Multivariate decompositions with commuting projections

S.-H. dec. is an example of multivariate decompositions obtained with (a class of) commuting projections P 1 , . . . , P d [START_REF] Kuo | On decompositions of multivariate functions[END_REF]), here orthogonals:

P j (g)(x) = g(x)dµ j (x j ) = E[g(X )|X -j = x -j ]
The form of the decomposition is simply obtained by expansion: The non-overlapping condition is written here P i (g I ) = 0 for all i ∈ I. We find again that Π I is an orthogonal projection.
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An example: separable functions Consider g(x) = f 1 (x 1 ) . . . f d (x d ), and denote m j = E(X j ). Then:

g I (x I ) = i∈I (f i (x i ) -m i ) j / ∈I m j g tot I (x) = i∈I (f i (x i ) -m i ) j / ∈I f j (x j )
Proof. The Sobol-Hoedding decomposition is obtained by expanding:

g(x) = ((f 1 (x 1 ) -m 1 ) + m 1 ) . . . ((f d (x d ) -m d ) + m d )
For each bracket, for g I , choose (f i (x i ) -m i ) if i ∈ I, and m j otherwise for g tot I , choose 

(f i (x i ) -m i ) if i ∈ I O.
ν i = ∂g(x) ∂x i 2 dµ(x), ν I = ∂ |I| g(x) ∂x I

Usage for screening

Assume that: 

g is continuous on ∆ = [0, 1] d for all i, the support of µ i contains [0, 1] Variable screening If either D tot i = 0 or ν i = 0, then X i is non influential O.

Usage for screening

Assume that:

g is continuous on ∆ = [0, 1] d for all i, the support of µ i contains [0, 1]

Variable screening

If either D tot i = 0 or ν i = 0, then X i is non influential

Interaction screening

If either D tot i,j = 0 or ν i,j = 0, then (x i , x j ) → g(x) is additive

Total interactions can be visualized on the FANOVA graph, where the edge size is proportionnal to the index value.

Illustration on a toy example

8D g-Sobol function, with uniform inputs on [0, 1]: 1, 4.5, 9, 99, 99, 99, 99).

g(x) = 8 j=1 |4x j -2| + a j 1 + a j with a = c(0,
O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 Illustration on a toy example 8D g-Sobol function, with uniform inputs on [0, 1]: 1, 4.5, 9, 99, 99, 99, 99). 

g(x) = 8 j=1 |4x j -2| + a j 1 + a j with a = c(0,

Illustration on a toy example

A 6D block-additive function, with uniform inputs on [-1, 1]:

g(x) = cos([1, x 1 , x 2 , x 3 ] β) + sin([1, x 4 , x 5 , x 6 ] γ))
with β = (-0.8, -1.1, 1.1, 1) and γ = (-0.5, 0.9, 1, -1.1) .

O. 

Illustration on a toy example

A 6D block-additive function, with uniform inputs on [-1, 1]:

g(x) = cos([1, x 1 , x 2 , x 3 ] β) + sin([1, x 4 , x 5 , x 6 ] γ))
with β = (-0.8, -1.1, 1.1, 1) and γ = (-0.5, 0.9, 1, -1.1) .

Figure:

1st order analysis (left) and 2nd order analysis (right) with 10 5 simulated data 

Poincaré inequality

Poincaré inequality (1-dimensional case)

A distribution µ satisfies a Poincaré inequality if the energy in L 2 (µ) sense of any centered function is controlled by the energy of its derivative:

For all h in L 2 (µ) such that h(x)dµ(x) = 0, and h (x) ∈ L 2 (µ):

h(x) 2 dµ(x) ≤ C(µ) h (x) 2 dµ(x)
The best constant is denoted C P (µ).

