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Abstract

Being given a phylogenetic tree of both extant and extinct taxa in which the fossil ages are the
only temporal information (namely, in which divergence times are considered unknown), we provide
a method to compute the exact probability distribution of any divergence time of the tree with regard
to any speciation (cladogenesis), extinction and fossilization rates under the Fossilized-Birth-Death
model.

We use this new method to obtain a probability distribution for the age of Amniota (the synap-
sid/sauropsid or bird/mammal divergence), one of the most-frequently used dating constraints. Our
results suggest an older age (between about 322 and 340 Ma) than has been assumed by most stud-
ies that have used this constraint (which typically assumed a best estimate around 310-315 Ma)
and provide, for the first time, a method to compute the shape of the probability density for this
divergence time.

Keywords: fossilized-birth-death model, fossil ages, divergence times, probability distribution

INTRODUCTION

Dating the Tree of Life (TOL from here on) has become a major task for systematics because timetrees
are increasingly used for a great diversity of analyses, ranging from comparative biology (e.g., m
stein| [1985] [2012) to conservation biology (Faith|[1992), and including deciphering patters of changes in
biodiversity through time (e.g., |[Feng et al|[2017). Dating the TOL has traditionally been a paleon-
tological enterprise m, but since the advent of molecular dating (Zuckerkandl and Pauling
[1965)), it has come to be dominated by molecular biology (e.g., |[Kumar and Hedges|2011). However,
recent developments have highlighted the vital role that paleontological data must continue to play in
this enterprise to get reliable results (Heath et al|[2014} |Zhang et al]2016; |Cau[2017} |Guindon|2018).

Most of the recent efforts to date the TOL have used the node dating method (e.g., |Shen et al.
2016), even though several recent studies point out at limitations of this approach (e.g., van Tuinen
and Torres| 2015), notably because uncertainties about the taxonomic affinities of fossils have rarely
been fully incorporated (e.g., |Sterli et al.|2013), incompleteness of the fossil record is difficult to take
into consideration (Strauss and Sadler|[1989; [Marshall|[1994] [2019; [Marjanovi¢ and Laurin|2008; [Nowak|
let al][2013), or simply because it is more difficult than previously realized to properly incorporate
paleontological data into the proper probabilistic framework required for node dating
. More recently, other methods that incorporate more paleontological data have been developed.
Among these, tip dating (Pyron[2011;[Ronquist et al[2012alb) has the advantage of using phenotypic data
from the fossil record (and molecular data, for the most recent fossils) to estimate the position of fossils
in the tree and thus does not require fixing a priori this parameter, and comparisons between tip and
node dating are enlightening (e.g., |Sharma and Giribet||2014). Even though this method was developed
to better date clades, it can improve phylogenetic inference by using stratigraphic data to better place
extinct taxa in the phylogeny, as recently shown by [Lee and Yates| (2018) for crocodylians. Tip dating
was first developed in a context of “total evidence” analysis combining molecular, morphological and




stratigraphic data, but it can be performed using only paleontological (morphological and stratigraphic)
data, as has been done for trilobites (Paterson et al2019)), echinoderms (Wright/2017), theropods
let al][2016; Lloyd et al]2016)), canids (Slater|/2015) and hominids (Dembo et al|2015).

Another recently-developed approach is the “fossilized birth-death process” (Stadler| 2010; [Heath|
, which likewise can incorporate much paleontological data, but using birth-death processes
(in addition to the phenotypic or molecular data to place fossils into a tree). It was initially used to
estimate cladogenesis, extinction and fossilization rates (Stadler|2010; Didier et al.|2012} 2017), but it
can also be used to estimate divergence times (Heath et al|2014). The approach of Heath et al.| (2014)
differs from ours in how it incorporates fossils into the analysis and in the fact that the divergence time
distributions are estimated by using a MCMC sampling scheme, rather than exactly computed as in the
present work (we also use a MCMC approach but only to deal with the uncertainty on the fossil ages
and on the parameters of the model). Both differences deserve comments.

[Heath et al|(2014) chose to incorporate only part of the phylogenetic information available for some
fossils. Namely, for each fossil, the node that it calibrates must be identified. That “calibration node” is
the most recent node that includes the hypothetical ancestor of the fossil in question. This approach has
both advantages and disadvantages compared with our approach. The advantage is that this method
can incorporate fossils whose placement in the Tree of Life is only approximately known, and character
data about extinct taxa need not be collected for this approach. The drawbacks include the following:
this approach prevents dating fully-extinct clades (something that our method can handle), and in the
most-intensively studied clade, this procedure may discard useful information. That method introduces
a different procedure to handle extinct vs. extant taxa, whereas both are part of the same Tree of Life.
Indeed, the approach of Heath et al.|(2014) seems to take for granted that the phylogenetic position of
extinct taxa is inherently more poorly documented than that of extant taxa, but this may not always
be the case. For instance, at the level of the phylogeny of tetrapods, the position of lissamphibians is
more controversial than that of the many of their presumed Paleozoic relatives (Marjanovi¢ and Laurin|
. And the long branches created by the extinction of intermediate forms (visible only in the fossil
record, when preserved) can also create problems in phylogenetic inference of extant taxa (Gauthier|
let al][1988). Our approach uses a population of trees to represent phylogenetic uncertainty of extant and
extinct taxa simultaneously. Consequently, it requires either character data for extinct and extant taxa,
or a population of trees for these taxa obtained from the literature. These drawbacks are not inherent
to the fossilized birth-death model since this model can be applied in various ways to incorporate fossils,
e.g. as in total evidence approaches (Gavryushkina et al|2016).

Heath et al| (2014) use Monte Carlo Markov Chain (MCMC) to sample divergence times in order
to estimate their distributions. We present (below) a method to calculate exactly the distribution
of divergence times from the diversification and fossilization rates. Our computation can be easily
integrated in MCMC schemes based on the fossilized birth-death process like that of Heath et al.| (2014).
The resulting approaches would obtain results more accurate in a shorter time since our computation
avoid having to sample the divergence times; only the rates, the tree topology and the fossils placement
still need to be sampled because these are never known with certainty. In the present work, we devised
a MCMC-based importance sampling procedure to deal with the uncertainty on the model rates and on
the fossil ages (Appendix [D]).

Another method that uses birth and death models is cal3 (Bapst|2013; Bapst and Hopkins |2017),
which has been developed specifically to time-scale paleontological trees. It differs from our approach
in at least three important points. The first concerns the limits of the validity of the method; as we
explained in Didier et al| (2017), cal3 assumes that the diversification process extends over unlimited
time, and it approximates the correct solution only in extinct taxa. By contrast, our method can
handle trees that combine extant and extinct taxa. The second difference is that cal3 can test for
ancestral position of some taxa, though it uses only the temporal range of taxa for this, disregarding
character data (Bapst and Hopkins|2017:64). By contrast, we did not yet implement an algorithm to
check for ancestors preserved in the fossil record, but we did this manually by considering stratigraphic
and character data (Didier et al|[2017); we consider, in a first approximation, that an ancestor should
be geologically older than its descendants and that it should not display a derived character that is
absent from its putative descendant. The third important difference is that cal3 does not incorporate a
method to estimate the birth-and-death model parameters (cladogenesis, extinction and sampling rates).
Instead, it relies on previously-published estimates of these rates, or these can be obtained through other
methods. For instance, [Bapst and Hopkins| (2017) obtained their estimates using paleotree (Bapst|[2012),




which implements a method proposed by . That method uses stratigraphic ranges of taxa
in time bins to infer rate parameters. Otherwise, such estimates in the literature are relatively rare, and
most published rates were published as “per capita” origination and extinction rates using the method
developed by Foote (2000). That method is a taxic approach that does not require a phylogeny and that
quantifies the turnover rate between taxa at a given rank. Given that some taxa may be paraphyletic,
and that the taxonomic (Linnaean) ranks are subjective (Ereshefsky |2002; Laurin| |2008), converting
these rates into cladogenesis, extinction and fossilization (sampling) rates is not straightforward. Indeed,
346) acknowledged these problems and concluded that “These rate estimates cannot always
be obtained, particularly in fossil records consisting entirely of taxonomic point occurrences, such as
many vertebrate fossil records. Further advances in time-scaling methods are needed to deal with these
datasets”. Below, we present such advances.

