
HAL Id: hal-01952950
https://hal.science/hal-01952950

Preprint submitted on 12 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Real-Time Scheduling Algorithm for Wireless
Sensors with Regenerative Energy

Hussein El Ghor, Maryline Chetto

To cite this version:
Hussein El Ghor, Maryline Chetto. Optimal Real-Time Scheduling Algorithm for Wireless Sensors
with Regenerative Energy. 2018. �hal-01952950�

https://hal.science/hal-01952950
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Optimal Real-Time Scheduling Algorithm for
Wireless Sensors with Regenerative Energy

Hussein El Ghor · Maryline Chetto

Received: date / Accepted: date

Abstract Dynamic Voltage and Frequency Scaling (DVFS) is a promising
and broadly used energy efficient technique to overcome the main problems
arising from using a finite energy reservoir capacity and uncertain energy
source in real-time embedded systems. This work investigates an energy man-
agement scheme for real-time task scheduling in variable voltage processors
located in sensor nodes and powered by ambient energy sources. We use DVFS
technique to decrease the energy consumption of sensors at the time when the
energy sources are limited. In particular, we develop and prove an optimal real-
time scheduling framework with speed stretching, namely Energy Guarantee
Dynamic Voltage and Frequency Scaling (EG-DVFS), that jointly accounts
not only for the timing constraints, but also for the energy state incurred by
the properties of the system components. EG-DVFS relies on the well-known
ED-H scheduling algorithm combined with DVFS technique where the sensor
processing frequency is fine tuned to further minimize energy consumption and
to achieve an energy autonomy of the system. Further, an exact feasibility test
for a set of periodic, aperiodic or evern sporadic tasks is presented.

Keywords Real-time systems · dynamic voltage and frequency scaling ·
energy harvesting · slack energy · optimal scheduling

1 Introduction

Wireless technology enables us to locate sensors in remote areas for moni-
toring and sensing purposes. Such systems are generally deployed in remote

H. El Ghor
University Institut of Technology, Lebanese University, B.P. 813 Saida, Lebanon.
E-mail: husseinelghor@ul.edu.lb

M. Chetto
IRCCyN Laboratory, University of Nantes, 1 Rue de la Noe, F-44321 Nantes, France.
E-mail: maryline.chetto@univ-nantes.fr



2 Hussein El Ghor, Maryline Chetto

places where human beings have no access to reach these remote places all
the time to manually recharge or replace the battery after it is discharged. In
order for wireless sensor networks to become a ubiquitous part of our envi-
ronment, energy harvesting sources to power sensor nodes must be employed
to significantly increase the autonomy of the nodes and to overcome the en-
ergy limitations of battery-powered systems. Energy scavenging is essentially
a technology that converts renewable generation into electrical energy which
can be used to power electronic devices [1]. Several implemented prototypes
like Heliomote [2] or Prometheus [3] demonstrate the dominance of renewable
energy to achieve perpetual operation.

Hence, energy scavenging represents a new candidate for the natural pro-
gression of energy optimization techniques, especially when the system should
be designed to operate perpetually. However, the energy captured from the
environmental energy sources is often inconstant and unpredictable [4], and
therefore, a novel power management framework should be developed dedi-
cated to energy scanvenging systems that is able to operate properly to achieve
energy autonomy [5].

Various power management techniques for reducing the energy consump-
tion have been investigated in the earlier works. One of them is Dynamic
Voltage Frequency Scaling (DVFS) [6] and the other is Dynamic Power Man-
agement (DPM) [7]. DVFS is a popular and broadly used power management
method in real-time systems. This method can be used to decrease the power
consumption of a system at the time when the sources are limited [8], [9]. Dy-
namic power management, on the other side, is a technique used to decrease
the power consumption of a system. In dynamic power management the power
manager puts the devices which are not being used in sleep mode and some
power is saved [10], [11]. Although DVFS and DPM techniques are both dom-
inant in reducing the energy consumption of the system, any portable device
such as wireless sensor network will eventually deplete the energy reservoir. In
addition, and while considering the energy reservoir as the only energy source,
such design techniques will be wortheless.

Based on the green computing concept, developing energy-efficient mech-
anisms for real-time applications in wireless sensor networks becomes increas-
ingly attractive. Nonetheless, the amount of energy harvested each day at a
particular time varies in a nondeterministic manner. Therefore, energy man-
agement schemes are important in energy harvesting embedded systems as it
helps in reducing the deadlines miss rate [12], [13]. Under this context, DVFS
technique has been widely employed to reduce energy consumption in energy
harvesting systems.

The main objective of this paper is to design a scheduler that is able
to assign periodic tasks to time slots while still guaranteeing all timing and
power requirements during the whole lifetime of the application. This can
be achieved by integrating the ED-H scheduling algorithm, that is proved
in [16] to be an optimal scheduler for preemptive uniprocessor scheduling of
independent tasks, with a dynamic voltage and frequency scaling technique to
guarantee predictable task executions even in the face of energy shortage and



Title Suppressed Due to Excessive Length 3

to achieve lowest energy dissipation. This means adopting a strategy based on
the complementary employment of an energy guarantee scheme for variable
voltage processors dedicated to energy harvesting systems.

Given a real-time energy savenging system that is known to be feasible, we
propose an Energy Guarantee - Dynamic Voltage and Frequency Scaling (EG-
DVFS) scheduling algorithm with DVFS technique that allows to guarantee
that all deadlines are met while still relying on a smaller solar cells as well as
limited size of the energy storage element. The targeted system is predomi-
nantly energy efficient and the dissipated energy by tasks is not fixed since we
can scale the processor speed to reduce energy consumption. Provided that
the average scavenging power is sufficient for continuous operation, EG-DVFS
makes best use of the available energy so as to minimize the necessary energy
reservoir capacity.

Thus, our system operates in energy neutral mode. This means that instead
of saving some energy to elongate the operating time of energy reservoir, the
system only consumes the energy recharged by the harvested power from the
environmental energy source while still minimizing the energy consumption of
the system, by slowing down the processor speed to the lowest possible state,
leading to the absence of no deadline violation whenever possible.

