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I. INTRODUCTION

This report applies to the context of the Kalman filter (KF) estimation of a flat fading channel with slow fading; i.e., normalized Doppler frequencies less than 10 -2 . Note that this context corresponds to many practical applications, including vehicular applications. The principle of the channel estimation is to track the complex baseband equivalent flat fading coefficient, called the channel complex gain (CG), which will be denoted by α.

The design of the KF requires a linear recursive state-space model to be selected for the parameter to be tracked; i.e., α here. In this report, the selected state-space model is the conventional second order autoregressive model AR [START_REF] Baruah | AR-model of faded MIMO set-up optimized for ITU channels[END_REF] [1]- [START_REF] Lindbom | Tracking of time-varying mobile radio channels. II. A case study[END_REF]. Note that because the true CG does not follow a linear recursive model, the AR(2) model is considered to be an approximation.

The aim of this report is to obtain, in this context, the expression for the pole radius r of an AR(2) as a function of the state noise variance and the resonance frequency of the AR(2).

A. True channel model

We consider the estimation of a flat Rayleigh fading channel. The observation is that1 

y (k) = α (k) + w (k) , (1) 
where k is the time index, w (k) is a zero-mean additive white circular complex Gaussian noise with variance σ 2 w , and α (k) is a zero-mean correlated circular complex Gaussian channel gain with variance σ 2 α . Note that this report is not limited to the conventional Jakes' Doppler spectrum for α [START_REF] Clarke | A statistical theory of mobile radio reception[END_REF].

B. Approximated channel model

The second order autoregressive AR(2) process α(k) that is used to approximate the true CG α (k) is:

α(k) = a 1 α(k-1) + a 2 α(k-2) + u (k) (2) 
where u (k) is a white circular complex Gaussian state noise with variance

σ 2 u = R α[0] -a 1 R α[1] -a 2 R α[2], with R α[p]
the autocorrelation coefficient of α for a lag p. This expression is calculated using Yule-Walker equations [START_REF] Eshel | The yule walker equations for the AR coefficients[END_REF]. It is classically assumed that R α[0] = σ 2 α (i.e., α) has the same power as α. These equations also give R α

[1] = a 1 R α[0] 1 -a 2 and R α[2] = a 1 R α[1] + a 2 R α[0].
Using these expressions, we obtain σ 2 u only as a function of a 1 and a 2 :

σ 2 u = σ 2 α (1 + a 2 )(1 -a 1 -a 2 )(1 + a 1 -a 2 ) (1 -a 2 ) (3) 
By passing to the z-transformation of the equation ( 2), the transfer function of the AR(2) model is: This transfer function is also often expressed in the literature with a set of complex conjugate poles in the z-plane at z 1 = r • e -j2πfAR(2)T and z 2 = r • e +j2πfAR(2)T , where r ∈ [0, 1[ is the radius of the poles, and f AR(2) T ∈ [0, 1[ is the normalized resonance frequency of the AR(2) process [START_REF] Lindbom | Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load[END_REF]:

H(z) = 1 1 -a 1 z -1 -a 2 z -2 (4) -2 -1 0 1 2 f T ×10 -3
H(z) = 1 (1 -z 1 z -1 )(1 -z 2 z -1 ) = 1 1 -2rcos(2πf AR(2) T )z -1 + r 2 z -2 (5) 
By comparing equations ( 4) and ( 5) we have :

a 1 = 2r cos(2πf AR(2) T ) a 2 = -r 2 (6) 
In our context of slow fading, f AR(2) T is chosen such that f AR(2) T 1. Let us define δ = 1 -r, which will be used in the following calculations.

An example of the PSDs of the AR(2) process S(f ) = σ 2 u |H(e j2πf T )| 2 is given in Fig. 1 for four different values of δ 1. This figure shows that the AR(2) gives a wide variety of PSD shapes, depending on the value of δ, when assuming δ 1 (i.e., r close to one).

In the next section, analytical expression for r is given in terms of σ u and f AR (2) T . 

II. APPROXIMATION OF

because δ 2 δ 1. We have

1 + a 2 2δ (8) 1 -a 2 (1 -δ). (9) 

- 3 δ = 10 - 2 δ = 10 - 6 δ = 5 × 10 - 2 Fig. 1 :

 326521 Fig. 1: PSD of the AR(2) model for different values of δ and f d T = 10 -3 .

σ 2 u 2 u, with δ 1 .

 221 AND EXPRESSION FOR r A. Approximation of σ First, let us sum up the assumptions corresponding to our slow fading context : f AR (2) T 1In this section, an approximate expression for σ 2 u is given. Replacing r by 1 -δ in the expression (6) for a 2 yields a 2 = -(1 -δ) 2 = -(1 -2δ + δ 2 ) -(1 -2δ).

Model[START_REF] Husseini | Optimization of the second order autoregressive model AR(2) for Rayleigh-Jakes flat fading channel estimation with Kalman filter[END_REF] assumes that symbols are normalized and known (or decided), in addition to the flat fading assumption. Although this model is admittedly simplistic, it can be applied to different (more involved) contexts, such as pilot-aided multi-carrier systems in frequency-selective wireless channels[START_REF] Shu | Simplified Random-Walk-Model-Based Kalman Filter for Slow to Moderate Fading Channel Estimation in OFDM Systems[END_REF].

By inserting these equations into the expression for σ 2 u defined in (3),

However, cos(2πf

1, so (10) leads to

B. Expression for r

In this section, the expression for r is given in terms of σ 2 u and f AR(2) T . Using the expression for σ 2 u defined in (11):

where ω AR(2) T = 2πf AR(2) T . So r is one solution of the second degree equation

By solving this equation, we found (15)