Our method relies on an assessment of these rates based on detailed phylogenetic and stratigraphic
data (Didier et al|[2017)). Instead of stratigraphic ranges and time bins, our method requires more
detailed stratigraphic information about the age of every horizon that has yielded fossils of each taxon
included in the analysis, or a random sample thereof. This requires greater data collection effort and may
be limiting in some contexts, but the more detailed data should improve the accuracy of the method.
This is supported by the simulations performed by , which showed that preservation rate
and completeness are better estimated (with less variance around the true value) when all stratigraphic
occurrences are used, rather than only ranges; similarly, the simulations of (Heath et al|2014: fig. 2B)
shows that using all fossils (rather than only the oldest ones of each clade) reduces the confidence intervals
of estimated node ages. Thus, our method can take full advantage of the many detailed paleontological
phylogenies that have been published recently and recent progress in geochronology, but it cannot be
applied for taxa that lack such a well-studied fossil record of phenotypically-complex organisms that can
be placed fairly precisely in a phylogeny and in the stratigraphy.

This contribution develops a new method to date the TOL using the fossilized birth-death process.
This method relies on estimating parameters of the fossilized birth-death process through exact compu-
tations and using these data to estimate a probability distribution of node ages. This method currently
requires input trees, though it could be developed to include estimation of these trees. These trees include
fossils placed on terminal or on internal branches, and each occurrence of each taxon in the fossil record
must be dated. In this implementation, we use a flat probability distribution of fossil ages between two
bounds, but other schemes could easily be implemented. Our new method thus shares many similarities
with what we recently presented (Didier et al|[2017), but it is aimed at estimating nodal ages rather
than rates of cladogenesis, extinction, and fossilization. Namely, in [Didier et al.| (2017)), we proposed a
method for computing the probability density of a phylogenetic tree of extant and extinct taxa in which
the fossil ages was the only temporal information. The present work extends this approach in order to
provide an exact computation of the probability density of any divergence times of the tree from the
same information.

We then use these new developments to estimate the age of the divergence between synapsids and
sauropsids, which is the age of Amniota, epitomized by the chicken/human divergence that has been
used very frequently as a dating constraint (e.g., [Hedges et al|[1996} Hugall et al|[2007). In fact,
land Reisz| (2005: 1069) even stated that “The origin of amniotes, usually expressed as the ‘mammal-
bird split’, has recently become either the only date used for calibration, or the source for ‘secondary’
calibration dates inferred from it.” The recent tendency has fortunately been towards using a greater
diversity of dating constraints, but the age of Amniota has remained a popular constraint in more recent
studies (e.g., [Hugall et al|[2007; Marjanovi¢ and Laurin| 2007; [Shen et al|[2016). However,
land Reisz| (2005: 1074) argued that the maximal age of Amniota was poorly constrained by the fossil
record given the paucity of older, closely related taxa, and that this rendered its use in molecular dating
problematic. Thus, we believe that a more sophisticated estimate of the age of this clade, as well as
its probability distribution, will be useful to systematists, at least if our estimates provide a reasonably
narrow distribution. Such data are timely because molecular dating software can incorporate detailed
data about the probability distribution (both its kind and its parameters) of age constraints
[Phillips| 2009; |Sauquet| 2013), the impact of these settings on the resulting molecular age estimates is
known to be important (e.g., Warnock et al|[2012), but few such data are typically available, though
some progress has been made in this direction recently (e.g., Nowak et al|2013).

The approach presented here was implemented as a computer program and as a R package, which
both the probability distribution of divergence times from fossil ages and topologies and are available at
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Figure 1: Left: a realization of the diversification process with fossil finds (represented by “®”); Center:
its observable part from the sampled extant taxa and the fossil finds is displayed in black — the gray parts
are lost (sampled extant species are those with “v”); Right: the resulting reconstructed phylogenetic tree.

https://github.com/gilles-didier/DateFBD.

METHODS

Birth-death-fossil-sampling model

We consider here the model introduced in|Stadler| (2010) and referred to as the Fossilized-Birth-Death
(FBD) model in Heath et al| (2014). Namely, speciations (cladogeneses) and extinctions are modelled as
a birth-death process of constant rates A and p. Fossilization is modelled as a Poisson process of constant
rate 1 running on the whole tree resulting from the speciation-extinction process. In other words, each
lineage alive at time ¢ leaves a fossil dated at ¢ with rate . Last, each lineage alive at the present time,
i.e., each extant taxon, is sampled with probability p, independently of any other event. In practice,
“sampled” may mean “discovered” or “integrated to the study”. Note that, in constrast with our previous
works (Didier et al.|[2012, 2017)) which were based on the FBD model with full sampling of extant taxa
(i.e., with p = 1), we shall consider uniform sampling of the extant taxa in the present work. In all what
follows, we make the usual technical assumptions that A, i, ¥ and p are non-negative, that A\ > u, and
that ¢ and p are not both null. Unlike the FBD process as it is sometimes described, we consider the
usual “from past to present” time direction in this work.

We shall not deal directly with the whole realizations of the FBD process (Figure left) but rather,
with the part of realizations which can be reconstructed from present time using data from extant taxa
and from the fossil record; this will be referred to as the (reconstructed) phylogenetic tree with fossils.
Indeed, we have no information about the parts of the diversification process leading to extinct taxa
that left no fossil record or non-sampled extant or extinct species (Figure center). Let us state more
precisely what is assumed to be reconstructible. We make the assumption that the starting time of the
diversification (i.e., the base of the root branch) and the fossil ages are known (in practice, we specify
these as intervals, over which we sample randomly using a flat distribution for fossil ages, and we integrate
for the root age) and that we are able to accurately determine the phylogenetic relationships between all
the extant and extinct taxa considered, in other words, that we can reconstruct the actual tree topology
of the species phylogeny (Figure right). Note that under these assumptions, the only available temporal
information in a reconstructed phylogenetic tree with fossils is given by the fossil ages, the starting time
of the diversification process (which is the only temporal information that is poorly constrained) and the
present time. Namely, all the divergence times of the reconstructed phylogeny are unknown.

Most of our calculations are based on probabilities of the following basic events, already derived in
(Stadler||2010; Didier et al.[2012}|2017) under the FBD model.

The probability that a single lineage starting at time 0 has n descendants sampled with probability
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p at time ¢ > 0 without leaving any fossil (i.e., neither from itself nor from any of its descendants) dated
between 0 and ¢ is given by

wt

_alB-(1-p) = Bla—(1—p)e'
PO = =) —a- = et ™™
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where o < 3 are the roots of —A\z? + (A + p + ¥)x — u = 0, which are always real (if X is positive) and
are equal to

P(n,t) =

for all n > 0,

At/ +p+v)2 -4
2\

and w = —\(8 — «).