O. If µ i and µ j admit a Poincaré inequality, then: If µ i and µ j admit a Poincaré inequality, then:

D i ≤ D tot i ≤ C(µ i )ν i , D i,j ≤ D tot i,j ≤ C(µ i )C(µ j )ν i,j O.
D i ≤ D tot i ≤ C(µ i )ν i , D i,j ≤ D tot i,j ≤ C(µ i )C(µ j )ν i,j
Proof 1. Denote g tot i (x) := J⊇{i} g J (x J ). Then: If µ i and µ j admit a Poincaré inequality, then:

∂g(x) ∂x i = ∂g tot i (x) ∂x i O. Roustant (
D i ≤ D tot i ≤ C(µ i )ν i , D i,j ≤ D tot i,j ≤ C(µ i )C(µ j )ν i,j
Proof 1. Denote g tot i (x) := J⊇{i} g J (x J ). Then:

∂g(x) ∂x i = ∂g tot i (x) ∂x i D tot i = Var(g tot i (x)) = g tot i (x) 2 dµ(x) ≤ C(µ i ) ∂g tot i (x) ∂x i

Link between total Sobol indices and DGSM

Theorem [START_REF] Lamboni | Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests[END_REF], [START_REF] Roustant | Crossed-derivative based sensitivity measures for interaction screening[END_REF] If µ i and µ j admit a Poincaré inequality, then: If µ i and µ j admit a Poincaré inequality, then:

D i ≤ D tot i ≤ C(µ i )ν i , D i,j ≤ D tot i,j ≤ C(µ i )C(µ j )ν i,j O.
D i ≤ D tot i ≤ C(µ i )ν i , D i,j ≤ D tot i,j ≤ C(µ i )C(µ j )ν i,j
Proof 2. Denote g tot i,j (x) := J⊇{i,j} g J (x J ). Then: If µ i and µ j admit a Poincaré inequality, then:

∂ 2 g(x) ∂x i ∂x j = ∂ 2 g tot i,j (x) ∂x i ∂x j O. Roustant (EMSE) Sobol-
D i ≤ D tot i ≤ C(µ i )ν i , D i,j ≤ D tot i,j ≤ C(µ i )C(µ j )ν i,j
Proof 2. Denote g tot i,j (x) := J⊇{i,j} g J (x J ). Then:

∂ 2 g(x) ∂x i ∂x j = ∂ 2 g tot i,j (x) ∂x i ∂x j D tot i,j = Var(g tot i,j (x)) = g tot i,j (x) 2 dµ(x) ≤ C(µ i ) ∂g tot i,j (x) ∂x i 2 dµ(x) ≤ C(µ i )C(µ j ) ∂ ∂x j ∂g tot i,j (x) ∂x i

Getting optimal Poincaré constants on intervals

Assume that dµ 1 (t)/dt = e -V (t) > 0 on a bounded interval [a, b]. Then, the smallest Poincaré constant C(µ 1 ) is obtained by solving a spectral problem:

Lf := f -V f = -λf with f (a) = f (b) = 0 Comments.
For some (rare) pdf, C(µ 1 ) can be computed semi-analytically.

For many other ones, a finite element method can be used.

Adaptations are possible for unbounded intervals and pdf vanishing at the boundaries.

See technical details in [START_REF] Roustant | Poincaré inequalities on intervals -application to sensitivity analysis[END_REF].

O. 1 output: maximal annual overflow (in meters), denoted by S:

Uniform [a, b] (b -a) 2 /π 2 cos π(x-a) b-a N (µ, σ 2 ) R σ 2 x -µ [r n,i , r n,i+1 ] 1/(n + 1) H n+1 (x) [a, b] related to Kummer hypergeom. func. Db. exp. e -|x| dx/2 R 4 × (*) [a, b], ab > 0 1 4 + ω 2 -1 e x/2 cos(ωx + φ) (*, **) [a, b], ab ≤ 0 > 1 4 + ω 2 -1 e |x|/2 × trig. spline Logistic e x (1+e x ) 2 dx R 4 × Triangular [-1, 1] ≈ 0.1729 linked to Bessel J 0 (*) For the truncated Exponential on [a, b] ⊆ R + , we use ω = π/(b -a) (**) If a < 0 < b,
S = Z v + H -H d -C b with H =   Q BK s Zm-Zv L   0.6
where H is the maximal annual height of the river (in meters).

O. 

