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A study of haptic communication in comanipulative
decision-making tasks : from human to virtual partner

Lucas Roche, Member, IEEE, and Ludovic Saint-Bauzel, Member, IEEE,

Abstract—This paper presents the results of an experiment on physical Human-Human Interaction (pHHI), where human dyads
cooperate on a one dimensional comanipulative task. The results of this experiment confirm the existence of an haptic communication
between humans during low-impedance tasks. Data from the pHHI experiment is used to design a virtual partner which can collaborate
with humans on the same task. The virtual partner behavior is based on the observation that initiative is highly correlated to
decision-making in pHHI. The virtual agent is then evaluated in a physical Human-Robot Interaction (pHRI) experiment. The results of
the second experiment show that the virtual partner is able to perform the task without compromising the performances of the dyad,
and that a similar role distribution is observed in human-human and human-robot dyads. Moreover, the knowledge of the partner’s
nature does not seem to influence the performances. The results obtained with the virtual partner are encouraging and could be used
to design efficient haptic communication protocol in pHRI settings.

Index Terms—physical Human-Human Interaction, physical Human-Robot Interaction, haptic communication, comanipulation
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1 INTRODUCTION

Since the early concept of cobots [1], significant progress in
control, conception and safety has brought natural human-
robot interaction closer to reality. Robotic devices have
evolved from rigidly programmed entities to systems that
can smoothly interact with their environment, and react to
some amount of unknown parameters. Robots are now more
often brought to work alongside humans and to cooperate
with them for numerous tasks in a wide range of applica-
tions, from industry to health-care [2] [3]. This cooperation
often leads to interaction either via direct contact, or via
indirect contact through a jointly held object.

This physical Human-Robot Interaction (pHRI) brings
many issues to the conception of robots [4] [2] [5] [6]. The
first issue is the safety of the human user. This subject has
been widely studied, both in terms of design and control
of robots [7]. In addition, robots need to be able to react to
unpredictable human behaviors, and show a certain degree
of adaptability to their users or partners. Lastly, in order
to reach optimal efficiency, a sufficient level of communi-
cation must be achieved: the human needs to understand
the robot’s feedback, and the robot needs to understand
the human intentions. These two communication channel
are described as "feedback" and "intent" in the framework
proposed by Losey et al. [8] to describe pHRI.

Historically, the first approach towards adaptive pHRI
was based on impedance control. Impedance control, intro-
duced by Hogan [9], and extended as variable impedance
control, has been used extensively as a mean to provide
some flexibility in pHRI. A first study by Ikeura & al. ([10]
and later [11]) used impedance control in combination with
human arm impedance analysis. It was also used by Maeda
et al. [12] and Corteville et al. [13] to design robotic assistants
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for motion, based on minimum-jerk [14] motion analysis.
Aydin et al. [15] used impedance control in combination
with Kalman filters to react adaptively to human behavior.
Impedance control however quickly reaches its limits since
it often requires a thorough a priori knowledge on the
environment for a smooth execution. Moreover, in most
cases these implementations impose a fixed relationship
between the human (master) and the robot (slave).

The ability to dynamically exchange roles during the
task is however a key point for efficient comanipulation
[16] [17]. Role distribution changes have effectively been ob-
served during task realization in physical Human-Human
Interaction (pHHI) settings. These role exchanges are both
time-varying and dyad-dependant [18] [19]. Furthermore,
depending on the task, a significant role imbalance seems to
be preferred : one of the partners stays more dominant than
the other [18].

A lot of different solutions have been proposed in order
to reproduce dynamic role exchange in pHRI, and most
of them observe superior performances with dynamic role
allocation than with fixed role allocation. A first approach
consist in predicting human intentions in order to vary
the amount of assistance given by a robotic partner. This
prediction can be made by online estimation of the position
or velocity of the human [15] [12] [20], or by using models
of the task and human motions [21] [22]. It can also be done
by using reinforcement learning algorithms to learn the
task [23], or human motion primitives [24]. In all cases, the
amount of leadership taken by the robot is adjusted accord-
ing to the expected human behavior. Another approach uses
the interaction forces as a mean to exchange information
and negotiate role allocation online: Mortl et al. [25] used an
analysis of redundancy in the dyad to allocate role according
to the task. Oguz, Kucucyilmaz et al., Madan et al. [26] [27]
[28] used force measures as a way to negotiate the amount
of assistance provided in a 2D haptic board game. More
unique approaches are also considered: Li et al.[29] used
the minimization of a cost function linked to the task to
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modulate the robot participation, inspired by game theory.
Stefanov et al. [30] introduced a theoretical role assignment
framework that goes beyond the leader/follower duality,
but this framework was not implemented in any real-world
experiment. Most of these current methods to solve pHRI
complications still require to restrain the interaction to a
fixed and known environment. In order to design more
general pHRI control methods, a better understanding of
physical Human-Human Interaction (pHHI) is needed.

The study of pHHI has already produced multiple re-
sults concerning the behavior of human-human dyads in
comanipulative tasks. One of the first and most important
results is that humans tend to perform better when operat-
ing as a dyad, which has been observed in multiple studies
[31] [32] [33] [34] [35] [36] [37]. Although this increase in
performance may depend on the type of task [38], and
the presence of force feedback between the humans [39]
[40]. Simply reproducing pre-recorded human trajectories
however does not yield the same benefits as interacting as
a human dyad [19] [41] [33]. There seems to be a need for
real-time interaction and exchange for the dyadic benefits to
take place.

Interaction during pHHI is closely linked to the presence
of some form of haptic or kinesthetic feedback. Haptic
feedback indeed seems to have a great influence on the
success of dyadic comanipulation between humans. It has
been proven to convey emotions [42] as well as an increased
sense of telepresence [39] [40]. It also allows for better
learning [33] [40] and performances in tracking tasks, even
in cases of conflict [43]. In conclusion, many studies point
at the haptic channel as an efficient mean of communication
between humans [44] [45] [46] [47] [43].

If the existence of this haptic communication ability in
human dyads is a well accepted theory, the precise mecha-
nisms behind it are yet to be understood. Groten et al. [48]
linked haptic communication to the energy exchanges inside
the dyad, in order for the partners to negotiate between
their individual motion plans. Tagaki et al. [49] advance
that the Central Nervous System can interprete the force
signals from the haptic link and recreate the motion plan
of their partner. Simulation with this postulate successfully
reproduced the results of a previous study [33] on the
benefits of dyadic interaction for performance and learning
improvement. While these studies provide precious insights
on the way haptic communication may happen, a lot has
still to be understood before we can successfully replicate
this ability in robots.

The aim of this paper is to evaluate the possibility of
designing a virtual partner for pHRI based on models of the
interactions observed in pHHI. The work presented here
follows the procedure of studying pHHI to develop pHRI
applications. The paper presents results obtained in pHHI
experiments, that allow to link the notions of initiative and
dominance. Based on these observations, a virtual agent able
to behave as a partner in a human-robot comanipulative
task is designed. This virtual partner is then evaluated in a
pHRI experiment, and the results are discussed. All these
experiments are realized on a custom made teleoperation
setup using two haptic interfaces, specifically conceived
for the study of ligthweighted and precise comanipulative
tasks.