We showed in [Didier et al.| (2017) that o can be interpreted as the asymptotical proportion of lineages
unobservable from the fossil record, assuming that the diversification process continues indefinitely. This
quantity « is close to the complementary of the probability Py defined in Bapst| (2013) and used in
Wagner| (2019)). We did not find biological interpretations of the quantities w and (3, which are essentially
convenient to write the computations below. A table of the notations is provided in Appendix [A]

Let us write B, (t) for the probability that a lineage present at time 0 is observable at ¢, which is the
complementary probability that it both has no descendant sampled at the present time T and lacks any
fossil find dated after t. Namely, we have that

P(t)=1-P(0,T —t)

(= a)(E=(1=p) = (1= B)a (1 = p)eT
F—(1=p)~(a—(1-p)eT0

Tree topologies

We shall consider only binary, rooted tree topologies since so are those resulting from the FBD
process. Moreover, all the tree topologies considered below are labelled in the sense that all their tips
are unambiguously identified. From now on, “tree topology” will refer to “labelled-binary-rooted tree
topology”.

Let us use the same notations as [Didier| (2020). For all tree topologies 7, we still write 7 for the set
of nodes of 7. We put Ly for the set of tips of 7 and, for all nodes n of T, 7, for the subtree of T
rooted at n. For all sets S, |S| denotes the cardinality of S. In particular, |7| denotes the size of the
tree topology T (i.e., its total number of nodes, internal or tips) and |Ly| its number of tips.

Probability— Let us define T(7T) as the probability of a tree topology T given its number of tips under a
lineage-homogeneous process with no extinction, such as the reconstructed birth-death-sampling process.

Theorem 1 (Harding||1971). Given its number of tips, a tree topology T resulting from a pure-birth
realization of a lineage-homogeneous process has probability T(T) = 1 if |T|= 1, i.e., T is a single
lineage. Otherwise, by putting a and b for the two direct descendants of the root of T, we have that

2|Lr, |! L |!
(L7 |=1) L !

The probability provided in Didier et al.| (2017, Supp. Mat., Appendix 2) is actually the same as
that just above though it was derived in a different way from Harding (1971) and expressed in a slightly
different form (Appendix .

From Theorem |1} T(7) can be computed in linear time through a post-order traversal of the tree
topology T.

T(T) = T(72)T(Ty)-
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Figure 2: The three types of patterns on which our computations are based. The patterns of type a end
at the present time 7' while the patterns of type b and c are parts of the diversification process that
continue after e < T. Patterns of type ¢ end with the period covered by a study (before the present).
Here, “observable” stands for “observable at €¢”. Note that the bottom-most lineage in type b may or may
not be observable (strictly) after e.

Patterns

As in [Didier et al.| (2017)), our computations are based on three types of subparts of the FBD process
which all start with a single lineage and end with three different configurations, namely

e patterns of type a end at the present time 7" with n > 0 sampled lineages,

e patterns of type b end at a time e < T" with a fossil find dated at e and n—1 > 0 lineages observable
at e,

e patterns of type ¢ end at a time e < T with n > 0 lineages observable at e (the case where n =0
is not required in the calculus).

The probability density of a pattern of any type is obtained by multiplying the probability density of
its ending configuration, which includes its number of tips, by the probability of its tree topology given
its number of tips provided by Theorem [T}

In this section, we provide equations giving the probability density of ending configurations of patterns
of types a, b and c, first with regard to a given “punctual” starting time and, second, by integrating this
probability density uniformly over an interval of possible starting times in order to take into account the
uncertainty associated with the timing of the beginning of the diversification process.

Patterns of type a.— The probability density of the ending configuration of a pattern of type a is that of
observing n > 0 lineages sampled at time 7" by starting with a single lineage at time s without observing
any fossil between s and 7. We have that

a(f = (1 =p)) = Bla— (1 = p))eT)
B—(1=p)—(a—(1—p)eT-9)

pr(B — )P (T=9) (1 — (TN
('6 —(1=p)—(a— (1~ p))ew(T_s))’ﬂ-H

if n =0,

Bi(n,s) =

otherwise.

Patterns of type b.— The probability density of the ending configuration of a pattern of type b is that
of observing a fossil find dated at e with n — 1 > 0 other lineages observable at time e by starting with
a single lineage at time s without observing any fossil between s and e. From |Didier et al.| (2017)), we
have that

1—ewle=s)\""! B—(1-p)—(a—(1=p)eT=e n
B,(n,s,e) =F(e "_1mpew(€_s) () < )
s = (O 7 50 p) (@ ()T
Patterns of type c.— The probability density of the ending configuration of a pattern of type c is that of
getting n > 0 lineages observable at time e by starting with a single lineage at time s without observing
any fossil between s and e. From Didier et al.|(2017)), we have that

n.s.e) = P.(e)ew(e=s) LM ot ﬁ—(l—p)—(a—(l—p))ew(T*E) n+1
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Figure 3: Decomposition of the reconstructed tree of Figure [1] into basic trees, obtained by cutting it at
all fossils finds. Remark that the second basic tree from the top in the last column, which starts just
after the fossil find dated at f7, is not observable.

Basic trees

Following Didier et al.| (2017), we split a reconstructed realization of the FBD process, i.e. a phy-
logenetic tree with fossils, by cutting the corresponding phylogenetic tree at each fossil find. The trees
resulting of this splitting will be referred to as basic trees (Figure . If there are k fossils, this decom-
position yields k + 1 basic trees. By construction, basic trees (i) start with a single lineage either at the
beginning of the diversification process or at a fossil age, (ii) contain no internal fossil finds and (iii) are
such that all their tip-branches either terminate with a fossil find or at the present time. Note that a
basic tree may be unobservable (Figure . Since tips of basic trees are either fossil finds or extant taxa,
they are unambiguously labelled. The set of basic trees of a phylogenetic tree with fossils is a partition
of its phylogenetic tree in the sense that all its nodes belong to one and only one basic tree.

The interest of the decomposition into basic trees stands in the fact that a fossil find dated at a time
t ensures that the fossilized lineage was present and alive at ¢. Since the FBD process is Markov, the
evolution of this lineage posterior to ¢ is independent of the rest of the evolution, conditionally on the fact
that this lineage was present at t. It follows that the probability density of a reconstructed realization
of the FBD process is the product of the probability densities of all its basic trees (Didier et al.|[2017).

Remark that a basic tree is fully represented by a 3-tuple (7, s,v), where T is its topology, s is its
starting time and v is the vector of its tip ages. Namely, for all m € Ly, v,, is the age of m. We assume
that all fossil ages are strictly anterior to the present time. Under the FBD model, the probability that
two fossils are dated at the exact same time is zero. In other words, if for two leaves m and m’ with
m # m/, we have both v,, < T and v,y < T then v,, # v;,. For all subsets S C Ly, we put vg) for
the vector made of the entries of v corresponding to the elements of S.

Probability distribution of divergence times

Let us consider a phylogenetic tree with fossils H in which the only temporal information is the
diversification starting time and the fossil ages, and a possibly empty set of time constraints C given
as pairs {(n1,t1),...,(ne,t¢)} where nq,...,ny are internal nodes of the phylogenetic tree (each one
occurring in a single pair of the set) and ¢y, ..., to are times. For all internal nodes n of T, we put 7,
for the divergence time associated to n. For any subset of nodes S, we write C|s) for the set of the time
constraints of C involving nodes in S, namely Cis) = {(n;,t;) | (n;,t;) € C and n; € S}.



