
HAL Id: hal-01952960
https://hal.science/hal-01952960

Submitted on 2 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hysteretic bit/rock interaction model to analyze the
torsional dynamics of a drill string

F. F. Real, A. Batou, T.G. Ritto, C. Desceliers, R. R. Aguiar

To cite this version:
F. F. Real, A. Batou, T.G. Ritto, C. Desceliers, R. R. Aguiar. Hysteretic bit/rock interaction model
to analyze the torsional dynamics of a drill string. Mechanical Systems and Signal Processing, 2018,
111, pp.222-233. �10.1016/j.ymssp.2018.04.014�. �hal-01952960�

https://hal.science/hal-01952960
https://hal.archives-ouvertes.fr


Hysteretic Bit/Rock Interaction Model to Analyze the

Torsional Dynamics of a Drill String

Real F.F.a,c,d, Batou A.b, Ritto T.G.d,∗, Desceliers C.c, Aguiar R.R.e

aNational Institute of Metrology, Quality and Technology-INMETRO, Rua Santa

Alexandrina, 416, Rio de Janeiro, RJ, 20261-232, Brazil
bDepartment of Mechanical, Materials and Aerospace Engineering, School of

Engineering, University of Liverpool, Liverpool, L69 7ZF, United Kingdom
cUniversité Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME

UMR 8208 CNRS, 5 bd Descartes, 77454, Marne-la-Vallée, France
dDepartment of Mechanical Engineering - Federal University of Rio de Janeiro, Ilha do

Fundão, Rio de Janeiro, RJ, 21945-970, Brazil
eBrazil Research and Geoengineering Center, Schlumberger Oilfield Services, Rio de

Janeiro, Brazil

Abstract

The present paper proposes a novel hysteretic (non-reversible) bit/rock in-
teraction model for the torsional dynamics of a drill string. Non-reversible
means that the torque-on-bit depends not only on the bit speed, but also on
the bit acceleration, producing a type of hysteretic cycle. The continuous
drill string system is discretized by means of the finite element method and a
reduced-order model is constructed using the normal modes of the associated
conservative system. The parameters of the proposed hysteretic bit/rock in-
teraction model is fitted with field data. The non-linear torsional vibration
and the stability map of the drill string system are analyzed employing the
proposed bit/rock interaction model and also a commonly used reversible
model (without hysteresis). It turns out that the hysteretic model affects the
stability region of the system.
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1. Introduction

There are several papers available in the literature concerned with the drill
string torsional dynamics and stick-slip oscillations [4, 8, 5, 17, 18, 7, 23]. A
pure torsional model is sometimes enough to represent this kind of system.
For instance, torsional models were applied successfully to represent test rigs
that were constructed in [7] to analyze the friction-induced limit cycling, and
in [5] to employ a control strategy.

There are many articles available in the literature concerned with friction
laws, see for instance [24, 25]. The bit/rock interaction is very complex, but,
in some situations, the relationship between the torque and the bit speed
looks similar to a friction law. For instance, field measurements show (1)
a torque weakening effect, and (2) hysteretic cycles [9, 19]. Nevertheless, it
should be emphasized that the bit/rock interaction is a much more complex
mechanism.

Field data of a five kilometer drill string is analyzed in [18], where again
a pure torsional model presented satisfactory results reproducing field data,
where torsional vibration was the dominant phenomenon observed. More
generally, a coupled axial-lateral-torsional model should be applied [21, 17].
A full description model, including all dynamics, although possible, presents
many difficulties due to lack of downhole data. During the drilling pro-
cess there are many phenomena which are hard to measure, or simply not
fully measured. Examples of these phenomenon include bit/rock interac-
tion, fluid/rock interaction, proper well profile (inclination and azimuth),
pipe/rock interaction, among others.

Figure 1 shows the field data [18] that will support the proposed model
presented in this paper. The downhole information used in this paper was
acquired using a downhole mechanics measurement unit capable of provid-
ing both real-time measurement through mud telemetry and continuously
recorded high-frequency data throughout the run. The sub, installed at the
BHA above the bit, contains a suite of 19 sensors sampled at 10,000 Hz and
downsampled and filtered prior to recording at 50 Hz. Following is a list of
50-Hz data recorded in this sub: triaxial accelerations; gyro rpm; magne-
tometer rpm; axial loading; torque; bending moment [20].