Section 2 will present the experimental setup and proto-
col. Section 3 presents a pHHI experiment realized with the
setup. Section 4 details the design of the virtual partner. Sec-
tion 5 expose the results of the pHRI experiment evaluating
the virtual agent. Lastly, section 6 draws the conclusion of
the present studies.

2 EXPERIMENTS

2.1 Research questions and objectives
The first question when trying to characterize haptic com-
munication is whether humans can actually communicate
through touch, and how much does it affect performances
in pHHI.

This question was explored by Groten et al. in [43];
They concluded that the presence of haptic feedback indeed
enhances the precision and efficiency of human dyads in
a tracking comanipulation task. The protocol used in their
article is interesting for numerous reasons: Firstly, it uses
a one degree of freedom (dof) interface, which allows to
simplify the dynamics of the task, and maintain a greater
control on the parameters influencing its execution. Sec-
ondly, the tracking task presented is continuous, as opposed
to pointing or reaching tasks, which may be insufficient to
highlight significant role adaptation in dyads [50]. Lastly,
the task is able to induce both agreement and conflict in
the dyads motion plans, allowing to explore planning in
negotiation situations.

This experimental protocol is transposed to our setup
for two experiments, the first one studying pHHI, and the
second validating pHRI behavior. The pHHI experiment
will serve two purposes: Firstly, verify that the experimental
protocol yields the same results when reproduced on a setup
with a much lower impedance. If so, it will both reinforce
the validity of the initial hypothesis, and confirm that the
interface can be properly used for the study of haptic
communication. Secondly, record sensible data on pHHI
that can then be used to analyze haptic communication, and
design a virtual partner able to perform the task alongside a
human. This virtual partner is then evaluated in the second
experiment.

2.2 Experimental apparitus
2.2.1 Context
In the study of human-human and human-robot physical
interaction, three main types of setups can be considered:
Direct physical contact seems like the most natural solution,
but is generally extremely impractical for data acquisition,
especially in case of force data. Indirect physical contact
through a physical object allows to solve the problem of force
data acquisition by channeling the interaction through an
instrumented object. This solution however lacks flexibility
in the number of scenarios that can be produced, unless
multiple objects are used. Finally, indirect contact through a
virtual object, for example using haptic interfaces and/or
virtual reality, can allow to reproduce a wide variety of
situations, and obtain experimental data easily. It is however
extremely reliant on the technology used for the interfaces.

Studies in the domain of pHHI have been made using
both of the later options: Reed [19] and Evrard [21] used an
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Fig. 1: The SEMAPHORO interface. A one degree-of-
freedom haptic interface conceived for lightweighted and
precise bilateral teleoperation.

instrumented physical object to study human-human coma-
nipulation. Feth [43], Madan [28], Melendez-Caledron [51],
or Ganesh [33] used coupled haptic interfaces to replicate
physical tasks. In most of those studies, the haptic interfaces
used have high impedances, and the protocols induce high
interaction forces. Although high interaction forces can be
desirable, and high impedances are easier to implement
while guarantying stability, the high apparent impedance of
these systems limits the range of tasks that can be studied.
In particular, precise and leightweighted motions, which can
be needed in surgery for example, cannot be studied with
these high-impedance interfaces.

2.2.2 The SEMAPHORO Haptic Interface 1

Custom-made haptic interfaces are used for the experi-
ments presented in this paper (see Figure 1). The interfaces
are designed as the support of studies on human-human
and human-robot interaction, especially in the context of
lightweighted and precise comanipulation tasks. The inter-
faces each have one rotational dof, implemented with direct
drive actuation in order to minimize backlash and friction.
Position and force sensors are used for data acquisition. The
implemetation of an optimized Four-Channels teleoperation
architecture [52][53][54] allows to create a rigid virtual link
between the two interfaces. When activated, this bilateral
teleoperation mode allows each user to feel motions and
forces applied by his/her partner through his/her own
interfaces, as if both were holding the same object. Full
details concerning the interfaces design and control can be
found in Roche et al. [55].

2.2.3 Experimental Setup
The experimental setup allows two humans to use the haptic
interfaces in order to perform various virtual tasks, alone or
in cooperation (see Figure 2). Both participants are seated at
a desk in front of a monitor (19", 1440x900p). The interfaces
are placed on their right side, at an height adjusted for
confortable position. The interfaces are manipulated with
the index finger of the right hand.

The participants are separated by an opaque curtain in
order to prevent any visual clue from their partner. They

1. Système d’Évaluation de la MAnipulation Physique HOmme-
RObot - System for the Evaluation of Human-Robot Physical Manip-
ulation

also wear audio headphone playing white noise during the
experiment, to prevent any auditory clue.

2.3 Experimental task

The experiment consists in a co-manipulative task that two
subjects have to complete, either alone or as a dyad.

2.3.1 Dyadic conditions
The experimental task is a tracking task: a path (white line
over black background) is scrolling down on their monitor,
at a speed of 35mm/s. The subjects use the haptic interfaces
described previously to control the position of a massless
virtual object, represented on their screen as a cursor (see
Figure 2). The cursor is the same for both subjects, as
they share control over a single common virtual object.
The subjects are asked to keep the position of the cursor
as close as possible to the scrolling path. To further incite
each subject to cooperate, they are told that their goal is to
maximize the common performance of the dyad. Feedback
about the common performance is given by the color of the
cursor, which changes based on the distance between the
closest path and the cursor (see Figure 3):

• Green if |Xcursor −XPath| < 5mm
• Yellow if 5mm < |Xcursor −XPath| < 10mm
• Red if |Xcursor −XPath| > 10mm

The path is composed of a procedurally generated suc-
cession of curves, divided in two categories (see Fig. 4):

• The "BODY" category is composed of sinusoidal
paths of random directions but fixed duration. The
purpose of these parts is to keep the subjects focused
on the task between each of the studied parts.

• The "CHOICE" category is the aim of the experiment:
at fixed intervals, the path splits into a fork, imposing
a clear choice to be made concerning the direction
that the subjects need to follow (see Figure 3, 4).
Considering that the subjects can neither see nor
hear each other, the only way they can come to an
agreement about the direction to choose is to use
either the visual feedback from the monitor, or the
haptic feedback from the handles.

While the path’s structure is strictly the same for both
subjects, each subject is encouraged to follow a highlighted
trajectory. During the CHOICE parts, subjects receive some
information about which side they have to choose [43]; this
information can differ, creating situations of agreement or
conflict, distributed in three cases. This is done by high-
lighting one of the two paths of the fork (see Figure 3):

• SAME: Both subjects have the same information, no
conflict occurring.

• OPPO: Opposite information given to each subject,
inducing a conflicting situation.