We shall see here how to compute the joint probability density of H and the events 7,, < 1, ...,
Tn, < tg, denoted P(H,C). Computing the joint probability of H and events 7,,, > t1, ..., T, >t is
symmetrical.

Note that the probability distribution of the divergence time associated to a node n at any time ¢
is given as the ratio between the joint probability density of H and the event 7,, < t to the probability
density of H (with no time constraint). Though calculating the distribution of the divergence time of n
requires only the probability densities of H and that of H and 7, < ¢ (i.e., H without time constraint
and with a single time constraint), we present here the more general computation of the joint probability
density of a phylogenetic tree with fossils and an arbitrary number of time constraints since it is not
significantly more complicated to write.

From the same argument as in the section above, P(H,C), the joint probability density of # and the

events 7,, <t1, ..., Ty, <ty is the product of the probability densities of the basic trees resulting from
the decomposition of H with the corresponding time constraints.
Namely, by assuming that there are k fossils in 7 and by putting (7,50 v©)  (T®) k) k)

for the basic trees of H we have that

k
P(,H, C) = H P(T(j)7 S(j)a V(j)vc[T(J')])a
§=0

where P(TW),51) v Cr;))) is the probability density of (74,5, vli)) with root or nodal time
constraints Cir¢y; = {(n7,%1),-.., (np, %)}, in other words, the joint probability density of the basic
tree (71, s0) v()) and the events Ty Sty ey Ty <1

In order to compute the probability density of a basic tree (7, s,v) with a set of time constraints
C = {(n1,t1),...,(ne,te)}, let us define its oldest age z as z = min{min; v;, min; ¢;} and its set of
anterior nodes X as the union of the nodes n; such that (n;, z) € C and, if there exists a tip ¢ such that
v = z, of the direct ancestor of ¢ (under the FBD model, if such a tip exists, it is almost surely unique).

Stating our main theorem requires some additional definitions. Following Didier| (2020)), a start-set
of a tree topology T is a possibly empty subset A of internal nodes of 7 which verifies that if an internal
node of T belongs to A, then so do all its ancestors.

Being given a tree topology 7 and a non-empty start-set A, the start-tree A7 is defined as the subtree
topology of 7 made of all nodes in A and their direct descendants. By convention, A, the start-tree
associated to the empty start-set, is the subtree topology made only of the root of 7.

For all internal nodes n of the tree topology 7, we define I'” as the set of all the start-sets of 7 that
contain n.

Theorem 2. Let (T,s,v) be a basic tree, T the present time, C a possibly empty set of time constraints,

z the corresponding oldest age and X the set of anterior nodes. By setting I', = NpexI'7, the probability
density of the basic tree (T, s,v) with time constraints C is
T(T)Ra(|L7, 5) ifz=T,
if there is
o Z (|LAF£|71)'T(AZ)B)(lLAZ‘7572) H ‘LTm“P(Tm,Z,V[LTm],C[Tm]) a tip c
P(T,s,v,C) = Lt P (2) such that
mEL,p\(e) Ve :
Ly 'T(AT)P(|LyT], s, 2 Lr 'P(Th, 2, v ,C
3 LA ' T(AZD)R(|La1], 5, 2) I L, "P(Tons 2, Vv, 1, Ci7,01) otherwise.
2 IL7! F(z)
Aer’ meL, T

Proof. Let us first remark that if z = T, then we have that P(7,s,v,C) = P(T,s,v), since even if
C =A{(n1,t1),...,(ng,tx)} is not empty, z = T implies that all the times ¢; are posterior or equal to T,
thus we have always 7,,; < t;. Moreover, the fact that z = T implies that the basic tree (7, s, v) contains
no fossil. By construction, it is thus a pattern of type a and its probability density is T(7)Bu(|L7|, ).
Let now assume that z < T (i.e., the subtree includes a fossil or a time constraint) and that there is
a tip c¢ associated to a fossil find dated at z (i-e., such that v. = z). Let us write the probability density



P(T,s,v,C) as the product of the probability densities of the part of the diversification process which
occurs before z and of that which occurs after z. Delineating these two parts requires to determine
the relative time positions of all the divergences with regard to z. Let us remark that some of the
divergence times are constrained by the given of the problem. In particular, all the divergence times of
the ancestral nodes of c¢ are necessarily anterior to z and so are the divergence times of the nodes n;
(and their ancestors) involved in a time-constraint such that t; = z. Conversely, the divergence times
of all the other nodes may be anterior or posterior to z. We thus have to consider all the sets of nodes
anterior to z consistent with the basic tree and its time constraints. From the definition of the set X of
anterior nodes associated to (7, s,v,C), the set of all these sets of nodes is exactly I'T, = N,exI'7. Since
all these sets of nodes correspond to mutually exclusive possibilities, the probability density P(7,s,v,C)
is the sum of the probability densities associated to all of them.

Let us first assume that there exists a fossil find dated at z. Given any set of nodes A € I';, anterior to
z, the part of diversification anterior to z is then the pattern of type b starting at s and ending at z with
topology A7, while the part posterior to z is the set of basic trees starting from time z inside the branches
bearing the tips of AL except ¢, i.e, {(Tm,2,ViLy,,]) | m € Ly7 \ {c}}, with the corresponding time
constraints derived from C, i.e., Cr;,) for all m € LAZ \ {c} (Figure . From the Markov property, the
diversification occurring after z of all lineages crossing z is independent of any other events conditionally
on the fact that this lineage was alive at z. The probability density of the corresponding basic trees has to
be conditioned on the fact that their starting lineage are observable at z, i.e., it is P(Tm:2.ViL s, 1:Cmm1)/Ry(2)
for all nodes m € L7 \ {c}. The probability density of the ending configuration of the pattern of type
b (A7, s,z) is By(|La7],s,2). We have to be careful while computing the probability of the topology
AT since its tips except ¢ (the one associated to the oldest fossil find) are not directly labelled but only
known with regard to the labels of their tip descendants while Theorem [I] provides the probability of
a (exactly) labelled topology. In order to get the probability of A7, we multiply the probability of A7
assuming that all its tips are labelled with the number of ways of connecting the tips of A7 except the
one with the fossil (i.e., (\LAZ\—l)!) to its pending lineages and the probability of their “labelling”. Since
assuming that all the possible labellings of 7 are equiprobable, the probability of the “labelling” of the
lineages pending from A7 is

IL. eLAK\{C}|LTm !

|Lr|! ’

the probability of the tree topology A7 is eventually

|Lr! 7

i.e., the product of the probability of the labelled topology A7 with the number of ways of connecting
the (not fossil) tips to the pending lineages and the probability of their “labelling”.