The data show the dependence of the torque-on-bit with the bit speed;
see Fig. 1. Closed to zero speed, the torque varies from about 6 kNm to
11 kNm, in a very steep straight line (close to 90 degrees). As the speed
increases, the torque decreases. This type of torque-on-bit and bit speed

2



relation (weakening effect) has been observed experimentally before [9, 19].
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Figure 1: Field data: (a) measured torque at the BHA, very close to the drill bit T
exp

bit ,

versus speed of the bit θ̇bit, and (b) zoom image.
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Some authors consider a non-linear function for the torque-on-bit versus
bit speed to represent the bit rock/interaction model [4, 17], while others ap-
ply a switching mechanism [6]. One can find coupled axial-torsional bit/rock
interaction models, such as [12, 22].

Hysteretic cycles have been observed experimentally for the bit/rock in-
teraction in [9, 6]. Up to the authors knowledge the only hysteretic bit/rock
interaction model found in the literature was proposed in [1]. The authors in
[1] used the experimental results presented in [6], and applied their hys-
teretic model, which employs a switching mechanism, in the analysis of
Proportional-Integral (PI) control strategy, aiming at mitigating stick-slip
oscillations.

In the present paper a novel hysteretic (non-reversible) bit/rock inter-
action model is proposed based on the field data presented in [18]. Non-
reversible means that the torque-on-bit depends not only on the bit speed,
but also on the bit acceleration, producing a type of hysteretic cycle. We call
it hysteresis, even though when unloaded the torque goes back to zero. We
depict the available field data, fit the model parameters with them, and ar-
gue that a hysteretic model would be appropriate for the bit/rock interaction.
Then, the torsional vibration and stability map are analyzed.

This article is organized as follows. In Section 2 the torsional dynamical
model is presented. The continuous system is discretized by means of the
finite element method and a reduced-order model is constructed using the
normal modes of the associated conservative system. The proposed bit/rock
interaction model including hysteresis is also presented in Section 2. In Sec-
tion 3 this interaction model is compared with field data. The numerical
analysis are presented in Section 4 and, finally, the concluding remarks are
made in Section 5.

2. Dynamic Model

2.1. Torsional model

The drill string system is basically composed by drill pipes (DP) and the
bottomhole-assembly (BHA), as it is schematically represented in Fig. 2.
DP are slender tubes that can reach kilometers, while BHA is composed by
thicker tubes (drill collars) together with the measurement/formation logging
equipment and a drill bit on the bottom, and its length usually reaches
hundreds of meters.
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Figure 2: General scheme of a drill string system.
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A vertical wellbore is considered, and only torsional vibrations are taken
into account in the modelling. In this investigation, it is assumed that the
reaction forces generated during the contact between the column and the
wellbore and the column with the casing are small. It is also assumed that
lateral and axial vibrations are small, compared to torsional dynamics. A
constant speed Ω is imposed at the top, and a reaction torque appears due
to the bit/rock interaction. In the field, a control strategy, which tries to
maintain the speed constant, is applied to the top drive. A PID-control law
is commonly used, but there are different torsional control strategies found
in the literature [10]. If the control is able to keep an almost constant speed
at the top, our modeling is representative.

The angular rotation about the longitudinal axis, θ(x, t), where x is the
longitudinal coordinate, is the solution of the following equation of motion:

ρIp(x)
∂2θ(x, t)

∂t2
−G

∂

∂x

(
Ip(x)

∂θ(x, t)

∂x

)
= T (x, t), (1)

where, Ip is the cross sectional polar moment of inertia, ρ and G are the
density and shear modulus of the material of the column, and T is the torque
per unit length. The boundary conditions at the top (constant speed) are
given by:

{
θ(0, t) = Ωt

θ̇(0, t) = Ω
, (2)

and the initial conditions are given by

θ(x, 0) = 0, θ̇(x, 0) = Ω , (3)

Unlike [13, 15], the present strategy solves the system considering its ro-
tational displacements about a rotating frame. Let θrel(x, t) be the relative
angular rotation in the rotating frame associated with the imposed angle at
the top. We then have

θ(x, t) = Ωt+ θrel(x, t). (4)

The equation of motion is discretized by means of the finite element
method, where linear shape functions are employed [2]. Let u(t) be the
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vector of nodal coordinates related to the discretization of the of the rela-
tive angular rotation θrel(x, t). Then the final discretized system, including
a proportional damping model, is given by

[M ]ü(t) + [D]u̇(t) + [K]u(t) = T(u̇(t), ü(t)), (5)

where [M ] is the mass matrix, [D] is the damping matrix, [K] is the stiffness
matrix, and T(u̇(t), ü(t)) is the torque vector.
The initial conditions are

u(0) = 0, u̇(0) = −Ω1. (6)

where 1 is a vector with all entries equal to one. All the components of the
generalized torque vector are zero except the one corresponding to the drill
bit (last node, x = L). The non-linear torque applied to the bit is denoted
by Tbit(θ̇bit(t), θ̈bit(t)) and will be described in the next section.