• ONE: Only one subject has the information. This con-
dition forces the subjects to be ready to take initiative
in case they are the only one having information
about the path to choose. It is designed to discourage
subjects from keeping a passive strategy all along the
trials.
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Fig. 2: Description of the experimental setup: The two participants use a one dof haptic interface to share the control over
a virtual object. Visual feedback about the position of the object is given on their respective monitors as a cursor.

Fig. 3: Illustration of the different decision types: SAME,
ONE and OPPO. Data about the choices is recorded from a
2s timezone around the path’s fork (in red on the leftward
figure).

The subjects are informed about these choices and the
different decision types beforehand.

Each trial lasts 110 seconds, corresponding to a total of
15 decisions distributed equally between SAME, ONE and
OPPO decision types. The order of decision types sequence
is randomized.

2.3.2 Individual conditions
In the individual conditions, the overall task is kept the
same, without the negotiation component of the choices.
Subjects are still asked to follow the highlighted path when
they have one, and to choose a direction at random in the
case they don’t.

2.4 Experimental conditions

The two experiments presented in this paper use the same
experimental task. The first experiment aims at studying
the behavior of human-human dyads in a comanipulative
one degree of freedom task. The second experiment aims at
evaluating the performances of a virtual partner in human-
robot dyads on the same task. Five different experimental
conditions are used accross the two experiments:

• Subjects separated (ALONE): Each subject uses their
own interface and has visual feedback from their
monitor about their position and virtual task. Each
subject can feel their own motions and their inter-
face’s inertia, but nothing from their partner. Both

Fig. 4: Illustration of the experimental task. A pattern com-
posed of sinusoidal parts (BODY) and a fork (CHOICE) is
repeated 15 times to create each trial. The orientation of the
parts is randomly generated.

subjects perform this condition at the same time
independently.

• Haptic-Feedback-from-Object (HFO): In this condi-
tion, the two handles are kept free to move inde-
pendently. Each subject can feel their own motions
and their interface’s inertia, but nothing from their
partner. Each subject contributes equally to the task :
the position of the cursor is identical on each screen,
and computed as the mean of each handle positions:
xcursor = (x1 + x2)/2. Hence, subjects can infer the
input of their partner by interpreting the movements
of the cursor that are not caused by their own han-
dle’s movements.

• Haptic-Feedback-from-Object-and-Partner (HFOP):
Bilateral teleoperation control is used to simulate
a rigid connection between the interfaces. The po-
sitions of the handles are thus kept identical, and
visual feedback about this position is given to both
subjects. Additionally, the transparency of the setup
allows subjects to feel the efforts applied on the
interfaces by both them and their partner. The tele-
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operation control used guarantees that the subjects
only feel their own interface’s inertia, similarly to the
previous conditions.

• HVP (Hidden Virtual Partner): The subjects believe
they are doing the task together, but are actually per-
forming their task independently, each paired with
their own virtual partner (presented in part 4). The
subjects have visual feedback concerning their own
task and virtual object on their monitor, and can feel
the haptic feedback from the virtual partner.

• KVP (Known Virtual Partner): This condition is the
same as HVP, with the difference that the subjects are
told beforehand that their partner is a virtual agent.
This condition is used to compare the behavior of
the human subjects depending on their a-priori about
their partner.

2.5 Metrics

2.5.1 Root-Mean-Squared Error - RMS

When studying physical interaction, the first criterion used
for evaluation is generally the performance in the realization
of the task. In the case of a tracking task, this performance
is linked to the precision of the tracking. The tracking error
is calculated using RMS error (chosen over simple position
error because it amplifies the influence of large errors on the
result):

RMS =

√∑N
k=1(xt,k − xo,k)2

N
(1)

where xt,k and xo,k are respectively the target position and
the virtual object position at time step k. Performance is
then obtained by comparing the RMS error for a choice to
the maximum RMS obtained on the whole sample of trials
RMSmax:

Performance = 1− RMS

RMSmax
(2)

This performance indicator is preferred over RMS error for
clarity: the better the results, the greater the performance.

2.5.2 Mean Absolute Power - MAP

The second aspect of physical interaction that needs to
be studied is the physical efforts exerted on and by the
interfaces, as well as the interaction force between the par-
ticipants. The metric used combines both forces and motions
to address the physical cost of movements, which leads
to energy or power based measures. The MAP criterion
introduced by Groten&al. in [43] is chosen for this measure.
It is defined as the sum of absolute values of the power
flows from the subjects to their interfaces:

MAP = MAP1 +MAP2 =
1

N

n∑
k=1

| P1,k | +
1

N

n∑
k=1

| P2,k |

(3)
where P1,k = ˙xo,k.F1,k and P2,k = ˙xo,k.F2,k are the mean
energy flows at the respective haptic interfaces at time step
k (with ˙xo,k the velocity of the virtual object and Fx,k the
force applied on interface x).

2.5.3 Dominance - DOM

In OPPO decision types, the dyad has to choose between
the two contradictory options that are presented. Since the
cursor is common to the two partners, only one of them can
"win" i.e reach his/her highlighted side. The partner win-
ning will be defined as the leader for the choice, and his/her
partner as the follower. The "Dominance" of a participant
is defined as his/her propensity to Lead in the conflicting
choices, i.e the percentage of trials in OPPO condition were
the subjects impose their choice to their partner.

DOMs =
ns,win,OPPO

nOPPO
(4)

where s = 1, 2 designs the subject, nOPPO is the number
of trials with OPPO choice, and ns,win,OPPO is the num-
ber of trials where the subject has won the negotiation.
Each member of each dyad is classified as a Leader or
Follower depending on his/her overall dominance across
the experiment. Levels of dominance are investigated for all
experimental conditions.

3 HUMAN-HUMAN HAPTIC COMMUNICATION
EVALUATION

3.1 Protocol

Three different experimental conditions are tested in this
experiment, in order to study the influence of the presence
of haptic feedback on the performances in a comanipulative
task: ALONE, HFO and HFOP.

Each dyad starts the experiment with a block of two
trials in ALONE condition in order to familiarize with the
interface and its control; this first block is not kept for the
following analysis. They continue with the first experimen-
tal block, consisting of two trials in either HFOP or HFO
condition. The ALONE condition is tested afterwards, again
with two trials. The last two trials are done in the condition
that is not tested in the first block between HFOP and HFO.
These two possibilities are presented below:

a)
ALONE(×2)

HFO(×2)
ALONE(×2)

HFOP (×2)

b) HFOP (×2) HFO(×2)

The order between HFO and HFOP is randomized, and
the ALONE condition is always tested between these two,
in order to prevent learning effects from one condition to
another. A 40 seconds pause is respected between each
trial. At the beginning of the experiment, the subjects are
explained the rationale of the setup and told about the
different choices in the task. They are also told that three
different experimental conditions are tested: they can either
perform the task alone (ALONE), cooperate through coma-
nipulation (HFOP), or cooperate with visual feedback only
(HFO).