The case where z < T and where no fossil is dated at z is similar. It differs in the fact that the
diversification occurring before z is a pattern of type ¢ (Figure [5) and that the probability of A7 is in

this case
‘LAZ " T(AZ‘:) H7rLELA74- |LTm |'

|Lr|! ’

i.e., the product of the probability of the labelled topology A7 with the number of ways of connecting its

tips to the pending lineages (i.e., [Ly7|!) and the probability of their “labelling” (i.e, TTmer o L7 Y/ |L71).
A

O

Theorem [2] allows us to express the probability density of a basic tree with a set of time constraints as
a sum-product of probability densities of patterns of type a, b or ¢ and of smaller basic trees, which can
themselves be expressed in the same way. Since the basic trees involved in the right part of the equation
of Theorem [2| contain either at least one fewer time constraint and/or one fewer fossil find than the one
at the left part, this recursive computation eventually ends. We shall not discuss algorithmic complexity
issue here but, though the number of possibilities “anterior/posterior to the oldest age” to consider can
be exponential, the computation can be factorized in the same way as in |Didier| (2020) in order to get a
polynomial, namely cubic, algorithm.



e

f

o

=
il

-
ﬂ

= it KT
fl T t T
o Rt 61
H—— —
u
£—° = £ 6T
5 {n
. =X E{— i
— - 1
o At BT N ———
1 ) 5 T LT _[7—: H
—9 fr— :
_ it AT & T
»
n = RN S
E—o t 6T

Figure 4: Schematic of the computation of the probability density of the basic tree in the left-most
column with the time constraint 7,, < ¢ in the case where t is posterior to the oldest fossil age f;. If a
given time is displayed in blue, the positions of the nodes of the basic trees delimited by that time say
nothing about the position of the corresponding divergences times relative to this time. Conversely, if
a given time is displayed in red, all nodes to the left (resp. to the right) of this time have divergence
anterior (resp. posterior) to that time. Column 2 displays the three possible sets of anterior nodes
consistent with this basic tree and the fossil find dated at f;. Column 3 shows the computation of the
probability density associated to the top one (the two other computations are similar), as a product of
probability densities of a pattern of type b, a pattern of type a and of a basic tree. Column 4 schematizes
the computation of this basic tree (Column 3, Row 3), which requires to consider the two possible sets of
anterior nodes with regard to the time constraint 7,, < t displayed at Column 4 and eventually expressed
as products of patterns of types ¢, a and b (Column 5).
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Figure 5: Schematic of the computation of the probability density of the basic tree in the left-most
column with the time constraint 7,, < t in the case where ¢ is anterior to the oldest fossil age fi. If a
given time is displayed in blue, the positions of the nodes of the basic trees delimited by that time say
nothing about the position of the corresponding divergences times relative to this time. Conversely, if a
given time is displayed in red, all nodes to the left (resp. to the right) of this time have divergence anterior
(resp. posterior) to that time. Column 2 displays the four possible sets of anterior nodes consistent with
this basic tree and the time constraint 7,, < ¢ (i.e., all the possibilities such that the divergence time of
node n is anterior to ¢). Column 3 shows the computation of the probability density associated to the
top one. Column 4 displays the computation of the basic tree at Column 3, Row 2 (the other rows of
Column 3 are patterns of type a.
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In the case where the dataset is limited to a period which does not encompass the present (as for the
dataset below), some of the lineages may be known to be observable at the end time of the period but
data about their fate after this time may not have been entered into the database. As in [Didier et al.
(2017, Section “Missing Data”), adapting the computation to this case is done by changing the type of
all the patterns of type a to type c.

Note that applying the computation with an empty set of time constraints yields to the probability
density of a phylogenetic tree with fossils (without the divergence times) as provided by [Didier et al.
(2017). On top of improving the computational complexity of the calculus, which was exponential in
the worst case with Didier et al| (2017), the method provided here corrects a mistake in the calculus
of Didier et al.| (2017), which did not take into account the question of the labelling and the “rewiring”
of the tips of internal basic trees, missing correcting factors in the sum-product giving the probability
density that are provided here. Fortunately, this has little influence on the accuracy of rate estimation
(Appendix . In particular, rates estimated from the Eupelicosauria dataset of |Didier et al.| (2017) are
less than 5% lower, thus essentially the same, with the corrected method.

For all phylogenetic trees with fossils H, the distribution Fj, of the divergence time corresponding to
the node n of H is defined for all times ¢ by

Fo(t) P(H,7 <t) _ P(H,{(n,1)})

! P(H) P(H,0)
i.e., the probability density of observing H and the divergence of n posterior to ¢t divided by the proba-
bility density of H with no constraint. It follows that F),(t) can be obtained by applying the recursive

computation derived from Theorem [2|on H twice: one with the time constraint {(n,t)} and one without
time constraints.

Dealing with time and rate uncertainty

The computation presented in the previous section requires all the fossil ages and the origin of the
diversification to be provided as punctual times. In a realistic situation, these times are rather given
as time intervals corresponding to geological stages for fossil ages or to hypotheses for the origin of the
diversification. Actually, we give the possibility for the user to provide only the lower bound for the
origin of the diversification (in this case, the upper bound is given by the most ancient fossil age).

Let us first remark that it is possible to explicitly integrate the probability density of patterns of
types a, b and c over all starting times s between two given times u and v. Namely, we have that

/ Pi(n,s)ds

T-u 1 (ﬁ—(l—p)—(a—(l—p))e“(T‘“))

T BT a0 e

« ifn=0,

p" 1 —ew(T—w) " 1 — ew(T—v) n .
nA <6 —-1-p)+(a—(1- p))ew(Tu)> N (5 “A-pta—(1- p))eW(Tv)) otherwise.

/U R, (n,s,e)ds

Po(e)"_1¢<ﬁ —(1=-p) —(a=(1- p))ew(T—e))n ( 1 — ew(e—u) >n
MB — e B=(=p) ~ (o~ (1= p))eT=)

1 — gwle—v) n
(e —a ) )

’ CR(e)"(B—(1—p)— (a— (1= p))eT=))n 1 ewle—u) n
L o nA(f —a) ((ﬁ —(1=p)—(a—(1- p))eW(T—u))>
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Dealing with uncertainty on the origin of diversification (i.e., the base of the root branch of the tree)
is performed by replacing the probability density of the pattern starting at the origin by its integral
between the two bounds u and v provided by the user or between v and the most ancient sampled fossil
age if no upper bound is provided for the origin of diversification.

Since integrating all the possible fossil ages over the corresponding geological ranges is more compli-
cated even when assuming an uniform distribution of the ages over their ranges (we plan to investigate
this possibility soon), we have to sample them in order to make the divergence time distribution take
into account uncertainty of the fossil ages expressed as ranges. In order to seed up the convergence of
the distribution, we devised an importance sampling scheme based on the Metropolis-Hasting algorithm
described in Appendix |§| (in a standard uniform sampling scheme, most of the iterations are not very
useful because some fossil age configurations lead to very low tree-fossil probabilities, and these influence
little the divergence time distributions).

In an earlier version of this work, the divergence time distributions were computed with regard to the
maximum likelihood estimates of the speciation, extinction and fossilization rates. The divergence times
distribution are now obtained by integrating over all the possible values of these parameters by assuming
improper uniform priors, still by using the importance sampling procedure presented in Appendix

EMPIRICAL EXAMPLE

Dataset Compilation

Our dataset represents the fossil record of Cotylosauria (the smallest clade that includes Amniota and
their sister-group, Diadectomorpha) from their origin (oldest record in the Late Carboniferous) to the end
of the Roadian, which is the earliest stage of the Middle Permian. It represents the complete dataset from
which the example presented in [Didier e¢ al.|(2017) was extracted. Because of computation speed issues
that we have now overcome, [Didier et al| (2017) presented only the data on Eupelycosauria, a subset of
Synapsida, which is one of the two main groups of amniotes (along with Sauropsida). Thus, the dataset
presented here includes more taxa (109 taxa, instead of 50). We also incorporated the ghost lineages that
must have been present into the analysis. However, in many cases, the exact number of ghost lineages
that must have been present is unclear because a clade that appears in the fossil record slightly after the
end of the studied period (here, after the Roadian) may have been present, at the end of that period,
as a single lineage, or by two or more lineages, depending on when its diversification occurred. This
concerns, for instance, in the smallest varanopid clade that includes Heleosaurus scholtzi and Anningia
megalops (four terminal taxa). Our computations consider all possible cases; in this example, the clade
may have been represented, at the end of the Roadian, by one to four lineages.

