj
dµ(x)

)2

Dist. name Support p Z I

Normal R 1
s
√

2π
exp

(
− 1

2
(x−m)2

s2

)
−(X −m)/s2 1/s2

Laplace R 1
2s exp

(
|x−m|

s

)
−sgn(X −m)/s 1/s2

Cauchy R 1
π

s
(x−x0)2+s2

−2(x−x0)
(x−x0)2+s2 1/(2s2)

O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 31 / 50



Lower bounds

Improvements on existing works

According to results given in the review [Kucherenko and Iooss, 2017],
For normal distributions, we improve on:

Dtot
1 ≥ D1 ≥ s2

1

(∫
∂g(x)

∂x1
dµ(x)

)2

.

For uniforms on [0,1] using the orthonormal function obtained from xm
1 ,

and an integration by part, we obtain:

Dtot
1 ≥ D1 ≥

2m + 1
m2

(∫
(g(1, x−1)− g(x))dx − w (m+1)

1

)2

where w (m+1)
1 =

∫ ∂g(x)
∂x1

xm+1
1 dx . This improves on the known lower bound

which has the same form, with the smaller multiplicative constant 2m+1
(m+1)2 .

N.B. Better bounds are obtained by adding orth. funct. of the form ψ1ψj .
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Lower bounds

Results on the application
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Figure: Results obtained with orth. 1st order pol. tensors ψ1, ψ1ψ2, . . . , ψ1ψ8
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Lower bounds

When using derivatives and other numerical considerations

We must compute squared integrals θ = (
∫

h(x)dµ(x))2, when h has the form:

hdir = gφ1,gφ1φj , . . ., or hder =
∂g
∂xi

,
∂g
∂xj

Zj , ...

for centered function φ1, φj ,Zj .

The sample estimate θ̂ =
( 1

n

∑n
i=1 h(X i )

)2
, with X 1, . . . ,X n i.i.d. ∼ µ, verifies:

θ̂ ≈ N
(
θ,

4θ
n

Varµ(h)

)
Hence, for one squared integral, using the derivative form can reduce
estimation error when hder is less variable than hdir.
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Lower bounds

Partial conclusions

Lower bounds of a (convex comb. of) ANOVA term gI can be obtained by
projection onto subspaces of its ANOVA space {g ∈ L2(µ) s.t. g = gI}
→ Illustrated on main and total effects, but very general!

Tensors are used to get lower bounds as a sum of squared integrals
→ Chaos polynomials or more general tensors

Integration by part modify lower bounds into derivative-based forms
→ Specific choices of subspaces remove weights for specific pdfs

Using derivative-based inequalities may be useful when the derivative is
less variable than the function itself.
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Part IV

Tail dependograph

Joint work with C. Mercadier
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Tail dependograph

Multivariate dependence

Denote F a multivariate cdf,

F (x) = P(X1 ≤ x1, . . . ,Xd ≤ xd )

Assume that F is in the domain of attraction of a max-stable distribution H i.e.
there exist vector sequences an > 0,bn s.t. for indep. samples X 1, . . . ,X n of F

P
(

maxn
k=1(X k

1 )− bn,1

an,1
≤ x1, . . . ,

maxn
k=1(X k

d )− bn,d

an,d
≤ xd

)
→

n→∞
H(x)

In the univariate case, H is a generalized extreme value distribution,
summarizing the three types Fréchet, Weibull, Gumbel
In the multivariate case, the margins are gevd, and the multivariate
dependence is characterized by a multivariate function

I extreme value copula, stable tail dependence function, . . .
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Tail dependograph

Multivariate dependence: stable tail dependence function

Stable tail dependence function (stdf) `

− log H(x) = `(− log H1(x1), . . . ,− log Hd (xd ))

Properties (see e.g. [de Haan and Ferreira, 2006])

` is continuous, convex and homogeneous of order 1
→ we can restrict it on [0, 1]d

max(u1, . . . ,ud )︸ ︷︷ ︸
Asymptotic dependence

≤ `(u) ≤ u1 + · · ·+ ud︸ ︷︷ ︸
Asymptotic independence

`(u) = lim
z→+∞

z
(

1− F
(

F−1
1 (u1/z), . . . ,F−1

d (ud/z)
))
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Tail dependograph

Asymptotic independence and tail dependograph

Let A,B a partition of {1, . . . ,d}

XA and XB are asymptotically independent

⇔ H(x) if of the form H(x) = HA(xA)HB(xB)

⇔ `(u) if of the form `(u) = `(uA) + `(uB)

⇔ ∀i ∈ A,∀j ∈ B, `tot
i,j ≡ 0

Thus

XA ⊥⊥∞ XB if the FANOVA graph of `︸ ︷︷ ︸
“tail dependograph”

is partitioned by A and B

O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 39 / 50



Tail dependograph

Asymptotic independence and tail dependograph

Let A,B a partition of {1, . . . ,d}

XA and XB are asymptotically independent

⇔ H(x) if of the form H(x) = HA(xA)HB(xB)

⇔ `(u) if of the form `(u) = `(uA) + `(uB)

⇔ ∀i ∈ A,∀j ∈ B, `tot
i,j ≡ 0

Thus

XA ⊥⊥∞ XB if the FANOVA graph of `︸ ︷︷ ︸
“tail dependograph”

is partitioned by A and B

O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 39 / 50



Tail dependograph

Asymptotic independence and extremal coefficients

The extremal coefficients θI(`) are defined by

P
(

Xj ≤ F−1
j (p), for all j ∈ I

)
= pθI (`)