The normal modes of the conservative homogeneous system are used to
construct a reduced-order model, considering the boundary conditions fixed
at the top and free at the bottom. Few modes of the reduced-order ba-
sis give good approximations for the system analyzed, if the nonlinearity is
weak. More modes are needed if the nonlinearity is severe. Other strategies,
such as Karhunen-Loève Decomposition, or Proper Orthogonal Decompo-
sition (POD) [3, 14], might be used to construct reduced-order basis for
nonlinear systems.

The m first eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λm associated with elastic
modes {ϕ1,ϕ2, . . . ,ϕm} are solutions of the generalized eigenvalue problem

[K]ϕ = λ[M ]ϕ . (7)

The reduced-order model is obtained by projecting the full computational
model on the subspace spanned by the m first elastic modes calculated using
Eq. (7). Let [Φ] be n×m matrix whose columns are the m first elastic modes.
We can then introduce the following approximation

u(t) = [Φ]q(t), (8)

in which q(t) is the vector of the m generalized coordinates which are solution
of the reduced matrix equation

[M̃ ]q̈(t) + [D̃]q̇(t) + [K̃]q(t) = T̃(q̇(t), q̈(t)), (9)
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with the initial conditions

q(0) = 0, q̇(0) = −Ω [M̃ ]−1[Φ]T [M ]1. (10)

In these equations, [M̃ ] = [Φ]T [M ] [Φ], [D̃] = [Φ]T [D] [Φ] and [K̃] = [Φ]T [K] [Φ]
are the m × m mass, damping and stiffness reduced-order matrices, and
T̃(q̇(t), q̈(t)) = [Φ]TT([Φ]q̇(t), [Φ]q̈(t)) is the reduced-order torque vector.
The set of equations (8), (9) and (10) can be solved using commonly used
integration schemes, such as the Euler scheme or the Runge-Kutta scheme,
for instance.

Damping ratios ζi are selected directly to each i-th mode in the reduced
damping matrix, which is diagonal and has entries 2ζiωni, where i = 1, .., n,
and ωni is the i-th natural frequency of the system. In the simulations,
ζ1 = 0.095, ζ2,3 = 0.030, and ζi = 0.020 for i > 3.

2.2. Bit/Rock interaction model

The field data used in this study corresponds to the drilling operation
of an ultradeepwater well. Due to a research collaboration between ser-
vice company and operator, the BHA was equipped with a high-frequency
measurement device. The sub is capable of measuring axial forces, torque,
bending moments, angular speed, and tri-axial accelerations. The data set
used in this study corresponds to the drilling of about 3 meters, where only
the on-bottom data (actual drilling) was used.

The field data shown in Figure 1 have been smoothed (using a time-sliding
window average) to remove the measurement noise and split into stick-slip
cycles. Figure 3 shows six field data stick-slip cycles. As indicate the arrows
of the first graphic of Fig. 3, when the bit accelerates, the path from above
occurs, and when the bit speed decreases, the path from the bottom occurs.
There is a fluctuation of the hysteretic cycles. Based on field experience, the
possible cause of the variability of the cycles is due to the heterogeneity of
the rock formation drilled.

These cycles indicate that (1) for each cycle, the torque value for positive
acceleration and for negative acceleration are not the same, this is the hys-
teretic (non-reversible) phenomenon and (2) each observed cycle is different
from one another. The present paper tackles the first point, i.e., it proposes
a bit/rock interaction model including hysteresis and representing the mean
bit/rock interaction. The construction of a stochastic bit/rock interaction
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model that takes into account the fluctuation of the hysteretic cycle is out
of the scope of this paper and will be pursued in a future work.
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Figure 3: Downhole field data, torque [N.m] versus angular speed [RPM] at the bit: six
stick-slip cycles available. The path from the top occurs when the bit accelerates, and the
path from the bottom occurs when the bit speed decreases. The direction of the cycle is
the same for all six cycles.