The data matrix used to obtain the trees is a concatenation of the matrix from Benson| (2012), the
study that included the highest number of early synapsid taxa, and of that ofMiiller and Reisz (2006])
for eureptiles. However, several taxa studied here were not in our concatenated matrix. We specified
conservatively their relationships to other taxa using a skeletal constraint in PAUP 4.0 (Swofford[2003),
as we reported previously (Didier et al|2017). The skeletal constraint reflects the phylogeny of
and Nicosial (2015) and Romano et al| (2017) for Caseasauria, Spindler et al| (2018) for Varanopidae,
Brink et al.| (2015) for Sphenacodontidae, and Brocklehurst| (2017) for Captorhinidae. Note that our
tree incorporates only taxa whose affinities are reasonably well-constrained. Thus, some enigmatic taxa,
such as Datheosaurus and Callibrachion, were excluded because the latest study focusing on them only
concluded that they were probably basal caseasaurs (Spindler et al||2016). The recently described
Gordodon was placed after Lucas et al| (2018). The search was conducted using the heuristic tree-
bisection-reconnection (TBR) search algorithm, with 50 random addition sequence replicates. Zero-
length branches were not collapsed because our method requires dichotomic trees. Characters that form
morphoclines were ordered, given that simulations and theoretical considerations suggest that this gives
better results than not ordering (Rineau et al.|2015), even if minor ordering errors are made
. The analysis yielded 100 000 equally parsimonious trees; there were no doubt more trees,
but because of memory limitation, we had to limit the search at that number of trees. had
likewise found several (more than 15 000 000) equally parsimonious trees, and we had to add additional
taxa whose relationships were only partly specified by a constraint, so we logically expect that our dataset
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would yield more trees. We performed our analyses on a random sample of 1000 equiparsimonious trees
(one of these trees is displayed in Figure[6). As in our previous study (Didier et al]2017), these trees do
not necessarily represent the best estimate that could possibly be obtained of early amniote phylogeny
if a new matrix were compiled, but that task would represent several years of work (Laurin and Pifeiro|
and is beyond the scope of the current study. We have placed parareptiles and varanopids in their
traditional position, even though doubts about this have been raised by recent analyses (e.g.,
land Pineiro|[2018; [Ford and Benson|[2020). The analyses performed here can be repeated in the future
as our understanding of amniote phylogeny progresses. In our dating analyses, all taxa were considered
to represent tips (no fossils were placed on internal branches). It is conceivable that a few of the fossils
included in our dataset represent actual ancestors, but the sensitivity analyses carried out by
suggest that this should have a negligible impact on our results. The data are available in
the supplementary information.

Dealing with Fossil, Root Age, and Tree Topology Uncertainty When Estimating Nodal Ages

As in [Didier et al| (2017), we used a flat distribution between upper and lower bounds on the
estimate of the age of each fossil. That age was assessed by looking at the stratigraphic position of the
fossiliferous localities in the primary literature. That was converted into absolute ages using the latest
available geological timescale (Ogg et al][2016)), if absolute age data was not given directly in the source
papers, or if the scale had been updated since then. For the taxa that were present in the analysis
presented in [Didier et al. (2017), the boundaries of the range of stratigraphic ages were not modified.
However, our new analyses are based on a more inclusive set of taxa.

Our method also requires inserting a prior on the origin of the diversification, i.e., on the starting
time of the branch leading to the root (here, Cotylosauria). We set only the lower bound of this origin
and assume a flat distribution between this origin and the most ancient (sampled) fossil age (here that
of Hylonomus lyelli between 319 and 317 Ma), a fairly basal eureptile sauropsid (Miiller and Reisz|[2006;
Matzke and Irmis|2018). To study the robustness of our estimates to errors in this prior, we repeated the
analysis with several origins that encompass the range of plausible time intervals and beyond. Recent
work suggests that the Joggins Formation, in which the oldest undoubted amniote ( Hylonomus) has been
recovered (Carroll|[1964; [Davies et al|[2006} [Falcon-Lang et al][2006), is coeval with the early Langsettian
in the Western European sequence, which is about mid-Bashkirian (Carpenter et al.|[2015), around 317-
319 Ma (Utting et al.2010; Raine et al.|2015). In fact, recent work suggests more precise dates of between
about 318.2 and 318.5 Ma (Utting et al|[2010; Rygel et al.2015), but we have been more conservative in
putting broader limits for the age of this formation, given the uncertainties involved in dating fossiliferous
rocks. Thus, we have set the lower bound of the origin of diversification to 330 Ma, 340 Ma, 350 Ma, 400
Ma and 1 000 Ma to assess the sensitivity of our results to the older bound or the width of the interval.
The lower bound of 1 000 Ma is of course much older than any plausible value, but its inclusion in our
analysis serves as a test of the effect of setting unrealistically old lower bounds for the root age.

We deal with the uncertainty on the phylogenetic tree topology by averaging over the 1000 equipar-
simonious trees provided in the dataset. The distribution displayed below were obtained by using the
importance sampling procedure presented in Appendix

Results

Figure [7] displays the posterior distribution histograms of the speciation, extinction and fossilization
rates. The maximum likelihood estimates computed in [Didier et al.|(2017) from an earlier version of the
dataset are consistent with the posterior distribution obtained here, rather in their lower parts. These
distribution suggest a speciation rate slightly higher than the extinction rate.

Though the exact divergence time distributions can be directly computed in a reasonable time, it
may be useful to fit them with standard distributions, for instance in order to use it in molecular dating
software which do not implement their exact computation. Figure [§] shows that the divergence time
distributions with lower bounds of the origin of diversification set at 1 000 to 350 Ma can be reasonably
approximated by shifted reverse Gamma distributions with shape parameter «, scale parameter 6 and
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Figure 6: One of the 100 equally parsimonious trees used in our analyses with some divergence time
distributions displayed at the corresponding nodes. The distributions shown here (contrary to those

280 270

shown in Figures [7| and [§]) were computed from this tree only (i.e., without taking into account the 999

other equiparsimonious trees). The brown highlighting of the branches represents the bounds of the
range of plausible ages of fossil occurrences; darker brown indicates more than one record in the same
time interval. Some taxa, displayed in red for extinct ones and in blue otherwise, lack a fossil record in

the sample period (which ends at the end of the Roadian, at 268.8 Ma) but are included if their affinities

suggest that a ghost lineage must have been present.
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Figure 7: Posterior distribution histograms of the speciation, extinction and fossilization rates (events

per lineage and per Ma).
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Figure 8: Probability density of the Amniota divergence time for several lower bounds of the age of origin
of diversification averaged over all the possible fossil ages and speciation, extinction and fossilization rates
with (improper for the rates) uniform priors (plots of the probability densities for 1 000 and 400 Ma
overlap so tightly that the former is not visible).