The rest of the paper is organized as follows: Section 2 presents the prior
research related to this work, whereas the energy scavenging system model and
assumptions are presented in Section 3. Section 4 gives the necessary back-
ground materials that are essential for understanding the paper. The Energy
Guarantee - Dynamic Voltage and Frequency Scaling (EG-DVFS) scheduling
algorithm is presented in section 5. The optimality of EG-DVFS is proved in
section 6. Section 7 concludes the paper.

2 Prior Work

Energy scavenging system design have been extensively studied using dynamic
voltage and frequency selection technique. Researchers mainly focus on reduc-
ing the energy consumption by the tasks, hence reducing the processor power
while still meeting the tasks deadline. Fot this sake, several scheduling algo-
rithms have been developed that focus on energy efficient techniques for energy
scavenging real-time systems.

The first valuable work that really studies the problem of power man-
agement while considering ambient energy sources has been studied in [12].
Authors build a system that switches between busy mode and idle mode de-
pending on harvested energy from the source. Later, Moser at al. [15] targets
the case of scheduling tasks with deadlines on a uniprocessor system that
is powered by a rechargeable energy reservoir. Authors propose an optimal
idling energy-clairvoyant real-time scheduler named lazy scheduling algorithm
(LSA). In LSA, the ready task with the earliest deadline is authorized to ex-
ecute only if the system is able to keep on running at full processor speed
and without violating its deadline. Disadvantages of LSA are the following:



4 Hussein El Ghor, Maryline Chetto

first, tasks run at maximum processor speed and hence, deadines of some fu-
ture tasks may not be respected because of energy shortage. Second, the total
energy dissipated by a task is necessarily proportional to its execution time,
which is not the real case and finally the slack time is not used for energy
savings.

Recently, many researchers have extensively studied low power systems in
accordance with Dynamic Voltage and Frequency Scaling. In [14], authors pro-
posed an energy-aware DVFS (EA-DVFS) algorithm that aims to exploit the
slack time as much as possible to reduce the deadline miss rate. This can be
achived by using a good tradeoff between the saved energy and the proces-
sor speed. The available energy mainly depends on the energy stored in the
reservoir and the energy harvested from the renewable energy source. In case
of insufficient available energy, the processor slows down the task execution;
otherwise, the tasks are executed at maximum processor speed. The advan-
tage of EA-DVFS is that it increases the percentage of feasibly executed tasks
and reduces the storage capacity in case of low overload. However, EA-DVFS
sill suffer from some inconvenients: First, authors perform the energy avail-
ability test based only on the single current task. Second, the scheduler can
continue its operation as long as the energy is sufficient to complete execut-
ing a task whose relative deadline is no more than the remaining operation
time of system at maximum processor speed [14]. For example, let us consider
that the energy reservoir has only 1% energy and the system can execute the
current task at full speed without exhausting the energy reservoir. Then, the
EA-DVFS scheduler will run the task at maximum processor speed, which is
not the correct behavior. Second, when using the task slacks, the proposed
algorithm only considers the currect task instead of take into account all tasks
in the ready queue. Hence, slack time is not fully exploited for reducing energy
consumption.

To further improve such inconvenients, authors in [5], propose harvesting-
aware DVFS (HA-DVFS) scheduler. HA-DVFS algorithm works as follows:
HA-DVFS scales down the processor speed whenever possible for reducing
energy dissipation. Indeed, the processor will speed up the execution of tasks
in case of energy overflow. In this case, the current running task will finish its
execution earlier before its deadline and thus, more slack time will be available
for the succeeding tasks where the proseccor will have the opportunity to be
slowed down for more energy saving.

To fully exploit the slack time, Chetto [16] proposed a scheduling algorithm,
ED-H (Earliest Deadline - Harvesting), that accounts on the limits of both time
and energy. ED-H relies on two basic concepts: slack time and slack energy.
ED-H was proved in [16] to be optimal. However, in order to build an optimal
schedule, ED-H needs to know the future task characteristics and the profile
of the used energy source.

Later in [17], authors proposed an algorithm based on the DVFS technique
that dynamically concentrates all disperse free time together to harvest energy
by dynamically scheduling harvesting tasks and service tasks.



Title Suppressed Due to Excessive Length 5

3 System Model and Assumptions

Hereafter, we consider a real-time energy scavenging system that consists of
three major units: energy source module, energy dissipation module and energy
reservoir of limited capacity (see figure ).

3.1 System Model

3.1.1 Energy Source Module

In this paper we talk about a real-time embedded system which is powered
by an energy source unit that harvests the energy from external environmen-
tal sources like wind, sun, etc. Energy harvested from time t1 to t2 can be
calculated using the following formula:

Es(t1, t2) =

∫ t2

t1

Ps(t)dt (1)

Where Ps(t) is the worst case charging rate (WCCR) on the harvested
source power output.
We assume that it is not possible to determine the exact amount of energy
harvested before hand but we can certainly predict the energy harvested by
shadowing the previous energy source profile.

3.1.2 Energy Dissipation Module

We consider a real-time embedded system equipped with a DVFS technique
as the primary power management technique. We assume that the DVFS-
enabled varaible speed processor works with N discrete frequencies ranging
from fmin = f1 ≤ f2 ≤ · · · ≤ fN = fmax where f1 is the minimum and fN is
the maximum frequency at which the processor can work.

We characterize here a set of independent and non-preemptive periodic
tasks that can be denoted as follows: Γ = {τi|1 ≤ i ≤ n}. A five-tuple
(ri, Ci, Di, Ti, Ei) is used to characterize a periodic real-time task τi, where
ri, Ci, Di, Ti and Ei indicate the arrival time, the worst case execution time,
the relative deadline, the period and the worst case energy consumption of
task τi, respectively. The instances of the tasks that are ready to get pro-
cessed enter the ready queue where the task with the earliest deadline has the
highest priority and should be executed first and preemption is allowed.