Principle

Without loss of generality, assume g 0 = 0. Define:

F 1 = {g ∈ L 2 (µ) s.t. g = g 1 } functions depending exactly on x 1 F tot 1 = {g ∈ L 2 (µ) s.t. g = g tot 1 }
functions depending at least on x 1

Notice that g 1 and g tot 1 are obtained from g by orthogonal projection

g 1 = Π F 1 (g) = E[g(X )|X 1 = .] g tot 1 = Π F tot 1 (g) = g -E[g(X )|X 2 = ., . . . , X d = .] Hence, D 1 = Π F 1 (g) 2 and D tot 1 = Π F tot 1 (g) 2 .
Lower bounds of D 1 , D tot 1 are obtained by projecting onto subspaces of F 1 , F tot 

Main result

Let φ 1 , . . . , φ m be orthonormal functions in F tot 1 . Then:

D tot 1 ≥ m j=1 g(x)φ j (x)dµ(x) 2 with equality iff g has the form g(x) = m j=1 α m φ m (x) + h(x 2 , . . . , x m
). If all the φ j 's belong to F 1 then the lower bound is for D 1 .

Proof.

D tot 1 = g tot 1 2 = Π F tot 1 (g) 2 ≥ Π φ 1 ,...,φm (g) 2 = m j=1 ( g, φ j ) 2
Equality is when g tot 1 = Π φ 1 ,...,φm (g), leading to the condition above. Same arguments when all the φ j 's are in

F 1 O. Roustant (EMSE)
Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11

Tensor-based lower bounds

For all j, let ψ j,0 = 1, ψ j,1 , . . . , ψ j,n j -1 be orthonormal functions in L 2 (µ j ).

Consider tensors, i.e. separable functions:

φ (x) = d j=1 ψ j, j (x j ) where = ( 1 , . . . , d ) is a multi-index.
Let T 1 = { s.t. 1 ≥ 1}, the set of tensors φ involving x 1 . Then:

D tot 1 (f ) ≥ ∈T 1 f (x)φ (x)ν(dx) 2 with equality iff f has the form f (x) = ∈T 1 α φ (x) + g(x 2 , . . . , x d ).
O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11 28 / 50

Tensor-based lower bounds

As an illustration, if µ i admit the first two moments, denote:

ψ i (x) = (x i -m i )/s i
where m i is the mean and s i the s.d.

Then ψ 1 , ψ 1 ψ 2 , . . . , ψ 1 ψ j are orthonormal functions of F tot 1 . Hence:

D tot 1 ≥ g(x)ψ 1 (x)dµ(x) 2 lower bound for D 1 + m j=2 g(x)ψ 1 (x)ψ j (x)dµ(x)

Derivative-based lower bounds

All the integrals above can involve derivatives by integrating by part. But this often induce weights; Here is a partial solution to avoid weights.

Assume that µ j is continuous with pdf p j ∈ H 1 (µ j ) vanishing at the boundaries but not inside, and such that p j ≡ 0 and p j /p j ∈ L 2 (µ j ). Denote:

Z j (X j ) = (ln p j ) (X j ), I j = Var(Z j (X j ))
Then:

D tot 1 ≥ I -1 1 c 2 1 lower bound for D 1 + I -1 1 d j=2 I -1 j c 2 1,j with c 1 = g(x)Z 1 (x 1 )dµ(x) = - ∂g(x) ∂x 1 dµ(x) c 1,j = g(x)Z 1 (x 1 )Z j (x j )dµ(x) = - ∂g(x) ∂x 1 Z j (x j )dµ(x) = ∂ 2 g(x) ∂x 1 ∂x j dµ(x)

Derivative-based lower bounds: examples

For normal variables N(m j , s 2 j ):

D tot 1 ≥ s 2 1 ∂g(x) ∂x 1 dµ(x) 2 lower bound for D 1 + s 2 1 d j=2 s 2 j ∂ 2 g(x) ∂x 1 ∂x j dµ(x) 2 Dist. name Support p Z I Normal R 1 s √ 2π exp -1 2 (x-m) 2 s 2 -(X -m)/s 2 1/s 2 Laplace R 1 2s exp |x-m| s -sgn(X -m)/s 1/s 2 Cauchy R 1 π s (x-x 0 ) 2 +s 2 -2(x-x 0 ) (x-x 0 ) 2 +s 2 1/(2s 2 ) O. Roustant (EMSE)
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Improvements on existing works

According to results given in the review [START_REF] Kucherenko | Derivative-Based Global Sensitivity Measures[END_REF],

For normal distributions, we improve on: 

D tot 1 ≥ D 1 ≥ s 2 1 ∂g(x) ∂x 1 dµ(x) 2 . O.