16



Lower
bound

1000 8377 1.377 —318.702 1.321 x 1077
400 8377 1.378 —318.702 1.320 x 10~
350  7.501 1.392 —319.463 8.167 x 1077
340 24.831 0.633 —313.057 1.295 x 1076
330 8500 0.662 —320.314 2.260 x 1074

« 0 ) Mean SSR

Table 1: Best fitting parameters of the shifted reverse Gamma distributions approximating the Amniota
divergence time distributions displayed in Figure [8

location parameter ¢, i.e., with the density function:

(6 —z)*te 7

@) = T

Table [1] displays the best fitting parameters of the shifted reverse Gamma distributions plotted in
Figure

Note that shifted reverse Gamma distributions do not always approximate correctly divergence time
distributions. This is in particular the case for the distributions obtained from the lower bounds 330 and
340 of the time origin, but also for those associated to several nodes in Figure [6]

Age estimates.— Our results show remarkable robustness to variations in root age prior specification
when the lower bound of the origin of diversification is far enough to the most ancient fossil age (Fig.
The probability distributions of the age of Amniota obtained with origins 1 000 or 400 Ma are so close to
each other that the curves are superimposed over all their course and thus, only one of these two curves
is visible. Assuming that the lower bound is 350, 340 or 330 Ma predictably yields slightly narrower
distributions, but the peak density is at a barely more recent age (around 328 to 330 Ma). Whatever
the time origin, the probability density of the age of Amniota always dwindles from its peak to near 0
before reaching the age of 347 Ma. More importantly, the curves show that when the specified time of
origin is at least 350 Ma, the probability density falls to near 0 well before reaching the time of origin,
which suggests that the latter does not strongly constrain the result. This is even more obvious when
looking at the peak density, which shifts very little (about 1-2 Ma) between times of origin of 340, 350,
400, and 1000 Ma. All this suggests that Amniota probably appeared approximately in the middle of
the Carboniferous, which is fairly congruent with the fossil record, given that it indicates a minimal age
around 318-319 Ma, only about 10-12 Ma less than the peak density.

DI1sSCUSSION

Our estimates of the rates of cladogenesis (speciation), extinction and diversification are more than
50% higher than to those obtained for a subset of our data (50 taxa out of the 109 used here) in Didier
et al.| (2017), and the fossilization rates are slightly lower. These moderate differences are not surprising
given that we have expanded the taxonomic sample and made minor modifications to the method. This
difference may reflect local variations in turnover rate in the tree, something that our method cannot yet
test; but clearly progress could be made by estimating this variability in subsequent developments.

The method provided here is, to our knowledge, the first one able to compute the exact distributions
of divergence times from fossil ages and diversification and fossilization rates. Previous approaches only
allowed to sample these distributions by using Monte Carlo Markov Chain approaches. Our computation
is fast, with a time complexity cubic with the size of the phylogenetic tree, and can handle hundreds of
taxa. Divergence time distributions obtained from fossil ages through methods such as ours are natural
choices to calibrate evolutionary models of molecular data and to be used as priors for phylogenetic
inferences.

Our method is also useful to time-scale paleontological trees. Tip dating has been increasingly used for
this (e.g., [Ronquist et al.|[2012af Dembo et al.|2015; Lee and Yates|2018), but the recent demonstration
(Goloboff et al|2018) that most phenotypic characters fit poorly the Markov model of evolution that
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is currently used in tip dating raises doubts about the reliability of this approach and highlights the
interest in developing additional approaches, such as using birth-and-death models. Development of
such methods is timely because much progress has been made in the last decades in understanding the
phylogeny of extinct taxa, as shown by the growing number of paleontological papers that included
relevant phylogenetic analyses (e.g., |Romano and Nicosia2015; Bardin et al.|2017; Brocklehurst|[2017).
In turn, these progresses have triggered exciting developments of various methods to better time-scale
paleontological trees (Hopkins et al.|2018]). The methods mentioned above are only the latest in a long
series of developments in this field. Notable earlier studies in this field include (2010), who
provided a simple method (which does not use birth-death processes) to constrain clade age using a
series of stratigraphically older sister-taxa.

Scaling paleontological trees has become important because such timetrees (and timetrees incorporat-
ing both extant and extinct taxa) have increasingly been used to tackle various evolutionary problems,
such as evolution of biodiversity and evolutionary model (e.g., |Ascarrunz et al/2019)) and evolutionary
rate of phenotypic characters (Ascarrunz et al|[2016; Zhang and Wang|2019). The simulations of
have shown that estimated rates of character change can be strongly over-estimated when tree
scaling is wrong.

Our analyses suggest that the fossil record of early amniotes may not be as incomplete as previously
feared. This is despite the fact that the fossil record of continental vertebrates is relatively poor in the
Early Carboniferous (in “Romer’s gap”) a bit before the first amniote fossil occurrence
|Coates and Clack |1995; Marjanovi¢ and Laurin|2013). Thus, there was a possibility that amniotes had
a much older origin and an extended unrecorded early history in Romer’s gap. This had led
to argue that the appearance of amniota was too poorly documented in the fossil record to
be useful as a calibration constraint for molecular dating studies. However, our results suggest that these
fears were exagerated; the fossil record of amniotes appears to start reasonably soon after their origin,
with a gap of no more than about 20 to 25 Ma separating amniote origins from the first recorded fossil
occurrence. A caveat preventing more definitive conclusions on this point is that our analyses assume
constant rates throughout the tree and throughout the studied period. Thus, if the fossil record were
poorer in the early parts of the interval (e.g., in the Late Carboniferous) or if diversification accelerated
over time, our results might be biased. Further developments to accommodate variations in rates through
time are in progress and should improve the robustness of our estimates.

Our results about the age of Amniota should prove useful for a wide range of node-based molecular
dating studies that can incorporate this calibration constraint. The main objection by Miiller and Reisz|
1074) against use of the age of Amniota in molecular dating (the uncertainty about the maximal
age of the taxon) has thus been lifted; we now have a reasonably robust probability distribution that can
be used as prior in node dating. Indeed, our probability distributions for the age of Amniota probably
make it one of the best-documented calibration constraint so far. The probability distributions are fairly
well-constrained (with a narrower distribution than many molecular divergence age estimates) and show
surprisingly little sensitivity to the maximal root age prior, which is reassuring. A 95% probability density
interval of Amniota, using a 350 Ma maximal root age constraint, encompasses an interval of about 20
Ma. By comparison, a 95% credibility interval of nodes of similar ages, such as Lissamphibia, in
table 3) encompasses 38 Ma or 56 Ma, depending on whether these are evaluated using
the nucleotide or aminoacid dataset. Some nodes in Hugall et al.|(2007: table 3) are better constrained,
probably because they are closer to a dating constraint. Thus, Hugall et al. report a 95% credibility
interval for Tetrapoda that encompasses a range of 24 Ma and 32 Ma, for the nucleotide or aminoacid
datasets. This is only moderately broader than our 95% interval, but the width of the intervals reported
in Hugall et al. (2007: table 3) are underestimated because they reflect a punctual estimate (at 315 Ma)
of the age of Amniota, which is used as the single calibration point. table 1) reports 95%
intervals of 54 Ma for the age of Lissamphibia using Total Evidence (tip) dating. Similarly,
fig. 9) obtained 95% credibility intervals of about 50 Ma for major clades of Hymenoptera
using tip (total evidence) dating, and substantially broader intervals using node dating. Recently,
land Benson| (2020) estimated the age of Amniota at about 324.5 Ma with a 95% credibility interval
ranging from about 316 to 328 Ma using a method incorporating a morphological clock (tip dating)
and the FBD. These results are broadly congruent with ours to the extent that the credibility intervals
overlap widely. Thus, we believe that our estimates are fairly precise, when comparisons are made
with molecular estimates that consider a similarly broad range of sources of uncertainty. However, such
comparisons are hampered by the fact that phylogenetic uncertainty is handled differently by various
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methods (directly, by integrating fossils into the phylogenetic analysis in tip dating and here, but only
indirectly in node dating, by relying on the oldest undisputed fossil of each clade), and by the fact
that each method has a different mix of strengths and weaknesses. Among the weaknesses, our method
assumes that fossilization and diversification are constant over time; tip dating assumes that phenotypic
characters evolve in a clock-like manner and can be modeled adequately by the Mk model (an assumption
that was shown to be unreasonable by |Goloboff et al.| (2018)); node dating discards much fossil data and
requires inputting node age priors about which we have little information, except for the minimal age.
Also, in empirical studies, given that we may never know the actual divergence times, it is impossible to
know which methods give the most accurate results. Simulations would be helpful to study this question,
but they are well beyond the scope of this study.