The mean cycle is obtained by applying a sliding window average, at each
bit speed, for the upper phases (positive acceleration) and the lower phases
(negative acceleration) separately. Figure 4 shows the field stick-slip cycles
and their mean. The mean of all cycles (upper and lower) is in blue, and
the mean cycle is shown in green. The upper green curve is the mean of the
upper cycles and the lower green curve is the mean of the lower cycles.
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Figure 4: Downhole field data: six stick-slip cycles and their mean. The mean of all cycles
(upper and lower) is in blue, and the mean cycle is shown in green.

If we take the green line shown in Fig. 4, i.e., the field data mean hys-
teretic cycle, it is remarked that the thickness of this cycle decreases as the
bit speed increases. At some point, the upper and lower curves collapse.

A commonly used non-linear reversible bit/rock interaction model is given
by [4, 11, 15]

Tbit(θ̇bit) = µW r̄

(
tanh(b1θ̇bit) +

b2θ̇bit

1 + b3θ̇2bit

)
, (11)

where Tbit is the torque-on-bit in N.m, θ̇bit is the bit speed in rad/s. The
parameters b1, b2, and b3 depend on the bit and rock properties. The weight-
on-bit is W, the friction coefficient is µ, and the bit radius is r̄. The weight-
on-bit, as expressed in the oil industry, is the amount of downward force
exerted on the drill bit.
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Figure 5 shows separately the two terms of the reversible model, Eq.
(11). The first term (tanh, in blue) increases fast, and reaches a limit torque
value as the speed increases. The second term (fraction term, in blue) is
responsible for the peak in the bit/rock interaction model, and it dies out as
the bit speed increases. The reversible model, Eq. (11) is the sum of these
two terms (magenta curve).

This model considers a steep straight line, when the bit speed is close
to zero. Usually this strategy produces good results. One can find in the
literature other models that take into account explicitly stick and slip phases,
such as in [6].

Once fitted, the bit/rock interaction model described by Eq. (11) yields
an acceptable agreement with the average experimental plots (blue plots in
Fig. 4). Nevertheless it suffers from two drawbacks: (1) it is not flexible
enough to fit correctly the experiments for both low and high velocities; and
(2) it cannot generate hysteresis effects in order to separate the forward and
backward behaviours (green plots in Fig. 4).

In order to improve the model shown in Eq. (11) we suggest two modifica-
tions to address these two issues: (1) the power exponents of the bit speed in
the fraction term can vary in order to give the model more flexibility; and (2)
the fraction term is modulated by an acceleration (and speed)-dependent fac-
tor to obtain different amplitudes for the forward and the backward phases.

The new bit/rock interaction model, proposed in the present paper and
which contains these improvements, is presented in Eq. (12).

Tbit(θ̇bit, θ̈bit) = b0

(
tanh(b1θ̇bit) +

b2|θ̇bit|
b4sign(θ̇bit)

1 + b3|θ̇bit|b5
(1 +H(θ̇bit, θ̈bit))

)
,

(12)
for θ̇bit > 0. It is usually observed that the reaction torque is much lower
when the bit speed is negative. This is because the bit/cutters are not
symmetrical. Actually, we do not have field data to support any interaction
model for θ̇bit < 0, but, in the cases analyzed in the present paper, the values
of the bit speed were always equal or greater than zero.

Note that if b4 = 1, b5 = 2 and H = 0 we retrieve the bit/rock interaction
model found in Eq. (11). The parameters b4 and b5, with 0 < b4 < b5,
depend on the bit and rock properties. The parameter b0 [N.m] represents
the weight-on-bit, the friction coefficient and the bit radius (for instance, this
parameter might be written as b0 = µW r̄).
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The proposed model, Eq. (12), allows a better fit with the field data
points. H is the hysteretic function: if it is equal to zero, the model is
reversible, with no hysteretic cycles. The hysteretic model is only activated
if H is different from zero, where H is presented in Eq. (13).