The study involved 30 participants (15 males and 15
females) distributed in 15 dyads (6 Male-Male, 6 Female-
Female, 3 Mixed). Participants’ average age was 21.3 (std 4.3
y). All participants were right-handed and had no previous
knowledge of the experiment or the experimental set-up.
Each dyad provided data for every experimental condition.
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3.2 Results

The results of the first experiment are exposed in this
section. The independent variables are Experimental Con-
dition (ALONE, HFOP, HFO) and Decision Type (SAME,
ONE, OPPO). The changes in efforts (MAP), performances
(PERFS) and dominance are studied for each combination
of Experimental Condition and Decision Type. Data is an-
alyzed over a 2s window around the Choice (see Figure
3). Data from all trials are used except for the first bloc in
ALONE condition, for a total of 2 trials (30 choices) for each
condition.

When comparing individuals to dyads, statistical anal-
ysis of the data can be challenging: subjects cannot be
expected to behave the same in solo trials and in dyadic
ones, thus a repeated measures design doesn’t really fit.
On the other hand, an between subject design would as-
sume that individuals and dyads are independant entities,
which is similarly problematic. In the literature concerning
individual-dyads comparison for pHHI tasks, Reed et al.
[31] and Che et al. [38] used paired sample t-tests. Feth et
al. [48], Van der Wels et al. [46] and Mireles et al. [56] used
reapeated measures ANOVA. Other articles used ANOVA
without precision of the design considered[36][33].

The statistical analysis is here performed with repeated
measures two-ways ANOVA, and post-hoc analysis with
two-tailed Student’s t-tests with Bonferonni correction for
multiple comparisons. Results in the next sections are given
with the following form: ANOVA (F-value, p-value, omega-
squared size-effect value), t-tests (Bonferonni corrected p-value,
Cohenn’s d coefficient for size-effect). p-values inferior to 10−4

are given equal to zero.

3.2.1 Learning effect
The experimental design used for this experiment is not en-
tirely counterbalanced : all dyad conditions are tested after
an individual trial, but not always after the same number
of total trials. This poses a risk for the statistical analysis
if a learning effect is observed between the different trials.
One-way repeated measure ANOVA does not show any
significant effect of the trial number on the performances in
any experimental condition (ALONE : F (3, 60) = 1.38, p =
0.25, ω2 = 0.004 ; HFO : F (1, 30) = 0.17, p = 0.73, ω2 =
0.001 ; HFOP : F (1, 30) = 2.06, p = 0.15, ω2 = 0.013).
Moreover, performance isn’t significantly affected by the
order of the experimental condition : Student’s t-tests, HFO
first vs HFOP first (HFO : p = 0.33, d = 0.01; HFOP :
p = 0.53, d = 0.04).

3.2.2 Effort measure
A significant effect on the MAP criterion is observed
from both the decision type (F (2, 416) = 24.18, p =
0, ω2 = 0.031) and the experimental condition (F (2, 416) =
366.96, p = 0, ω2 = 0.489).

The interaction between decision type and experimen-
tal condition also has a significant effect (F (4, 416) =
33.94, p = 0, ω2 = 0.088), post-hoc analysis is thus per-
formed to observe the performance variation in each (deci-
sion type)*(experimental condition) pair.

The MAP values for each Decision Type and Experimen-
tal Conditions are presented in Figure 5.

Fig. 5: MAP parameter results for the pHHI experiment.
(Error bars represent standard errors of the distributions.)

The differences in performance are described in tables 1
and 2. Details of the t-tests are omitted for clarity, significant
differences with a p-value inferior to 0.05 are signaled with
a (*), p-values inferior to 0.001 are signaled with a (**).

TABLE 1: Influence of the Decision Type over MAP criterion
depending on the Experimental Condition

Condition SAME vs ONE SAME vs OPPO ONE vs OPPO
HFOP SAME < ONE∗ SAME < OPPO∗∗ ONE < OPPO∗∗

HFO SAME < ONE∗∗ SAME < OPPO∗∗ ONE < OPPO∗∗

ALONE SAME ∼ ONE SAME ∼ OPPO ONE ∼ OPPO

TABLE 2: Influence of the Experimental Condition over
MAP criterion depending on the Decision Type

Type ALONE vs HFOP ALONE vs HFO HFOP vs HFO
SAME ALN < HFOP∗∗ ALN < HFO∗∗ HFOP > HFO∗∗

ONE ALN < HFOP∗∗ ALN < HFO∗∗ HFOP > HFO∗∗

OPPO ALN < HFOP∗∗ ALN < HFO∗∗ HFOP > HFO∗∗

3.2.3 Performances
A significant effect on the performance is observed from
both the decision type (F (2, 416) = 9.54, p < 0.001, ω2 =
0.03) and the experimental condition (F (2, 416) =
63.41, p = 0, ω2 = 0.20). For the experimental condition,
post-hoc analysis reveals that the performances were high-
est in the ALONE condition, followed by the HFOP condi-
tion, with HFO condition leading to the worst performances.

The interaction between decision type and experimen-
tal condition also had a significant effect (F (4, 416) =
17.38, p = 0, ω2 = 0.11), post-hoc analysis is thus per-
formed to observe the performance variation in each (de-
cision type)*(experimental condition) pair. The differences
in performance are described in tables 3 and 4. Details of
the t-tests are omitted for clarity, significant differences with
a p-value inferior to 0.05 are signaled with a (*), p-values
inferior to 0.001 are signaled with a (**).

TABLE 3: Influence of the Decision Type over Performance
depending on Experimental Condition

Condition SAME vs ONE SAME vs OPPO ONE vs OPPO
HFOP SAME ∼ ONE SAME > OPPO∗ ONE > OPPO∗

HFO SAME > ONE∗∗ SAME > OPPO∗∗ ONE > OPPO∗∗

ALONE SAME ∼ ONE SAME ∼ OPPO ONE ∼ OPPO
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TABLE 4: Influence of the Experimental Condition over
Performance depending on Decision Type

Dec. Type ALONE vs HFOP ALONE vs HFO HFOP vs HFO
SAME ALN > HFOP ∗∗ ALN > HFO∗∗ HFOP ∼ HFO
ONE ALN > HFOP ∗∗ ALN > HFO∗∗ HFOP > HFO∗

OPPO ALN > HFOP ∗∗ ALN > HFO∗∗ HFOP > HFO∗∗

Fig. 6: PERFS parameter results for the pHHI experiment.
Error bars represent standard errors of the distributions.)

3.2.4 Dominance
The Leader won 84.6% of the conflicting choices in the
HFOP condition. The difference between Leader and Fol-
lower dominance was statistically significant (p = 0, d =
3.67). The Leader won 76.5% of the conflicting choices
in the HFO condition. The difference between Leader
and Follower dominance was statistically significant (p <
0.001, d = 2.27). The difference of dominance between the
HFOP and HFO conditions was not statistically significant
for both the Leader and the Follower.

3.3 Discussion
The first experiment aims at illustrating differences in per-
formances and interaction force brought by the addition
of tactile feedback in physical Human-Human Interaction
(pHHI). 30 participants (15 dyads) use a one degree of
freedom dual haptic interface to realize a one-dimensional
tracking task.