The power consumption of the tasks running in the processor depends on
the processors frequency. This means that the power consumption of a task,
say τi, is dependent on its voltage and frequency level which is given by the
relationship

Pdyn = CLV
2f (2)



6 Hussein El Ghor, Maryline Chetto

Where CL is the gate load capacitance.
We define a slowdown factor as the ratio of the current frequency to the
maximum frequency of the processor and is denoted by Sn. This factor can
range from Smin to 1.

Sn =
fn
fmax

(3)

When we stretch a task τi by a slowdown factor Sk, then its actual ex-
ecution time, denoted by Ci(a), at frequency fk will be Ci/Sk. We assume
that each task τi from a task set Γ have different power dissipation which also
changes with its frequencies. Thus a task will have maximum power dissipa-
tion at its maximum frequency and it decreases as the frequency decreases.
For convenience, we define power dissipation of a task as a function of task
index and its slowdown factor PD(τi, Sk). The energy dissipation of the task
can be found as shown below:

ED(Sti, F ti) = PD(τi, Sk)× Ci/Sk (4)

Where Sti and Fti are respectively the start time and finish time of task τi.

3.1.3 Energy Storage Module

Energy reservoir is also required in an energy scavenging real-time system since
the system needs it to continue operation even in abscence of energy harvested
from the environment. In our work, we use an energy reservoir, for example a
rechargeable battery, that has a nominal capacity C and it is used to store the
extra amount of energy harvested for the future use at times of crisis. In our
case, we ignore the amount of energy wasted in the process of charging and
discharging and hence we use an ideal energy storage unit.
There is an upper limit to the storage device denoted by Cmax which is the
maximum capacity of the energy reservoir. The lower limit of the capacitor,
denoted as Cmin, cannot be zero since there is an energy reserved in the
capacitor for worst case scenarios. During the normal operation mode and at
a given time t we have

Cmin ≤ C(t) ≤ Cmax (5)

and
C(t2) ≤ C(t1) + Es(t1, t2)− ED(t1, t2) ∀ t2 > t1 (6)

3.2 Terminology

In this subsection, we state some definitions that will be helpful in the remain-
der of this paper.

Definition 1 A schedule ω for a task set Γ is said to be time-valid if the
deadlines of all tasks of Γ are met in ω, considering that ∀ 1 ≤ i ≤ n, Ei = 0.



Title Suppressed Due to Excessive Length 7

Definition 2 A schedule ω for a task set Γ is said to be energy-valid if the
deadlines of all tasks of Γ are met in ω, considering that ∀ 1 ≤ i ≤ n, Ci = 0.

Definition 3 A schedule ω for a task set Γ is said to be valid if the deadlines
of all tasks of Γ are met in ω, starting with a storage fully charged, with the
energy generated by a given energy source.

Definition 4 A task set Γ is said to be temporally-feasible if there exists a
valid schedule for Γ without considering its energy constraints.

Definition 5 A task set Γ is said to be energy-feasible if there exists an
energy valid schedule for Γ .

Definition 6 A system is said to be feasible if there exists at least one valid
schedule for ω with the given energy source and energy storage. Otherwise, it
is infeasible.

When systems are infeasible, the limiting factors are either both time and
energy or only time or only energy. We focus in this article on feasible systems
only.

Definition 7 A scheduling algorithm ω for a task set Γ is said to be optimal
if it finds a valid schedule whenever one exists.

4 Background Materials

4.1 Classical Concepts for Real-Time Scheduling

we recall some concepts related to real-time scheduling. To formally present
the background material, we define the following factors: the processor demand
and the slack time.

Definition 8 The processor demand of a task set Γ on the time interval
[t1, t2) is

h(t1, t2) =
∑

t1≤rk,dk≤t2

Ck (7)

Denote now tc as the current time where we have to schedule a task set Γ by
a certain scheduling algorithm ω. In the real-time scheduling theory (without
energy consideration), and for a given task set Γ , the term slack time is defined
as the longest interval of time starting at tc during which the processor may
be idle continuously while still respecting all the timing constraints.

Definition 9 The slack time of a task τi at current time tc is

STτi(tc) = di − tc − h(tc, di)−ATi (8)



8 Hussein El Ghor, Maryline Chetto

Where ATi is the total remaining execution time of uncompleted tasks cur-
rently ready at tc and in the time interval [tc, di).

Hence, STτi(tc) gives the time available by the processor after executing
uncompleted tasks with deadlines at or before di.

The slack time of the task set Γ is then the minimum of the slack times
of all tasks in Γ .

Definition 10 The slack time of a task set Γ at current time tc is

STΓ (tc) = min
di>tc

STτi(tc) (9)

Equation 9 represents the maximum continuous time that the processor can
be inactive starting from time tc while still respecting the deadlines of all the
tasks in Γ .

4.2 Earliest Deadline-Havesting (ED-H) Scheduler

Before presenting the ED-H scheduler, we have to introduce some novel con-
cepts related to the feasibe scheduling when considering both time and energy
constraints. These factors are the energy demand and the slack energy.
Let us denote rk , dk and Ek as the release time, deadline and worst case
energy consumption of task τk respectively.

Definition 11 The energy demand of a task set Γ on the time interval [t1, t2)
is

g(t1, t2) =
∑

t1≤rk,dk≤t2

Ek (10)

In [18], we defined the concept of slack energy of a task τi at a current time tc
as the amount of energy surplus in the reservoir that can be used from tc till
the start time of τj and without violating its timing and energy requirements.

Definition 12 The slack energy of a task τi at current time tc is

SEτi(tc) = E(tc) + Es(tc, di)− g(tc, di) (11)

The slack energy of the task set Γ is determined by the minimum slack
energy of all the tasks.

Definition 13 The slack energy of a task set Γ at current time tc is

SEΓ (tc) = min
tc<ri<di<d

SEτi(tc) (12)

Where d is the deadline of the active task at time tc.