Improvements on existing works

According to results given in the review [START_REF] Kucherenko | Derivative-Based Global Sensitivity Measures[END_REF],

For normal distributions, we improve on:

D tot 1 ≥ D 1 ≥ s 2 1 ∂g(x) ∂x 1 dµ(x) 2 .
For uniforms on [0, 1] using the orthonormal function obtained from x m 1 , and an integration by part, we obtain:

D tot 1 ≥ D 1 ≥ 2m + 1 m 2 (g(1, x -1 ) -g(x))dx -w (m+1) 1 2
where w 

(m+1) 1 = ∂g(x) ∂x 1 x m+1 1 dx.

Improvements on existing works

According to results given in the review [START_REF] Kucherenko | Derivative-Based Global Sensitivity Measures[END_REF],

For normal distributions, we improve on:

D tot 1 ≥ D 1 ≥ s 2 1 ∂g(x) ∂x 1 dµ(x) 2 .
For uniforms on [0, 1] using the orthonormal function obtained from x m 1 , and an integration by part, we obtain:

D tot 1 ≥ D 1 ≥ 2m + 1 m 2 (g(1, x -1 ) -g(x))dx -w (m+1) 1 2
where w 

(m+1) 1 = ∂g(x) ∂x 1 x m+1 1 dx.

When using derivatives and other numerical considerations

We must compute squared integrals θ = ( h(x)dµ(x)) 2 , when h has the form: 

h dir = gφ 1 ,

When using derivatives and other numerical considerations

We must compute squared integrals θ = ( h(x)dµ(x)) 2 , when h has the form:

h dir = gφ 1 , gφ 1 φ j , . . ., or h der = ∂g ∂x i , ∂g ∂x j Z j , ... for centered function φ 1 , φ j , Z j .
The sample estimate θ = 1 n n i=1 h(X i ) 2 , with X 1 , . . . , X n i.i.d. ∼ µ, verifies:

θ ≈ N θ, 4θ n Var µ (h)
Hence, for one squared integral, using the derivative form can reduce estimation error when h der is less variable than h dir .

Partial conclusions

Lower bounds of a (convex comb. of) ANOVA term g I can be obtained by projection onto subspaces of its ANOVA space {g ∈ L 2 (µ) s. Using derivative-based inequalities may be useful when the derivative is less variable than the function itself.

Multivariate dependence

Denote F a multivariate cdf,

F (x) = P(X 1 ≤ x 1 , . . . , X d ≤ x d )
Assume that F is in the domain of attraction of a max-stable distribution H i.e. there exist vector sequences a n > 0, b n s.t. for indep. samples X 1 , . . . , X n of F

P max n k =1 (X k 1 ) -b n,1 a n,1 ≤ x 1 , . . . , max n k =1 (X k d ) -b n,d a n,d ≤ x d → n→∞ H (x) 
O. Roustant (EMSE) Sobol-Hoeffding decomposition: bounds and extremes 2018 December 11

Multivariate dependence

Denote F a multivariate cdf,

F (x) = P(X 1 ≤ x 1 , . . . , X d ≤ x d )
Assume that F is in the domain of attraction of a max-stable distribution H i.e. there exist vector sequences a n > 0, b n s.t. for indep. samples X 1 , . . . , X n of F
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Multivariate dependence

Denote F a multivariate cdf,

F (x) = P(X 1 ≤ x 1 , . . . , X d ≤ x d )
Assume that F is in the domain of attraction of a max-stable distribution H i.e. there exist vector sequences a n > 0, b n s.t. for indep. samples X 1 , . . . , X n of F

P max n k =1 (X k 1 ) -b n,1 a n,1 ≤ x 1 , . . . , max n k =1 (X k d ) -b n,d a n,d ≤ x d → n→∞ H(x)
In the univariate case, H is a generalized extreme value distribution, summarizing the three types Fréchet, Weibull, Gumbel

In the multivariate case, the margins are gevd, and the multivariate dependence is characterized by a multivariate function extreme value copula, stable tail dependence function, . . .