H(θ̇bit, θ̈bit) = β1 tanh(β2θ̈bit) sign(θ̇bit) , (13)

which means that the variation of the bit speed (bit angular acceleration)
should be taken into account, and the hysteretic cycle is limited (1 ± β1).
Figure 6 shows the hysteretic term as a function of the bit acceleration. It in-
creases fast, and reaches a limit value as the acceleration increases/decreases.
In the present case β1 = 14%, i.e., the hysteretic cycle is within plus or minus
14% of the reversible model. In addition, note that (1 − H) is multiplying
only the second term of the bit/rock interaction model (the fraction term),
such that as the bit speed increases the thickness of the hysteretic cycle de-
creases, as it is observed in most field data cycles shown in Fig. 3, and also
in the field data mean cycle shown in Fig. 4.
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Figure 5: Terms of the bit/rock interaction reversible model, Eq. (11): tanh term in green,
fraction term in blue, and complete reversible model in magenta.
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Figure 7 shows the hysteretic bit/rock interaction model for positive bit
speeds. The arrows indicate the path of the cycle. The curve in blue happens
when the bit acceleration is positive, and the curve in green happens when
the bit accelaration is negative.
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Figure 7: Hysteretic bit/rock interaction model. Blue line when the bit acceleration is
positive and green line when the bit accelaration is negative. The black straight vertical
line indicates when the acceleration switches from positive to negative values.

3. Bit/Rock interaction: proposed model vs. field data

First the reversible model is considered, Eq.12 with H = 0. The fitted
parameters of the bit/rock interaction model are: b0 = 3478, b1 = 938,
b2 = 2.56, b3 = 0.38, b4 = 0.78, and b5 = 1.1, with appropriate units. Figure
8 shows the mean of the field data together with the fitted model. The blue
line is the same field data blue line as shown in Fig. 4. There is a very good
agreement between the bit/rock interection model and the field data.
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Figure 8: Field data vs. bit/rock interaction reversible model, (Eq. 11): Fitted model in
magenta and mean field data in blue.

Now the model including hysteresis is considered, Eq.12 with H 6= 0.
The fitted parameters of the hysteretic function are: β1 = 14%, β2 = 10.6,
with appropriate units. Figure 9 shows the field data upper and lower mean
cycles together with the fitted hysteretic bit/rock interaction model. The
green lines are the same field data green lines as shown in Fig. 4. Again,
there is a very good agreement between the proposed bit/rock interaction
model and the field data.
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Figure 9: Field data vs. hysteretic bit/rock interaction model (Eq. 13): fitted model in
black, and mean cycle of field data in green.

A larger hysteretic cycle is also considered, with β1 = 56%. This param-
eter was chosen such that all field data cycles (black lines in in Fig. 4) fit
in. Finally, Fig. 10 shows the three bit/rock interaction models that will
be used for computations: (1) fitted reversible model (magenta line), (2) fit-
ted model with hysteresis effects (continuous black line), and (3) model with
large hysteresis effects (dashed black line).

The parameters used in the computational model are the ones that were
fitted with the available field data: b0 = 3478, b1 = 938, b2 = 2.56, b3 = 0.38,
b4 = 0.78, b5 = 1.1 and β2 = 10.6. For model number one H = 0, for model
number two β1 = 14%, and for model number three β1 = 56%.
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Figure 10: Bit/Rock interaction models (Eqs. 11 and 13): (1) reversible (magenta), (2)
hysteretic β1 = 14% (black), and (3) hysteretic β1 = 56% (black).

4. Numerical results

In this section the results obtained for the three bit/rock interaction
models are analyzed (see Fig. 10): (1) reversible (magenta), (2) hysteretic
β1 = 14% (black), and (3) hysteretic β1 = 56% (black). The column is dis-
cretized in 100 finite elements. An adaptive Euler scheme is implemented
to approximate the solution of the ODE. It is easy to implement and it is
useful to compute the acceleration at each time step (which is necessary for
the hysteretic H function). The time step used ∆t = 5 × 10−4 s and each
time step of the explicit integration scheme is computed as follows:

1. q̇i+1 = q̇i +∆t [M̃ ]−1(T̃(q̇i, q̈i)− [D̃]q̇i − [K̃]qi)

2. qi+1 = qi +∆t q̇i

3. q̈i+1 = (q̇i+1 − q̇i)/∆t

The values of the parameters of the drill string system analyzed in the
present paper are the following ones. Material properties ρ = 7800kg/m3,
E = 220GPa, ν = 0.29, G = E/(2(1 + ν)), length of the drill pipe 4733.60
m, outer and inner diameter of the drill pipe 0.140 m and 0.119 m, length
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of the BHA 466.45 m, outer and inner diameter of the BHA 0.1607 m and
0.0727 m. The first five natural frequencies of the fixed-free torsional system,
obtained using the stiffness and mass matrices of the finite element model, are
[0.1316, 0.4199, 0.7388, 1.0719, 1.4113] Hz, and the damping rates related to
the first five normal models are [0.095, 0.02, 0.02, 0.02, 0.02] (all the remaining
damping rates are set to 0.02).