Title Suppressed Due to Excessive Length 9

ED-H scheduler [16] is an extension of EDF with energy budgeting that
manages timing and energy requirements as well as the replenishment rate of
the storage unit for monoprocessor embedded systems with solar energy har-
vesting capability. The novelty of ED-H is that it prevents energy starvation.
The main intuition behind ED-H is that it dynamically adapts the processor
state to the runtime harvested power variations without violating the deadlines
of the tasks. This means that ED-H has to verify the following two conditions
to let the processor busy:

1. The available energy in the reservoir is enough to execute the ready task
with the highest priority even for the next unit timeslot.

2. The energy consumption in that time-slot must guarantee the energy fea-
sibility of all future occurring tasks considering their timing and energy
requirements and the replenishment rate of the storage.

When these conditions are verified, ED-H will schedule tasks according to the
EDF policy. However, ED-H may result in unnecessary deadline violations if
one of these conditions is not fulfilled. The processor will then stay idle so
that the energy reservoir is fully replenished or the slack time becomes equal
to zero. Note that the ED-H degenerates to the EDF scheduling policy if the
processor utilization is equal to one.

ED-H was proved in [16] to be optimal for a considered real-time energy
harvesting system.

Theorem 1 The ED-H scheduling algorithm is optimal for the real-time en-
ergy harvesting model.

Proof See [16].

Moreover, Chetto produced the necessary feasibility condition for a given
task set Γ that is scheduled by the ED-H algortithm. The test for the schedu-
lability of ED-H is reduced to test time-feasibility and energy-feasibility sepa-
rately [16].

As for the time-feasibility condition, consider that for every task τi in a
given task set Γ , Ei = 0.

Lemma 1 A task set Γ is time-feasible by ED-H if and only if

sup
0≤t1<t2<dmax

h(t1, t2)

t2 − t1
≤ 1 (13)

Where dmax = max
1≤i≤n

di

Proof See [16].

Now, consider the energy-feasibility condition where it is assumed that for
every task τi in a given task set Γ , Ci = 0.



10 Hussein El Ghor, Maryline Chetto

Lemma 2 A task set Γ is energy-feasible by ED-H if and only if

sup
0≤t1<t2<dmax

g(t1, t2)

C + Es(t1, t2)
≤ 1 (14)

Where dmax = max
1≤i≤n

di

Proof See [16].

From Lemma 1, and Lemma 2, we can deduce the feasibility test for a
given task set Γ .

Lemma 3 A task set Γ is feasible by ED-H if and only if

sup
0≤t1<t2<dmax

h(t1, t2)

t2 − t1
≤ 1 and sup

0≤t1<t2<dmax

g(t1, t2)

C + Es(t1, t2)
≤ 1 (15)

Proof See [16].

5 Energy Guarantee - Dynamic Voltage and Frequency Scaling
(EG-DVFS) Algorithm

5.1 Overview of the Scheduling Algorithm

The naive approach of simply scheduling tasks with full processor speed may
produce some deadline violations. This may occur when after the execution
of task, say τ1, another task, say τ2, is ready with the highest priority. If
now the required energy to complete the execution of τ2 at full processor
speed is not available in the energy storage unit even when using the available
slack time, the ED-H scheduler produces a deadline violation. If the processor
speed would be scaled down to decrease the energy consumption of τ2 instead
of executing at full speed, this deadline violation might have been avoidable.
These considerations directly lead us to the principle of Energy Guarantee
- Dynamic Voltage and Frequency Scaling (EG-DVFS) algorithm: scale the
processor speed only if it is necessary to decrease the energy consumption of
tasks while still guaranteeing the deadlines of tasks. In other words, we need
to perform a check at run-time for the energy availability and after that adjust
the scheduling. If the available energy is not enough for a task’s scheduling,
we must make adjustments to deal with the energy shortage.

Initially, all tasks are executed according to EDF scheduler where the sys-
tem operates at full processor speed. We assume that the start time of any
given task is derived under the assumption that the task executes at the con-
stant processor speed until its completion.
Let us consider that, there are M task instances in the ready queue. Sti and
Fti are denoted as the start time and finish time of task τi respectively. Ob-
viously, the start time of the first task instance, say τ1, in the ready queue is
equal to its release time.



Title Suppressed Due to Excessive Length 11

St1 = r1 (16)

Thus, we can compute the start time of the remaining task instances as:

Sti = max(ri, F ti−1) 2 ≤ i ≤M − 1 (17)

When applying the EG-DVFS policy for a ready task, say τi, with the
highest priority, we have to ensure that the available energy is sufficient to
to completely execute τi. This means that we have to compute the remaining
energy in the energy storage unit at the end of the task execution using the
following equation:

C(Fti) = C(Sti) + Es(Sti, F ti)− Ei(Sti, F ti) (18)

If C(Fti) > 0, then EG-DVFS instantaneouly executes τi at the scheduled
start time and with full processor speed (Si = 1).
On the other side, energy conflicts occur if the required energy is simply not
available at the finishing time Fti. This means that when the energy is required
to execute τi, the energy storage level is not sufficient to meet the deadline
(energy reservoir is exhausted at Fti). In this step, we have to “stretch” the
task executions to minimize their energy dissipation by executing at lower
energy and frequency levels of the processor. Thus, EG-DVFS has to decide
the slowdown factor for τi based on the processor utilization and energy state.
Following this rule, the tasks can be slowed down by a factor Sn in cases
where we have insufficient energy to run the task at its full speed which in
turn increases the worst case execution time. Thus, we have to compute the
slack time of the system at Sti and the task’s execution time will be stretched
to the actual execution time Ci(a) where:

Ci(a) = Ci + ST (Sti) (19)

The finishing time of task instance τi can be calculated as

Fti = Sti + Ci(a) (20)

Consequently the start time of the next task instance will be:

Sti+1 = max(ri+1, F ti) (21)

The slowdown factor is thus computed thanks to the following equation:

Si =
Ci

Ci(a)
(22)

It is worthwhile to mention that since, every task τi must complete the
execution before its absolute deadline , then the following equation must hold:

ri + di − ci(a) ≥ max{ri, t} (23)

Where t is the current time instance.