The results show that the best performances are obtained
in the ALONE condition. While this results seems to be in
contradiction with the common finding that dyads outper-
form individuals, it can be explained by the nature of the
task. Most of the studies concerning pHHI use tasks which
only involve coordination in basic pointing or target track-
ing, and do not require the subjects to negotiate a choice.
The results presented here concern the time period around
the decision-making parts of the task, it is thus natural
that dyads, who need to come to an agreement about the
direction to choose, are outperformed by individuals, who
do not have this cognitive burden to handle. Interestingly,
this observation holds true even in the SAME condition, in
which no conflict between subjects should arise. However,
since the subjects cannot know in advance in which decision
type they are, we can assume that they still need to consider
the possibility of a conflict, thus hindeing their perfor-
mances. In [57], the same experimental setup was used with
a pure tracking task, in these conditions, the performances
of the dyads were indeed better than the individuals’ ones.

Performances are significantly degraded in the HFOP
condition compared to ALONE, with the implementation
of a necessity to handle conflicting situations. The perfor-
mances are even worse in the HFO condition. The superior
performances obtained in HFOP compared to HFO can be
explained by the superior quantity of information available
to the subject to negotiate the conflicting situation, through
the haptic channel.

This hypothesis can be corroborated by the fact that the
MAP criterion is significantly higher in HFOP condition
than in HFO, meaning than more energy was expended dur-
ing the task. Since the energy necessary to accomplish the
task is the same for both conditions, this additional energy
expenditure is probably used for communication purpose,
notably by an augmentation in interaction force. The MAP
criterion is the highest in the OPPO trials, followed by the
ONE trials and lastly the SAME trials. This results shows
a link between the energy consumption and the necessity
for negotiation. Indeed, the SAME trials should not lead to
conflict, and therefore show the lowest MAP criterion. The
ONE trials need some negotiation to take place, since only
one participant has information about the target, the other
one needs to extract information about this target, which
could be done through the haptic communication channel.
The OPPO trials are by definition conflicting and show the
highest energy expenditure, in agreement with the proposed
hypothesis.

Some differences in results are found between this study
and Groten et al. [43]: for the MAP criterion, a greater dif-
ference between the HFO and HFOP conditions is found in
the present study, as well as a significant difference between
the SAME and ONE decision types. For the performance
criterion, the present study found significant differences
between decision types in HFOP while none were found
in [43]. These differences could be explained by the change
of scale in the experimental apparitus, leading to a different
repartition between the efforts used for the task and those
used for communication.

The main results, namely that the addition of haptic
feedback in comanipulative tasks leads to greater efforts
and performances, are however consistent with [43], while
obtained with a different experimental apparitus. This rein-
forces the hypothesis that humans can indeed communicate
via a haptic communication channel. Moreover, this com-
munication seems to be present in tasks involving varying
impedance and forces .

Overall, the decision making was heavily biased in favor
of one of the two participants in most of the experiments.
In almost every dyad, one of the two participants acted
as a "Leader" and decided the direction in most of the
conflicting situations, the other participant acting like a
"Follower". This dominance discrepancy is in agreement
with previous results [18] and was more pronounced in the
HFOP condition than the HFO condition, which could be
explained once again by the higher amount of information
available for negotiation, helping the leader cement his role
more easily.

4 VIRTUAL PARTNER DESIGN

This section presents the design of a virtual agent that will
be used in a pHRI scenario. The partner should be able to
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perform the task alongside a human, without hindering his
performance, and without taking full control of the task.

In order to design this virtual partner, data from the
Human-Human experiment presented in Part 3 is analyzed
to identify repeatable characteristics of the human behav-
ior during the task. More precisely, a physical variable is
searched that would allow to predict accurately the choice
made by the dyad before completion of the motion. This
variable would allow to detect the humans’ intentions on-
line and react accordingly. In the following paragraphs, such
a variable will be called online predictor.

4.1 Objective
The ideal predictor would allow to predict with 100%
accuracy every single choice made by the dyad at the
very beginning of each motion in the choice phase. Such
a predictor is of course impossible to obtain in practice, and
some compromise will have to be done on the acceptable
accuracy and duration of the detection phase.

The principal constraints for the choice of the predictor
are its accuracy, the computing duration, and the online
nature of the detection. The need for accuracy is obvious
if the objective is to react correctly to human behavior.
Furthermore, the duration of the prediction must be short
enough to leave time for the virtual agent to react. And
lastly, the predictor must be fitted for online computation,
and thus only rely on information that can be directly
observed during the task.

In order to select reasonable target goals for the pre-
dictor, some preliminary analysis of the data is performed,
in order to assess the average timing of the motions, and
chose the analysis time window accordingly. It is considered
for the rest of this section that an acceptable predictor
should achieve the best accuracy possible, while reaching
the prediction more than 0.2 seconds before the end of the
motion (based on human visual reaction time [58]).

4.2 Definitions
Each CHOICE Phase (see part 2.2.3) is composed of a
straight line of 1 second duration, followed by a fork where
the path splits into two different paths (one on the left and
one on the right). The paths merge again after 3 seconds
of straight line (see Figure 4). The analysis of the data is
focused over the decision making phase of the task, which
is estimated to occur over a 2 seconds duration around the
fork. Intention detection is performed over a shorter period
[tstart; tstop], with 0 ≤ tstart < tstop ≤ tchoice = 1 (see
Figure 7). The horizontal position of the cursor is noted
Xcursor. A negative value of Xcursor means that the cursor
is on the left, a positive value means that the cursor is
on the right. After the fork, the leftward and rightward
paths are respectively situated at Xleft = −Xmax and
Xright = Xmax, with Xmax = 80 pixels ' 24 mm.

4.3 Analysis method
The analysis process is similar for each predictor: A pre-
diction of the outcome of the choice is computed based on
the calculated value of the predictor. If the predictor has
a negative value at the end of the analysis, the dyad is

Fig. 7: Presentation of the CHOICE part and associated
variables.

expected to choose the leftward path. If on the contrary the
value of the predictor is positive, a rightward movement is
anticipated. The algorithm then extracts the actual choice
made by the dyad based on the final position of the cursor
over the CHOICE part. Finally, the algorithm compares the
prediction with the actual choice. This process is repeated
for each Choice Phase over every sample from pHHI exper-
iments.

4.4 Online Predictors

In order for the predictors to be implemented in the virtual
agent behavior, they need to be fitted for online compu-
tation. This requires to impose a limit before which the
prediction must be completed, so that there is still time
to react accordingly to the predicted choice. This limit can
either be temporal (the analysis needs to be completed
before a time tstop), or positional (the analysis is completed
before the interface reaches a certain position). Predictors for
both of these categories are tested. Predictors tested here are
chosen for their simplicity and possibility to be computed
in real-time with the information available from the sensors.
Some of them can be found in other studies on pHHI such
as [28] or [30].

4.4.1 Temporal limit

The different online predictors with temporal limit tested
are:

• XT = Xcursor(tstop) : Position of the cursor at time
tstop.