Figure 11 shows the bit speed time evolution when the nominal surface
speed equals to 120 RPM and W equals to 245 kN. The torsional oscillations
are larger when employing the hysteretic bit/rock interaction model. All of
the responses show stick-slip oscillations, where the bit speed is zero and
the system accumulates strain energy up to the point that the bit speed is
released and reaches more than two times the nominal surface speed. The
frequency of stick-slip is around 0.128 Hz for model 1 (reversible), 0.126 Hz
for model 2 (small reversibility), and 0.112 Hz for model 3 (large hysteresis
effects). Hence, the stick-slip frequency is a little lower than the first torsional
natural frequency of the system, and it decreases as the hysteresis of the
bit/rock interaction increases.

In order to construct a stability map, the nominal surface speed is an-
alyzed from 50 to 160 RPM, and the weight-on-bit from 5 to 60 klf (22 to
267 kN). The bit/rock interaction model shown in Eq. 12 was calibrated
considering 245 kN, and the model assumes that Tbit is linear with respect to
the weight-on-bit, Eqs. (12) and (13). Thus, a coefficient is used to multiply
Tbit such that different values of W can be simulated. For example, if the W
is 200 kN, then Tbit must be multiplied by 200/245 = 0.816.
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Figure 11: Bit speed for the three models (120 RPM, 245 kN): (1) reversible (magenta),
(2) hysteretic β1 = 14% (black), and (3) hysteretic β1 = 56% (red).

Let us define the stick-slip severity factor as SS = (ωmax
bit − ωmin

bit )/(2Ω).
If there is no torsional oscillations, SS = 0. If there is stick-slip oscillations
(ωmin

bit = 0) and the maximum bit speed (ωmax
bit ) is two times the nominal

surface speed (Ω), then SS = 1. If SS is lower than 0.5 the system will be
considered stable, otherwise it is considered unstable.

The stability map is constructed as follows. For each pair (W,Ω) the
bit speed is computed and SS is recorded for the steady state response.
Figure 12 shows the stability map when employing the bit/rock interaction
models 1 (reversible) and 2 (small hysteresis effects). It can be noted that the
maximum SS value is greater for the reversible bit/rock interaction model
(model 2), but, at the same time, the stability region (dark blue) is a little
bigger when employing this model. Now let us analyze Fig. 13, which shows
the stability map when employing the bit/rock interaction model 3 (large
hysteresis effects). This last chart presents a stability region (dark blue
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region) bigger than the other two charts.
This means, on one hand, that the hysteresis in the bit/rock interaction

model favours the stability of the system. It seems that when the bit speed
decreases, and Tbit is in the lower curve of the hysteretic cycle (see Fig. 10),
it allows the system to escape from instability. On the other hand, it can also
be obverved that the instability region (orange-red region) in Fig. 13 presents
values of SS higher than the charts in Fig. 12. Hence, at the same time that
the hysteresis in the bit/rock interaction model favours the stability of the
system for low values of weight-on-bit and high values of nominal surface
speed, it favours the aggravation of the torsional oscillations of the system
for high values of weight-on-bit and low values of nominal surface speeds.
Since Tbit passes through the upper curve of the hysteretic cycle (see Fig.
10) the amplitude of the stick-slip oscillations increases as well.
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Figure 12: Stability map for models 1 (reversible) and 2 (hysteretic β1 = 14%).
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Figure 13: Stability map for the model 3 (hysteretic β1 = 56%).

5. Concluding Remarks

The present paper proposes a bit/rock interaction model including a type
of hysteresis (non-reversibility). The proposed model is based on field data
and a hysteretic model is applied to represent the bit/rock interaction model
of a drill string system.

Only torsional vibrations are analyzed for a torsion bar system discretized
by means of the finite element method. A reduced-order model was con-
structed to speed up the computations. The torsional dynamics of the sys-
tem is analyzed, and the stability map shows that the system including a
bit/rock interaction model with hysteresis effects (1) favours the stability of
the system for high nominal surface speeds and low weight-on-bit, and (2)
induces higher stick-slip oscillations for low nominal surface speeds and high
weight-on-bit. The reason for that has to do with the hysteretic cycle of the
torque-on-bit versus the bit speed.
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Since this paper presents the first results obtained employing this model,
more investigations must be made with the proposed hysteretic bit/rock in-
teraction model. In addition, the authors are now working on a stochastic
model to take into account the fluctuations of the hysteretic cycles, which
are present in the field data.
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