12 Hussein El Ghor, Maryline Chetto

Furthermore, the execution of any real-time task τi is considered to be
preemptable which means that when a task of higher priority becomes ready,
it will preempt the execution of the current task of lower priority.

This implies that the start time of a task τi is equal to Sti = max(ri, F ti−1)
when τi finishes its execution without being preempted by other task. When
preemption occurs, the start time of the newly arrived task is equal to ri. That
is

Sti =

{
max(ri, F ti−1) if ri + di − Ci(a) ≥ max(ri, t)
ri otherwise

(24)

However, when we resume execution of the preempted task , it has the
opportunity to run at the same or different processor speed, depending upon
the system state.

5.2 Description of the EG-DVFS Scheduler

In what follows, we consider a given task set Γ that is known to be feasible for
the real-time energy harvesting model. Let Qr(t) be the queue of uncompleted
tasks ready for execution at t. The EG-DVFS scheduling algorithm obeys the
following rules.

– Rule 1: The future running task in Qr(t) is ordered according to the EDF
policy.

– Rule 2: The processor is imperatively idle in [t, t+ 1) if Qr(t) = φ.
– Rule 3: The incoming power is wasted in [t, t + 1) if Qr(t) = φ and
C(t) = C.

– Rule 4: The processor operates at maximum speed in [t, t+1) if Qr(t) 6= φ
and at least one of the following conditions is satisfied:
1. C(t) ≈ C.
2. STΓ (t) = 0.

– Rule 5: The processor is slowed down by applying the DVFS technique in
[t, t+1) if Qr(t) 6= φ and at least one of the following conditions is satisfied:
1. C(t) ≈ 0.
2. SEΓ (t) ≈ 0.
The ready task with the highest priority, say τk, is stretched by a slowdown
factor Sn, its actual execution time (Ck(a)) at frequency fn will be Ck/Sn.

– Rule 6: The processor operates maximum speed if Qr(t) 6= φ, 0 < C(t) <
C, STΓ (t) > 0 and SEΓ (t) > 0.

All tasks in the ready queue are ordered according to the EDF policy. The
only case that the processor is imperatively idle is when the ready queue is
empty. The incoming power is wasted only when the ready queue is empty
and the energy reservoir is fully replenished.
Rules 4.1 and 4.2 say that the processor is active and can operate at full speed
if either the energy storage unit is fully charged or using slack time at current
time t would cause a deadline violation of at least one future task. Rules 5.1



Title Suppressed Due to Excessive Length 13

and 5.2 state that the processor must scale down its speed to decrease the
energy consumption of the tasks if the energy rservoir is depleted or execut-
ing any task at full speed would prevent at least one future task from being
executed before its deadline because of energy starvation (slack time is zero).
In this case EG-DVFS must decide the speed at which the task should be exe-
cuted depending on the energy availability. This means that for the execution
of the ready task to be accomplished, we must consider the amount of energy
harvested during its execution time and then decide the amount by which the
task can be stretched in order to avoid energy deficiency at any point of time.
Rule 6 says that the processor operates at full speed when the energy reservoir
capacity at time t is not empty even if there is slack time.

6 Properties of EG-DVFS Scheduling

6.1 Optimality of EG-DVFS

First, we will demonstrate that EG-DVFS is optimal with respect to minimiz-
ing the processor energy consumption and the maximum lateness. Let Lmax be
the maximum lateness that upper-bounds the time by which any task misses
its deadline.

Lmax = max
τi

(Fti − di) (25)

Theorem 2 Given a task τi in a task set Γ with arbitrary arrival times ri,
computation times Ci and deadlines di, the EG-DVFS algorithm that at every
scheduling instant ti executes the task with the earliest deadline among all the
ready tasks with a processing slowdown factor Si is optimal with respect to
minimizing the processor energy consumption and the maximum lateness. The
optimum processing factor is

Si =

{ Ci
Ci+STΓ (ti)

if SEΓ (ti) ≈ 0 or C(ti) ≈ 0

1 otherwise
(26)

Proof Suppose that there can be another slowdown factor S′i where we slow
down the ready task with the earliest deadline, say τk, to the maximum possible
extent just before its deadline in order to achieve the maximum energy savings.
Clearly S′i must be no more than Si. Here, we have the following cases:
Case 1: The energy reservoir is fully replenished or there is no slack time.
This case directly follows Rule 4. In this case the processor will execute at
full processor speed, then S′i = Si = 1. This contradicts that there exists a
slowdown factor to achieve more energy saving.
Case 2: The energy is fully depleted or the slack energy is zero. This case
directly follows Rule 5. Here the processor must slow down its speed to achieve
energy saving while still guaranteeing the deadlines of future tasks. To stretch
the task execution at time ti, we use the slack time STΓ (ti) of the system ti. To
obtain more energy saving, we must stretch the task execution by using another



14 Hussein El Ghor, Maryline Chetto

slack time, say ST ′Γ (ti) greater than STΓ (ti). However, following the definition
of slack time, we get that STΓ (ti) is the longest interval of time starting at
ti during which the processor may be idle continuously while still respecting
all the timing constraints. Thus, using ST ′Γ (ti) > STΓ (ti) can give rise to
conditions where we have sufficient energy to execute the present task with S′i
speed, but still there is a timing constraint for the future tasks. Consequently
even if the future task runs with the slowdown factor equals one which is
highest frequency, it cannot meet its deadline as the task before it was slowed
down to more than its maximum extent. This contradicts that S′i exists.
This concludes that Si is the optimal slowdown factor that achieves the best
energy saving. In additon, since EG-DVFS stretches the task execution to its
maximum extent without violating future deadlines, then the deadline of tasks
will be approximately tight since tasks will finish very close to their deadlines
and consequently, the maximum lateness Lmax will be the smallest possible.