Equivalently θI(`) = `(1I)

, and in particular

1︸︷︷︸
Asymptotic dependence

≤ θI(`) ≤ |I|︸︷︷︸
Asymptotic independence

Hence,
Xi ⊥⊥∞ Xj if θi,j (`) = 2
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Tail dependograph

Illustration: Revealing asymptotic dependence for asymmetric models

Consider a 4-dim. random vector X with standard Gumbel margins, and
s.t.d.f. built as a mixture of independence and logistic:

`(u) = (1− w)(u1 + u2) + w
(

u1/α
1 + u1/α

2

)α
+ (1− w ′)(u3 + u4) + w ′

(
u1/α′

3 + u1/α′

4

)α′

,

with asymetric parameters: (w , α) = (0.2,0.2), (w ′, α′) = (0.8,0.83).
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Tail dependograph

Illustration: Revealing asymptotic dependence for asymmetric models

Figure: Tail dependograph (left) and graph representing 2− θi,j (right)

→ Both indices recover the asympt. indep. between (X1,X2) and (X3,X4)

→ Asymmetry in tail dependence is more visible on tail dependograph
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Tail dependograph

Inference

The formula `(u) = lim
z→+∞

z
(

1− F
(

F−1
1 (u1/z), . . . ,F−1

d (ud/z)
))

leads to the

natural estimator ([Huang, 1992])

ˆ̀k,n(u) =
n
k

(
1− 1

n

n∑
s=1

1
{

X (1)
s < X (1)

n−[ku1]+1,n, . . . ,X
(d)
s < X (d)

n−[kud ]+1,n

})

=
n
k

(
1− 1

n

n∑
s=1

1
{

u1 < R̃(1)
s , . . . ,ud < R̃(d)

s

})

=
n
k
− 1

k

n∑
s=1

d∏
t=1

1{ut < R̃(t)
s︸ ︷︷ ︸}

separable function

with:
X (t)

1,n, . . . ,X
(t)
n,n: sorted data (asc. order) for coordinate t

R̃(t)
s := n−R(t)

s +1
k , where R(t)

s is the rank of X (t)
s among X (t)

1 , . . . ,X (t)
n .
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Tail dependograph

Inference

Let µ = µ1 ⊗ · · · ⊗ µd a measure on [0,1]d (without special link with F ).

As a sum of separable functions, the whole Sobol-Hoeffding decomposition of
the stdf estimator can be computed in closed form, and in particular

ˆ̀tot
k,n;{i,j}(u) = −1

k

n∑
s=1

d∏
t=1

(
1{ut < R̃(t)

s } − 1{t∈{i,j}}µt

(
R̃(t)

s

))
and the tail dependograph as well

Dtot
{i,j}(

ˆ̀k,n) =
1
k2

n∑
s=1

n∑
s′=1

d∏
t=1

(
µt

(
R̃(t)

s ∧ R̃(t)
s′

)
− 1{t∈{i,j}}µt

(
R̃(t)

s

)
µt

(
R̃(t)

s′

))
.
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Tail dependograph

Inference

As the terms of S.-H. decomposition are obtained by linear operation,

inference properties of the stdf transfer to its ANOVA terms...

Consider the usual assumptions for stdf inference, with corresponding valid
sequences k = k(n). Then, for all I ⊆ {1, . . . ,d},

supuI∈[0,1]|I| |ˆ̀k,n;I(uI)− `I(uI)|
P−→ 0 .

√
k
{

ˆ̀k,n;I(uI)− `I(uI)
}

d−→ Y`;I(uI)

where Y`;I is some Gaussian process.

... and hence to the tail dependograph

DI(ˆ̀k,n)
P−→ DI(`)

If DI(`) > 0, then DI(ˆ̀k,n) is asympt. normal with rate
√

k

If DI(`) = 0, then DI(ˆ̀k,n) is asympt. χ2 type with rate k

(The same is true for Dtot
I )
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Tail dependograph

Inference

(A piece of intuition about asymptotic distribution)

ˆ̀k,n;I(uI) = `I(uI) +
1√
k

Y`,I(uI) + . . .

If `I 6≡ 0,∫
ˆ̀2
k,n;I(uI)dµ(u)︸ ︷︷ ︸

DI (ˆ̀k,n)

=

∫
` 2

I (uI)dµ(u)︸ ︷︷ ︸
DI (`)

+
1√
k

∫
2Y`,I(uI)`I(uI)dµ(u)︸ ︷︷ ︸

a Gaussian r.v.

+ . . .

If `I ≡ 0, ∫
ˆ̀2
k,n;I(uI)dµ(u)︸ ︷︷ ︸

DI (ˆ̀k,n)

= 0︸︷︷︸
DI (`)

+
1
k

∫
Y 2
`,I(uI)dµ(u)︸ ︷︷ ︸

a χ2 type r.v.

+ . . .
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Tail dependograph

Application on real data

Dataset: yearly maxima temperatures at 21 French cities during 1946− 2000.

Figure: Estimated tail dependograph: complete, 30 largest values, 9 largest
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Tail dependograph

Some conclusions

Tail dependograph is a graphical tool to investigate multivariate independence.

Asymptotic independence is visible by partitions in the graph
Asymetric seems to be better visible, compared to extremal coefficients

A natural estimator can be computed analytically
Inference properties of the stdf transfer to the tail dependograph
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Tail dependograph
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