• XM =
N∑

k=1

Xcursor(k)
N : Mean position over

[tstart; tstop].
• VT = Ẋcursor(tstop) : Instantaneous velocity at time

tstop.

• VM =
N∑

k=1

Ẋcursor(k)
N : Mean velocity over

[tstart; tstop].

• FM =
N∑

k=1

FSubject1(k)+FSubject2(k)
N : Mean sum of

forces applied on the handle over [tstart; tstop].
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Fig. 8: The First Crossing parameter is defined as the side on
which the individual position of a subject first drifts from
the central position of 35% of the total target distance. Posi-
tion difference between subjects is exaggerated for clarity.

4.4.2 Positional limit - The First Crossing Parameter
The First Crossing (1C) parameter is defined as the side on
which the individual position of one of the two subjects exits
the interval [−Xthresh;Xthresh]. An illustration can be seen
on Figure 8.

The analysis performed to find the First Crossing has two
principal parameters: the time at which the analysis starts,
and the size of the threshold Xthresh. A later start of the
analysis allows to eliminate potential residual perturbations
from previous motions of the dyad in the sinusoidal track-
ing parts. The results show that accuracy indeed increase
for a later beginning of the analysis. Similarly, increasing
the threshold size allows to increase the accuracy of the
prediction, since a wider motion need to be made to trigger
the First Crossing detection.

If a larger threshold size leads to better performances, it
however leads a later crossing of the threshold, and thus to
a longer time before completion of the analysis. Considering
the strong time constraint on the analysis duration, it is
mandatory to select a threshold size which guarantees a
short analysis end time, while keeping the best accuracy.
Analysis of the data from the pHHI experiment shows that
the optimal set of parameters for the task is a threshold size
equivalent to 35% of the total target motion, coupled with
an analysis starting at 0.2 second.

4.5 Accuracy of the predictors

Figure 9 exposes the influence of tstop on the accuracy of
the predictors. The curves represented are calculated with
a value of tstart which maximizes the accuracy. In order
to compare the First Crossing criterion with the others, its
accuracy at tstop is calculated on the set of motions that
have already crossed the threshold at tstop. The proportion
of motions detected compared to the total is also indicated
on the Figure. The perfect accuracy of the 1C predictor for
the earlier values of tstop thus needs to be taken with caution
considering the low number of motions analyzed for these
parameters.

The accuracy of the 1C predictor is superior to the
others for tstop < 1.3s, and inferior to XM, VM and XT
for tstop > 1.5s. However, at t = 1.5s, more than 90% of

Fig. 9: Top: Accuracy of the different predictors as a function
of the analysis end time. Vertical dotted lines represent
the time at which 5%, 10% and 90% of the motions are
completed, predictor accuracies for these times can be found
in table 5.
Bottom: 1C - Percentage of motions detected when using
1C parameter, as a function of analysis end time. ALL -
Percentage of motions completed as a function of time.

the motions are already completed (see Figure 9, bottom),
meaning that while accurate, the prediction will be obtained
too late in most of the cases. In order to properly predict the
outcome, and not just observe it, the value of tstop should
be set so that only a minimal proportions of motions are
completed. For example, if a 5% rate of failure is deemed
acceptable, the value of tstop = 0.75s should be chosen,
while tstop = 0.85s is acceptable with a 10% rate of failure.
In these conditions, the performances of the 1C criterion
are vastly superior to the other predictors (see Table 5 for a
comparison of accuracies for these times).

The downside of the 1C parameter is that for a fixed
tstop, some of the motions are not detected yet. However,
by definition, this parameter doesn’t need a fixed tstop,
since all the motions will be detected before they come to
completion (see Figure 9, bottom). Indeed, theXthresh of the
1C predictor is always crossed before the motion comes to
an end. Moreover, the time between the threshold crossing
and the end of the motion is on average 0.22s (σ = 0.21s).

In conclusion, the First Crossing parameter is both more
reliable and more accurate in predicting the choices of the
dyads than the other predictors tested. Since the perfor-
mances reached with this predictor are within the range of
the objective, it will be the one used to design the virtual
agent. It can be noted that the First Crossing parameter is
linked to the notion of initiative in the choice: in more than
95% of the trials, the first subject to initiate a motion towards
his goal leads the dyad towards this goal. This observation
also holds true in OPPO cases where the subjects have
conflicting goals. It seems that humans prefer to let their
partner take the lead if they reacted sooner, in order to
reduce conflict and enhance the common performance in
the task.
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Accuracy at 0.75s Accuracy at 0.85s Accuracy at 1.5s
(5% of motions ended) (10% of motions ended) (90% of motions ended)
1C 98.57% 1C 96.17% XT 98.46%
VT 72.69% VT 81.15% VM 98.07%
XT 70.77% FM 74.62% XM 96.92%
XM 67.33% XT 74.42% 1C 95.29%
FM 65.77% VM 73.07% FM 55.77%
VM 63.46% XM 70.77% VT 55.38%

TABLE 5: Accuracy of the predictors at different times
during the Choice Phase.

Fig. 10: Schematic of the algorithm. The algorithm is de-
signed to let the human lead the movement as a default
choice. In the absence of human initiative, the virtual part-
ner engage the movement toward its own target.

4.6 Virtual Partner Design
The previous findings are used to design an algorithm
which can reproduce the observed behavior, while staying
as simple as possible. The objective is to evaluate how
this algorithm can perform as a partner in a cooperative
precision task.

The algorithm (see Figure 10) is designed to model
human behavior. Therefore the algorithm only has access to
information that would be otherwise available to a human
subject: (a) The target trajectory; (b) The position of its
handle (simulated); (c) The position of the cursor on the
monitor; (d) The effort transmitted through the handle.
Indirectly, the algorithm can also determine the position of
its partner’s handle (through the position of the cursor and
its own handle).

In the BODY parts, the algorithm follows the path.
When confronted to a CHOICE, the algorithm generates a
minimum-jerk trajectory [14] from its current position to the
target position, based on the choice it has to make. The First
Crossing for this trajectory is generated from a normally
distributed variable based on the average and standard
deviation of the human behavior data (N (0.886, 0.160)). In
a ONE decision type trials, the virtual partner doesn’t have
a privileged choice. A direction is thus chosen at random,
with a greater First Crossing (N (1.1, 0.1)). 2

Two situations are then possible: if the human takes
initiative3 before the starting time of the virtual partner, it

2. The trajectories generated by the virtual agent are not perfect with
regards to the execution of the task (precise tracking of the target). This
is done intentionally so that the performances of the virtual agent do
not influence the behavior of the human partner during the task.

3. Taking the initiative is here defined as engaging a movement of the
handle resulting in a displacement of superior to 35% of the distance
between the starting position and the target.

lets the human lead, entering "Follower Mode". The virtual
partner generates a new trajectory to reach the chosen path.
This new trajectory is based on a minimum-jerk model
starting at the current position of the virtual partner and
ending at the new target. If the human partner did not ini-
tiate a motion before the beginning of the virtual partner’s
trajectory, the virtual partner takes the initiative, entering
"Leader Mode", and starts its planned motion.