In what follows, we will prove that EG-DVFS Scheduling algorithms op-
timal in the sense that if EG-DVFS is not able to schedule a given task set
Γ , then no other scheduling algorithm is able to schedule it. For this sake,
we have to show that EG-DVFS makes the best use of the available time and
energy.
The scheduling policy presented in this article is inherently energy-driven.
Thus, a deadline violation occurs if EG-DVFS fails to completely execute a
task, say τi, assigned by an energy dissipation Ei before its deadline di. A
deadline violation can occur due one of the two following situations:

– Time starvation: A deadline d cannot be guaranteed when a task is not
able to finish its execution before its deadline and the energy reservoir is
not depleted at time d (i.e. C(d) > 0).

– Energy starvation: A deadline d cannot be guaranteed when a task is not
able to finish its execution before its deadline because the energy reservoir
is exhausted when the deadline violation occurs (i.e. C(d) ≈ 0)

We suppose that when system is initialized, we have a full energy storage
capacity, i.e., C(0) = C. Furthermore, the processor is idle at a given time t
only if the ready queue is empty.
The proof of theorems 1 and 2 directly follows the proof of the optimality of
ED-H in [16].

Theorem 3 Let Γ be a set of tasks that are scheduled by the EG-DVFS algo-
rithm. Suppose that a task with deadline d and release time r is missed because
of time starvation with C(d) > 0. Then there exists a time instant t such that

the processor load h(t,d)
d−t in the interval [t, d] exceeds one and no schedule exists

where d and all previous deadlines are met.

Proof Let us suppose that t0 is the maximal time before d where the processor
was running with a low processor speed. Clearly, such a time exists. At first,
the processor constantly operates with full speed on the tasks within the time
interval [t0, d). We consider here the two following cases:



Title Suppressed Due to Excessive Length 15

Case 1: There is at least one ready task at time t0.
The processor stops to slowdown the processor at time t0 if:

Case 1a: The energy reservoir is fully recharged at time t0, i.e. C(t0) = C
from rule 4.1.

Case 1b: The slack time of the task set Γ becomes zero at time t0, i.e.
STΓ (t0) = 0 from rule 4.2.

However, since the processor is constantly operating at full speed on tasks
in time interval [t0, d) and E(d) > 0, then there is no slack time in [t0, d).
Therefore, EG-DVFS will directly execute tasks with deadline at or before d
which are ready at time t0 and released within [t0, d) by applying the EDF
strategy. But since no slack time is found, this implies that d − t0 > h(t0, d)
which contradicts that d is missed.

Case 2: There is no ready task at time t0.
In this case t0 must coincide with the arrival of a task, say τk, whose release
time rk = t0 that verifies rk ≤ r. Here we have 2 cases:

Case 2a: dk ≤ d.
This means that τk is completely executed before d2 since d is the first violated
deadline and tasks are scheduled according to the EDF policy in EG-DVFS.

Case 2a1: According to rule 4, the processor operates at maximum speed at
time rk either because there is no slack time at rk (ST (r2) = 0) or because the
energy reservoir at r2 is fully replenished. But since E(d) > 0, then ST (r2) is
no greater than zero. Consequently the processor demand in the time interval
[rk, d), given by h(rk, d) =

∑
rk≤rj ,dj≤d Cj ≤ d − rk which contracdicts that

the deadline d is missed. And no other scheduler can produce a valid schedule
on [rk, d).

Case 2a2: According to rule 6, the processor operates at full speed at time
rk when 0 < C(t) < C, STΓ (t) > 0 and SEΓ (t) > 0. As the slack time of
the task set Γ at time r2 is greater than zero, this means that the processor
demand, which is the sum of the WCET of all tasks with arrival and deadline
within time interval [rk, d), is smaller than the allowed time (d − rk), i.e.
h(rk, d) =

∑
rk≤rj ,dj≤d Cj < d− rk. This contradicts that d is missed.

Now, we can show that a related result also holds for the energy starvation
case, too.

Theorem 4 Let Γ be a set of tasks that are scheduled by the EG-DVFS algo-
rithm. Suppose that a task with deadline d and release time r is missed because
of energy starvation with C(d) = 0. Then there exists a time instant t such

that the energy load g(t,d)
C+Es(t,d)

in the interval [t, d] exceeds one and no schedule

exists where d and all previous deadlines are met.

Proof Let us consider that deadline d is the first deadline of the task set that
is missed by EG-DVFS due to energy starvation, i.e. C(d) = 0. Let t0 be the
largest time before d (t0 < d) where a task with deadline greater than d is
released such that the energy reservoir is fully replenished at t0 (C(t0) = C)
and no task τi waiting just before t0. As t0 is the last time instance with the



16 Hussein El Ghor, Maryline Chetto

above properties, then the processor is idle in the time interval [t0−1, t0) since
no task is ready (Rule 2). The processor is now operating with full speed at
least in the time interval [t0, t0 + 1). Here we have 2 cases:
Case 1: No task with deadline greater than d is executed within the time
interval [t0, d).
The energy reservoir is fully charged time t0, then according to Rule 4.1, the
processor will at full speed and the stored energy is used to advance all waiting
tasks with release time greater than or equal to t0 and deadline at or before d
with an energy demand equal to g(t0, d). But, since the task set Γ is feasible,
then the demanded energy to complete the execution at full processor speed is
no more than the energy reservoir capacity plus the energy drained from the
source, or shortly g(t0, d) < C + Es(t0, d). From above, we can conclude that
all tasks ready within the time interval [t0, d) are completely executed without
depleting the energy reservoir, consequently C(d) > 0 which contradicts that
d is missed.
Case 2: At least one task with deadline greater than d is executed within the
time interval [t0, d).
Since there is no task waiting with deadline smaller than d, the processor
would operate on task, say τ2 with d2 > d. Consider t2 be the latest time
where τ2 executed. But since d < d2 and tasks are executed according to the
earliest deadline rule in EG-DVFS, then r2 must be no more than r1. At time
t2, one of the following situations occurs.

Case 2a: Tasks are executed at full processor speed all the times in [t2, d).
Let’s consider now that a task, say τ3 is released after t2 an with deadline
d3 < d2, then τ2 is preempted by τ3. Hence, SEΓ (r3) is greater than zero.
This implies that g(r3, d) < C(r3) + Es(r3, d). Consequently, the maximum
amount of energy required by tasks released at or after r3 and with deadline
at or before d is g(r3, d). This contradicts that the energy reservoir is empty
at d and hence the deadline d is not violated.