Asymptotic independence and tail dependograph

Let A, B a partition of {1, . . . , d} X A and X B are asymptotically independent 

⇔ H(x) if of the form H(x) = H A (x A )H B (x B ) ⇔ (u) if of the form (u) = (u A ) + (u B ) ⇔ ∀i ∈ A, ∀j ∈ B,

Inference

The formula (u) = lim z→+∞ z 1 -F F -1 1 (u 1 /z), . . . , F -1 d (u d /z) leads to the natural estimator ( [START_REF] Huang | Statistics of bivariate extremes[END_REF])

ˆ k ,n (u) = n k 1 - 1 n n s=1 1 X (1) s < X (1) n-[ku 1 ]+1,n , . . . , X (d) s < X (d) n-[ku d ]+1,n = n k 1 - 1 n n s=1 1 u 1 < R(1) s , . . . , u d < R(d) s = n k - 1 k n s=1 d t=1 1{u t < R(t) s }
separable function with:

X (t) 1,n , . . . , X (t) 
n,n : sorted data (asc. order) for coordinate t R(t)

s := n-R (t) s +1 k , where R (t) s is the rank of X (t) s among X (t) 1 , . . . , X (t) 
n .

Inference

Let µ = µ 1 ⊗ • • • ⊗ µ d a measure on [0, 1] d (without special link with F ).
As a sum of separable functions, the whole Sobol-Hoeffding decomposition of the stdf estimator can be computed in closed form, and in particular

ˆ tot k ,n;{i,j} (u) = - 1 k n s=1 d t=1 1{u t < R(t) s } -1 {t∈{i,j}} µ t R (t) 
s and the tail dependograph as well where Y ;I is some Gaussian process. 

D tot {i,j} ( ˆ k ,n ) = 1 k 2 n s=1 n s =1 d t=1 µ t R(t) s ∧ R(t) s -1 {t∈{i,j}} µ t R(t) s µ t R ( 

  I d = (P 1 + (I d -P 1 )) . . . (P d + (I d -P d )

  Partial variances: D I = Var(g I (X I )), and Sobol indices S I = D I /D Partial variances: D I = Var(g I (X I )), and Sobol indices S I = D I /D
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Figure :

 : Figure: Poincaré constant of µ = N (0, 1) truncated on I = [-b, b], vs µ(I)
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  ... and hence to the tail dependographD I ( ˆ k ,n ) P -→ D I ( ) If D I ( ) > 0, then D I ( ˆ k ,n ) is asympt. normal with rate √ k If D I ( ) = 0, then D I ( ˆ k ,n ) is asympt.χ 2 type with rate k (The same is true for D tot I ) Inference (A piece of intuition about asymptotic distribution) ˆ k ,n;I (u I ) = I (u I ) + 1 √ k Y ,I (u I ) + . . . of intuition about asymptotic distribution) ˆ k ,n;I (u I ) = I (u I ) + 1 √ k Y ,I (u I ) + . . . If I ≡ 0, ˆ 2 k ,n;I (u I )dµ(u) D I ( ˆ k ,n ) of intuition about asymptotic distribution) ˆ k ,n;I (u I ) = I (u I ) + 1 √ k Y ,I (u I ) + . . . If I ≡ 0, ˆ 2 k ,n;I (u I )dµ(u) D I ( ˆ k ,n ) ;I (u I )dµ(u) D I ( ˆ k ,n ) maxima temperatures at 21 French cities during 1946 -2000.
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Link between total Sobol indices and DGSM Theorem [Lamboni et al., 2013], [Roustant et al., 2014]
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  This improves on the known lower bound which has the same form, with the smaller multiplicative constant 2m+1 (m+1) 2 .
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  gφ 1 φ j , . . .,

	or	h der =	∂g ∂x i	,	∂g ∂x j	Z j , ...

for centered function φ 1 , φ j , Z j . O. Roustant (EMSE)
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Asymptotic independence and extremal coefficients

The extremal coefficients θ I ( ) are defined by 

Asymptotic independence and extremal coefficients

The extremal coefficients θ I ( ) are defined by

Equivalently θ I ( ) = (1 I ) , and in particular 1 Asymptotic dependence
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Illustration: Revealing asymptotic dependence for asymmetric models Consider a 4-dim. random vector X with standard Gumbel margins, and s.t.d.f. built as a mixture of independence and logistic: 

Inference

As the terms of S.-H. decomposition are obtained by linear operation, inference properties of the stdf transfer to its ANOVA terms...

Consider the usual assumptions for stdf inference, with corresponding valid sequences k = k (n). Then, for all I ⊆ {1, . . . , d},

where Y ;I is some Gaussian process.
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