Once the virtual partner has started a motion in "Leader
Mode", it is necessary to implement an ability to negoti-
ate in case the human wants to contest the choice. The
algorithm measures the part of the interaction force be-
tween the partners which is directed toward a change of
trajectory (negative if the virtual object is currently on the
right, positive if the virtual object is on the left). A force
threshold Fthreshold = ±1N is chosen according to the
experimental data. As for the interaction force measured,
the force threshold sign is positive if the virtual object is on
the left, and negative on the right. If this interaction force
exceed the force threshold for a duration of ∆th = 0.2s
(defined from the average human reaction time), the virtual
partner switches to "Follower Mode" and generates a new
trajectory to follow the human. This change in trajectory
can happen multiple times if the conditions are met.

5 2ND EXPERIMENT - PHRI
5.1 Protocol

The second experiment uses four experimental conditions,
designed to evaluate the performances of the virtual partner,
and the influence of a priori knowledge on the nature of this
partner. Preliminary results have already been presented
[59]. This previous study used another haptic interface with
limited capabilities and no force sensors. Tests using the new
interfaces are thus conducted to assess the validity of the
previous results. Moreover, a new experimental condition is
added in order to differentiate the cases where the partici-
pants were aware or not of the nature of their partner. The
task and experimental set-up are similar to those exposed in
the previous section, with only the experimental conditions
changing. The participants are the same as in the previous
experiment.

The experimental conditions tested are ALONE, HFOP,
HVP and KVP.

Each experiment starts with a block of two trials in
ALONE condition in order to familiarize with the interface
and its control, this first block is not kept for the following
analysis. The following trials are divided into 3 blocks of
two trials (HFOP, HVP, KVP), each separated by one trial in
ALONE condition:

ALONE HFOP (×2) ALONE HV P (×2) ALONE KV P

(×2) HV P (×2) (×1) HFOP (×2) (×1) (×2)

The order between HFOP and HVP is randomized, and
the ALONE condition is tested between these two, in order
to prevent learning effects from one condition to another.
Since the KVP condition relies on informing the participants
about the presence of the virtual partner, it is always tested
last, in order to avoid a potential influence on their behavior
during the other conditions.
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5.2 Results
The results of the second experiment are exposed in this
section. The independent variables are Experimental Condi-
tion (ALONE, HFOP, HVP, KVP) and Decision Type (SAME,
ONE, OPPO). The changes in efforts (MAP), performances
(PERFS) and dominance are studied for each combination
of Experimental Condition and Decision Type.

The statistical analysis method and the presentation of
the results are the same as in Part 3.2.

5.2.1 Learning effect
The experimental design used for this experiment is not en-
tirely counterbalanced : all dyad conditions are tested after
an individual trial, but not always after the same number
of total trials. This poses a risk for the statistical analysis
if a learning effect is observed between the different trials.
One-way repeated measure ANOVA does not show any
significant effect of the trial number on the performances in
any experimental condition (ALONE : F (3, 60) = 1.38, p =
0.25, ω2 = 0.004 ; HFOP : F (1, 30) = 2.06, p = 0.15, ω2 =
0.013 ; HVP : F (1, 30) = 1.02, p = 0.36, ω2 = 0.0001 ; KVP
: F (1, 30) = 0.27, p = 0.61, ω2 = 0.004). Moreover, perfor-
mance isn’t significantly affected by the order of the experi-
mental condition : Student’s t-tests, HFOP first vs HVP first
(HFOP : p = 0.45, d = 0.021; HVP : p = 0.62, d = 0.015).

5.2.2 Effort measure
A significant effect on the MAP is observed from both the
decision type (F (2, 696) = 30.31, p = 0, ω2 = 0.058) and
the experimental condition (F (2, 696) = 54.43, p = 0, ω2 =
0.159).

The interaction between decision type and experimen-
tal condition also had a significant effect (F (4, 696) =
14.04, p = 0, ω2 = 0.084), post-hoc analysis is thus per-
formed to observe the performance variation in each (de-
cision type)*(experimental condition) pair. The analysis re-
veals that there is no influence of the Decision Type over
the MAP criterion while in ALONE condition, and that the
differences between HFOP, HVP and KVP conditions are
mainly significant in the OPPO decision type. The differ-
ences in performance are described in tables 6 and 7. Details
of the t-tests are omitted for clarity, significant differences
with a p-value inferior to 0.05 are signaled with a (*), p-
values inferior to 0.001 are signaled with a (**).

TABLE 6: Influence of the Decision Type over MAP
Condition SAME vs ONE SAME vs OPPO ONE vs OPPO
HFOP SAME < ONE∗ SAME < OPPO∗∗ ONE < OPPO∗∗

HVP SAME < ONE∗∗ SAME < OPPO∗∗ ONE < OPPO∗∗

KVP SAME < ONE∗∗ SAME < OPPO∗∗ ONE < OPPO∗∗

ALONE SAME = ONE SAME = OPPO ONE = OPPO

TABLE 7: Influence of the Experimental Condition over
MAP

Dec. Type ALONE vs HFOP ALONE vs HVP ALONE vs KVP
SAME ALN < HFOP∗∗ ALN < HVP∗∗ ALN < KVP∗∗

ONE ALN < HFOP∗∗ ALN < HVP∗∗ ALN < KVP∗∗

OPPO ALN < HFOP∗∗ ALN < HVP∗∗ ALN < KVP∗∗

Dec. Type HFOP vs HVP HFOP vs KVP HVP vs KVP
SAME HFOP > HV P ∗∗ HFOP > KV P ∗ HV P < KVP∗∗

ONE HFOP > HV P ∗∗ HFOP > KV P ∗ HV P ∼ KV P
OPPO HFOP > HV P ∗∗ HFOP > KV P ∗∗ HV P < KVP∗

Fig. 11: MAP parameter results for the pHRI experiment.
Error bars represent standard errors of the distributions.)

5.2.3 Performances

A significant effect on the performance is observed from
both the decision type (F (2, 696) = 45.25, p = 0, ω2 =
0.086) and the experimental condition (F (3, 696) =
69.22, p = 0, ω2 = 0.199).

The interaction between decision type and experimen-
tal condition also had a significant effect (F (6, 696) =
17.55, p = 0, ω2 = 0.023), post-hoc analysis is thus per-
formed to observe the performance variation in each (de-
cision type)*(experimental condition) pair. The differences
in performance are described in tables 8 and 9. Details of
the t-tests are omitted for clarity, significant differences with
a p-value inferior to 0.05 are signaled with a (*), p-values
inferior to 0.001 are signaled with a (**).