Case 2b: The processor works at lower speed from t3− 1 to t3 with t3 > t2
and at full speed all in the time interval [t3, d). The processor stops working
with lower speed at time t3 by Rule 4 if C(t3) = C or STΓ (t3) = 0. Here,
there is no task ready at t3 with deadline smaller than d since t0 is the latest
one. In addition, no task with deadline after d is executed in the time interval
[t2, d) which includes time t3. Thus all the energy drained from the source is
used to advance waiting tasks with deadline greater than d. To maintain a
maximum energy level at r, the processor will contineously scale the processor
speed till time r where C(r) = C. But since the task set Γ is feasible, then
g(r, d) < C(r)+Es(r, d). That contradicts deadline violation of d and E(d) = 0.

From the above two theorems, we conclude the following: First, in the time
starvation case, there exists some interval of time [t, d) before the deadline d

is violated such that the processor load h(t,d)
d−t exceeds one. And second, in

the energy starvation case, there exists some interval of time [t, d) before the

deadline d is violated such that the energy load g(t,d)
C+Es(t,d)

exceeds one. These



Title Suppressed Due to Excessive Length 17

considerations lead us to Theorem 3 one of the major results for uniprocessor
scheduling in real-time energy harvesting (RTEH) systems with DVFS scaling:

Theorem 5 The EG-DVFS scheduling algorithm is optimal for RTEH sys-
tems with DVFS scaling.

Proof The proof of this theorem follows immediately from Theorems 3 and
4. We consider in the above theorem the case of scheduling a task set Γ by
EG-DVFS algorithm where a deadline d of task τ is missed and it is the first
deadline in Γ that is missed by EG-DVFS. In what follows, we distinguish
between the case where d is violated because of time starvation (Theorem 3)
and energy starvation (Theorem 4) respectively.
According to theorem 3, time starvation occurs when there exists some interval
of time [t, d) before the deadline d is violated such that the processor load
h(t,d)
d−t exceeds one where C(d) > 0. Then, if EG-DVFS is unable to respect

the deadline d and all earlier deadlines simultaneously in Γ , then no other
scheduling algorithm can do that. Same to Theorem 4, where energy starvation
occurs when there exists some interval of time [t, d) before the deadline d

is violated such that the energy load g(t,d)
C+Es(t,d)

exceeds one. This case also

concludes that it is impossible for another scheduling algorithm to guarantee
the execution of task τ with deadline d and all earlier deadlines simultaneously.
But, since every time deadline d is violated by EG-DVFS, we have either the
time starvation reason or the energy starvation reason, and we prove that in
both reasons, it is impossible for another scheduler to meet deadline d and all
earlier deadlines simultaneously, then conclude that EG-DVFS is optimal.

6.2 Feasibility Analysis

In this section, we are concerned with the EG-DVFS algorithm by which,
given a task set Γ , we must be capable of answering the following question:
if Γ is feasible by ED-H, does it remain feasible by EG-DVFS? According to
Definition 6, a task set is said to be feasible if there exists at least one valid
schedule with the given energy source Es(t) and energy storage C.
As we demonstrated in Theorem 5, we proved that EG-DVFS is optimal for a
RTEH system with DVFS scaling, we must derive the conditions under which
the EG-DVFS scheduler avoids deadline violations for a given task set Γ . In
what follows, we will prove that a task set that is feasible by ED-H remains
feasible by EG-DVFS. To do this, we will separate our proof to time-feasibility
condition and and energy-feasibility condition.

Theorem 6 A task set Γ that is time-feasible with ED-H remains feasible
with EG-DVFS.

Proof In the time constraint case, we consider that tasks have processing re-
quirements only. This means that for every task τk ∈ Γ , Ek = 0. In the
classical scheduling theory, we say that Γ is feasible if the processor demand



18 Hussein El Ghor, Maryline Chetto

in every time interval must be less than or equal to the length of this interval,
or simply the processor utilization must be no more than one. Let us consider
Up and U ′p as the processor utilization of ED-H and EG-DVFS respectively. If
ED-H is feasible then Up ≤ 1. We must prove that if Up ≤ 1, then U ′p ≤ 1.
Suppose that the task set Γ is not time-feasible by EG-DVFS, then U ′p >

1. But U ′p =
∑n
i=1

Ci(a)
Ti

=
∑n
i=1

Ci+ST (Sti)
Ti

= Up +
∑n
i=1

ST (Sti)
Ti

. Then

Up +
∑n
i=1

ST (Sti)
Ti

> 1.
By multiplying the whole equality by the hyperperiod TLCM , we get TLCMUp+

TLCM
∑n
i=1

ST (Sti)
Ti

> TLCM . But since Γ is periodic, then TLCM
∑n
i=1

ST (Sti)
Ti

is equal to the total slack time STtot. By substitution, we get TLCMUp+STtot >
TLCM , then STtot > TLCM (1− Up).
According to ED-H, if Γ is time-feasible, then Up ≤ 1 and the total slack
time during a whole hyperperiod TLCM is equal to TLCM (1 − Up). This con-
tradicts that U ′p > 1. Consequently, EG-DVFS is time-feasible since it is not
processor-overloaded in any time interval.

According to the energy constraint case, tasks in Γ have only energy con-
straints. This means that for every task τk ∈ Γ , Ck = 0.

Theorem 7 A task set Γ that is energy-feasible with ED-H remains feasible
with EG-DVFS.

Proof Since Γ is energy-feasible by ED-H, then in every interval of time [t1, t2),
the energy demand is necessarily no more than the available energy in [t1, t2),
i.e. g(t1, t2) ≤ C(t1) + Es(t1, t2). Let g′(t1, t2) be the energy demanded by
tasks according to EG-DVFS. We consider two cases:
Case 1: The processor executes all tasks with full speed.
In this case, the demanded energy is the same in EG-DVFS and ED-H, i.e.
g′(t1, t2) = g(t1, t2). But since Γ is energy-feasible by ED-H, then ∀(t1, t2) ⊂
[0, dmax), g(t1, t2) ≤ C + Es(t1, t2), consequently g′(t1, t2) ≤ C + Es(t1, t2).
This concludes that when ED-H is energy-feasible, then EG-DVFS is also
energy-feasible.
Case 2: The processor scales down its speed to execute some tasks τk in Γ .
In this case, the consumed energy by tasks is decreased by scaling down the
processor speed to save energy. Hence, the energy demanded in EG-DVFS
must be less than that of ED-H i.e. g′(t1, t2) < g(t1, t2). But since Γ is energy-
feasible by ED-H, then ∀(t1, t2) ⊂ [0, dmax), g(t1, t2) ≤ C + Es(t1, t2), Hence,
g′(t1, t2) ≤ C+Es(t1, t2), and consequently Γ is energy-feasible by EG-DVFS.

From theorems 6 and 7, we can derive the feasibility of EG-DVFS.

Theorem 8 A task set Γ that is feasible with ED-H remains feasible with
EG-DVFS.

7 Conclusion

In this paper, we studied the problem of energy guarantee scheduling and
dynamic voltage/frequency selection technique targeting at real-time systems



Title Suppressed Due to Excessive Length 19

with ambient energy sources. To this end, we proposed an Energy Guaran-
tee DVFS (EG-DVFS) algorithm that considers both energy and timing con-
straints of the energy harvesting systems. The purpose from EG-DVFS was
successfully achieved by compensating the extra/less energy harvested from
the environment in such a way that the perpetual and self-sustaining oper-
ation of the system can be achieved. EG-DVFS is proved to be optimal and
appropriate in minimizing the maximum lateness and the processor energy
consumption. We also proved that if a given a task set Γ is feasible by ED-H,
then it is also feasible by EG-DVFS. In this sense, EG-DVFS is able to feasibly
schedule any task set as long as both the processor load and the energy load
are no more than one.
There are number of places where we can work in order to enhance the
above mentioned algorithm further. First, we will explore dynamic task al-
location and frequency selection scheme for multiprocessor systems based on
the scheduling scheme proposed in this paper. Second, we will adapt the pro-
posed scheduler to fixed priority environments.

References

1. S. Priya and D.-J. Inman, Energy Harvesting Technologies. New York, NY, USA:
Springer-Verlag, (2009).

2. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava, Design consid-
erations for solar energy harvesting wireless embedded systems, in Proc. Int. Symp. Inf.
Process. Sensor Netw., pp. 457-462, (2005).

3. X. Jiang, J. Polastre, and D. E. Culler, Perpetual environmentally powered sensor net-
works, in Proc. Int. Symp. Inf. Process. Sensor Netw., pp. 463-468, (2005).

4. Marco Severini, Stefano Squartini, Francesco Piazza, Energy-aware lazy scheduling algo-
rithm for energy-harvesting sensor nodes, Neural Computing and Applications, 23:1899-
1908, December (2013).

5. Shaobo Liu, Jun Lu, Qing Wu, and Qinru Qiu, Harvesting-Aware Power Management
for Real-Time Systems With Renewable Energy, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 8, August (2012).

6. Lei Miao, Yong Qi, Di Hou, Chang-li Wu and Yue-hua Dai, Dynamic Power Management
and Dynamic Voltage Scaling in Real-time CMP Systems, In Proceedings of IEEE NAS,
(2007).

7. S. Liu, Q. Qiu, and Q. Wu, Task merging for dynamic power management of cyclic
applications in real-time multi-processor systems, in Proc. Int. Conf. Comput. Design, pp.
397-404, Oct. (2006).

8. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, Power optimization of
variable-voltage core-based systems, IEEE Trans. Comput. Aided Design Integr. Circuits
Syst., vol. 18, no. 1, pp. 1702-1713, Dec. (1999).

9. J. Luo and N. K. Jha, Static and dynamic variable voltage scheduling algorithms for
real-time heterogeneous distributed embedded systems, in Proc. VLSI Design, pp. 719-
726, (2002).

10. Y. Lu, L. Benini and G. D. Micheli, Low-power task scheduling for multiple device, in
Proc. Int. Workshop Hardw. Softw. Codesign, pp. 39-43, (2000).

11. Amit Sinha and Anantha Chandrakasan, Dynamic Power Management in Wireless Sen-
sor Networks, IEEE Design and Test of Computers, March-April (2001).

12. A. Kansal, J. Hsu, S. Zahedi and M. B. Srivastava, Power management in energy harvest-
ing sensor networks, in ACM Transactions on Embedded Computing Systems (TECS07),
vol. 6, no. 4, Sep. (2007).

13. S. Liu, Q. Wu and Q. Qiu, An adaptive scheduling and voltage/frequency selection
algorithm for real-time energy harvesting systems, in DAC, (2009).



20 Hussein El Ghor, Maryline Chetto

14. S. Liu, Q. Qiu and Q. Wu, Energy Aware Dynamic Voltage and Frequency Selection
for Real-Time Systems with Energy Harvesting, In Proc. of DATE, pp. 236-241, (2008).

15. C. Moser, D. Brunelli, L. Thiele, L. Benini, Real-time scheduling for energy harvesting
sensor nodes, Real-Time Systems, Volume 37, Issue 3, pp. 233260, (2007).

16. M. Chetto, Optimal Scheduling for Real-Time Jobs in Energy Harvesting Computing
Systems. IEEE Transactions on Emerging Topics in Computing (TETC), IEEE Computer
Society, (2014).

17. Y. Tan, X. Yin, X., A dynamic scheduling algorithm for energy harvesting embedded
systems. J Wireless Com Network, (2016).

18. Hussein EL Ghor, Maryline Chetto, Rafic Hage Chehade, A real-time scheduling frame-
work for embedded systems with environmental energy harvesting, Computers and Elec-
trical Engineering 37, pp. 498-510, (2011).