TABLE 8: Influence of the Decision Type over Performance
depending on Experimental Condition

Condition SAME vs ONE SAME vs OPPO ONE vs OPPO
HFOP SAME ∼ ONE SAME > OPPO∗ ONE > OPPO∗

HVP SAME > ONE∗∗ SAME > OPPO∗∗ ONE > OPPO∗∗

KVP SAME > ONE∗∗ SAME > OPPO∗∗ ONE > OPPO∗∗

ALONE SAME ∼ ONE SAME ∼ OPPO ONE ∼ OPPO

TABLE 9: Influence of the Experimental Condition over
Performance depending on Decision Type

Dec. Type ALONE vs HFOP ALONE vs HVP ALONE vs KVP
SAME ALN > HFOP ∗∗ ALN ∼ HV P ALN > KV P ∗∗

ONE ALN > HFOP ∗∗ ALN > HV P ∗∗ ALN > KV P ∗∗

OPPO ALN > HFOP ∗∗ ALN > HV P ∗∗ ALN > KV P ∗∗

Dec. Type HFOP vs HVP HFOP vs KVP HVP vs KVP
SAME HFOP < HVP∗∗ HFOP < KVP∗∗ HV P ∼ KV P
ONE HFOP ∼ HV P HFOP ∼ KV P HV P ∼ KV P
OPPO HFOP ∼ HV P HFOP ∼ KV P HV P ∼ KV P

5.2.4 Dominance

The Leader won 84.6% of the conflicting choices in the
HFOP condition. The difference between Leader and Fol-
lower dominance was statistically significant (p = 0, d =
3.67). The Leader won 59.3% of the conflicting choices when
unknowingly paired with the virtual partner (HVP condi-
tion). The difference between Leader and Robot dominance
was not statistically significant (p = 0.51, d = 0.76). The
Leader won 66% of the conflicting choices when knowingly
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Fig. 12: PERFS parameter results for the pHRI experiment.
Error bars represent standard errors of the distributions.)

paired with the virtual partner (KVP condition). The differ-
ence between Leader and Robot dominance was not statis-
tically significant (p = 0.09, d = 1.24). The Follower won
29.3% of the conflicting choices when unknowingly paired
with the virtual partner (HVP condition). The difference
between Follower and Robot dominance was statistically
significant (p < 0.001, d = −1.81). The Follower won 31.9%
of the conflicting choices when knowingly paired with the
virtual partner (KVP condition). The difference between
Follower and Robot dominance was statistically significant
(p < 0.001, d = −1.82).

The Leader was statistically more dominant in the HFOP
condition than in the HVP condition (p < 0.001, d = 1.16).
The differences between HFOP and KVP, or between HVP
and KVP were not significant.

The Follower was statistically more dominant in the KVP
condition than in the HFOP condition (p < 0.05, d = −0.85).
The differences between HFOP and HVP, or between HVP
and KVP were not significant.

5.2.5 Robot Alone
When the virtual partner executes the task alone (ROBOT),
it reaches performances similar to humans alone, but better
than every other condition. (ROBOT vs ALONE, p = 0.42;
ROBOT vs other experimental conditions, p<0.001).

Average performances across decision type :

Condition Mean Perf (±)Std
Alone 0.746 0.067

ROBOT 0.721 0.110
HVP 0.688 0.145
KVP 0.676 0.157

HFOP 0.633 0.141

5.3 Discussion
In the second experiment, a virtual partner is designed
based on the observation of human behavior during deci-
sion making tasks in physical Human-Human interaction.
The virtual partner is then tested in cooperation with human
participants on the same tracking task previously intro-
duced.

The KVP and HVP conditions lead to similar Perfor-
mances (no significant statistical difference found between
the two conditions), meaning that the a priori knowledge of
the nature of the partner doesn’t influence the performances
on the task. In some dyads, this a priori knowledge can

have some influence on the dominance: some participants
tend to lead more in conflicting situation in KVP than in
HVP (these results are not statistically significant for all
dyads). It seems that some humans tend to be more assertive
when they know they operate with an artificial agent rather
than a human. This hypothesis could be corroborated by the
fact that the MAP criterion is greater in KVP than in HVP,
showing a greater amount of communication/contestation
when participants are aware that they are paired with the
virtual partner.

The virtual partner allows to reach performances at
least as good as with human partners, even in conflicting
situation. Indeed, the performances in the HVP and KVP
conditions are always equal or superior to the performances
in HFOP condition. Furthermore, this results does not come
from higher performances of the robot guiding or leading
the human, since the robot alone reaches performances
similar to humans alone, and the distribution of decision
leading (Dominance) was even between the human and
the virtual partner. This increase in performances for the
human-robot dyads coincides with a decrease in energy
expenditure from the human, but only in the HVP condition,
where the humans do not know they are cooperating with a
virtual agent.

A limitation of this second experiment is that the force
and time thresholds used for the negotiation phase with
the virtual partner are fixed. While this doesn’t seem to
disturb the participants, some additional flexibility could be
added in the negotiation. Those fixed thresholds however
led to an interesting results: human participants that tend
to be Leader in HFOP condition stay overall Leaders in the
HVP condition (although it is less pronounced). Likewise,
Followers in HFOP behave the same when unknowingly
paired with the robot (once again less pronounced). We
hypothesize that the Leader/Follower behavior of humans
can be modeled by an intrinsic time/force threshold for
negotiation, which varies for each person. The behavior in
HVP could be explained by the fact that our tuning of the
thresholds happen to be slightly lower to those of a Leader
personality, but higher than those of a Follower personality.
Similarly, the more dominant behavior of humans in KVP
condition could be explained by humans having higher
thresholds if they know their partner is robotic, and/or if
they are more confident in the task. If this hypothesis is true,
it should be possible to influence the behavior of partners in
human/robot dyads by controlling the time/force thresh-
olds available for negotiation. Exploration of this hypothesis
will be the subject of a future study.

6 CONCLUSION

This paper presents the results of an experiment on physical
Human-Human Interaction (pHHI), where human dyads
cooperate on a one dimensional comanipulative task. The
results of this experiment confirm the existence of an haptic
communication between humans during low-impedance
tasks. Data from the pHHI experiment are used to design
a virtual partner which can collaborate with humans on
the same task. The virtual partner behavior is based on the
observation that initiative is highly correlated to decision-
making in pHHI. The virtual agent is then evaluated in
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a physical Human-Robot Interaction (pHRI) experiment.
The results of the second experiment show that the virtual
partner is able to perform the task without compromising
the performances of the dyad, and that a similar role dis-
tribution is observed in human-human and human-robot
dyads. Moreover, the knowledge of the partner’s nature
does not seem to influence the performances. The results
obtained with the virtual partner are encouraging and could
be used to design efficient haptic communication protocol in
pHRI settings.

The virtual partner seems to be able to successfully
reproduce human behavior, both in terms of performances
and decision making. Moreover, no participant declared
having detected differences between HVP and HFOP con-
ditions, when asked in post-experiment interviews. The
fact that a simple state-machine algorithm can cooperate
with humans in a task requiring physical interaction and
decision making is an encouraging step toward natural and
intuitive human-robot cooperation. The present results are
of course limited to a single one-dimensional task with
binary choice, and further studies are needed to test possible
generalization to more complex situations. Future work will
also include the generalization to others tasks and extension
to multiple degrees of freedom.
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