Our estimates also suggest that the way in which this constraint (Amniota) was used in most molecular
dating studies was not optimal. Indeed, most (e.g., Hedges et al.|[1996; Hugall et al|[2007) have set a
prior for this node centered around 310 to 315 Ma, whereas our analyses suggest that the probability peak
is approximately around 330-335 Ma. It will be interesting to see how much change will be generated
by these new data, and with similar data on other calibration constraints that can be obtained with our
new method.

Our method can be applied to any clade that has a good fossil record and a sufficiently complex phe-
notype to allow reasonably reliable phylogenetic analyses to be performed. In addition to vertebrates,
this includes, minimally, many other metazoan taxa among arthropods (Ronquist et al.2012b), echin-
oderms (Sumrall|[1997) and mollusks (Merle et al.|2011; Bardin et al[[2017), among others, as well as
embryophytes (Corvez et al.2012). With new calibration constraints in these taxa (and possibly others),
the timing of diversification of much of the eukaryotic Tree of Life should be much better documented.
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A TABLE OF THE NOTATIONS

cladogenetic (speciation) rate
extinction rate
fossil find rate
sampling rate of extant taxa
3 quantities depending on the rates convenient for expressing for-
mula
probability of ending with n lineages at time ¢ by starting with a
single lineage at time 0 and without fossil meanwhile
B, (t) probability for a lineage present a time O to be observable at ¢
|Lr| number of tips of T
probability of the tree topology 7 conditioned on its number of
T(T) 1
eaves
probability density of the ending configuration of a pattern of type
Pi(n,s) a starting at time s and ending at the present time with n lineages
sampled
probability density of the ending configuration of a pattern of type
B, (n,s,e) a starting at time s and ending at time e with lineage with a fossil
dated at e and n — 1 lineages observable
probability density of the ending configuration of a pattern of
P.(n,s,e) type a starting at time s and ending at time e with n lineages
observable
probability density of the ending configuration of a pattern £ of
type a (resp. b, c)

ST RSN RSN D

«, B and w

P(n,t)

RA(€) (resp. B(E), R(E))
B EQUIVALENCE BETWEEN TWO TREE TOPOLOGY DISTRIBUTIONS

In Didier et al.[(2017), the probability TT(7) of a tree topology 7T arising from a lineage homogeneous
process (conditioned on its number of tips) was expressed as
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™) = — 1

D= .

where R = 1 if T is made of a single lineage and, putting a and b for the two direct descendants of the
root of T,

L Lp|—2
RT—RTaRn2< 7.1+ L7 | ) @)
L7, |1

otherwise.

If 7 is made of a single lineage, both the probability T/(7) from Harding| (1971) and TT(7) are equal
to 1.
Otherwise, by substituting Equation [2] in Equation [T, we get that

fm R7.R7p |LTO,|+L71|2)
T = 2o, ( L1
_o_ BrR7 (IL7[=2)!
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=Lyt T

It follows that the probability TT(7") of Didier et al|(2017) can be expressed with the same recursive
formula as the probability T(7") of [Harding (1971), recalled in Theorem [1} Since moreover the recursive
computations of the probabilities of Harding| (1971) and Didier et al.[(2017) have the same initial condition
(i.e., that of trees made of a single lineage), they are equal for all topologies 7. It is worth noting that
the way in which these distributions have been derived is quite different. Arguments of [Harding) (1971)
mainly rely on the labelling of the tree while those of Didier et al. (2017) are essentially based on the
relative order of its divergence times.

C IMPACT OF THE CORRECTION OF THE PROBABILITY DENSITY ON THE RATES ES-
TIMATION

In order to assess the impact of the error in the probability density of phylogenetic tree with fossils
on the diversification rate estimation, we simulated trees and fossils following an FBD model with given
rates and determine their maximum likelihood estimates on the simulations by using the computation
from Didier et al.| (2017) and the corrected one presented here. Thanks to the improvement of the
complexity of the new algorithm, which we also adapted for re-implementing our former computation,
we relaxed the filtering of the simulated trees. Namely, we now rejected trees with fewer than 10 extant
taxa or with more than 5 000 clades, against 20 extant taxa and 1 000 clades in Didier et al.| (2017).
Unlike for simulations of [Didier et al.| (2017), we did not filter the simulated trees with regard to their
complexity level (i.e., their expected computational time with the former algorithm).

Figure [0 displays the mean absolute error of speciation, extinction and fossil discovery rates obtained
from the corrected method provided in this work compared to the former one of [Didier et al.| (2017)), in
a same set of simulated phylogenetic trees with fossils. Though we can observe a slight improvement for
the estimates of the corrected computation, the accuracy of the estimates is essentially the same for the
two methods.

D A METROPOLIS-HASTINGS IMPORTANCE SAMPLING PROCEDURE

Our computation of the probability density of a phylogenetic tree topology with fossils with or without
time constraints on its divergence times requires that both the topology and the fossil ages are exactly
known, a situation which is not met in practice. Let us show how to deal with the case of our dataset,
i.e., where a set € of equiprobable topologies are provided and where age of each fossil f is only known
from its geological age interval Ir. For all trees 7 € Q and all vectors of fossil ages f € I, we have a
phylogenetic tree topology with fossils #7 ¢ for which we are able to compute the probability density. All
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contemporary lineages + fossil finds with rate 1.00 (Didier et al, 2017

contemporary lineages + fossil finds with rate 2.00 (Didier et al, 2017

contemporary lineages + fossil finds with rate 3.00 (Didier et al, 2017) - - - -
contemporary lineages + fossil finds with rate 1.00 (corrected) ——
contemporary lineages + fossil finds with rate 2.00 (corrected) ——

contemporary lineages + fossil finds with rate 3.00 (corrected
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Figure 9: Mean absolute error of speciation (cladogenesis), extinction and fossil discovery rate estimation
versus the simulation (evolutionary) time over 1 000 simulated trees with 1.5/1 (left) and 2.0/1 (right)
speciation/extinction rates and fossil discovery rates from 1 to 3.
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the topologies in 2 are assumed equiprobable. We make the additional assumption that the distribution
of fossil ages is uniform on the product-set of the time intervals I = &) e Taking into account the
uncertainty of the dataset, the divergence time distribution associated with a given internal node n is

YrealiP Hﬂmn<t>df i reaP(Hr 7 < )df

3)

ZTEQfI (H76)d fIZTeQ (Hre)df
The quantities involved in the ratio above cannot be directly computed and have to be estimated, for
instance by uniformly sampling the fossil ages in I. Being given N fossil age vectors fi, ..., fy uniformly

sampled from I, the estimated divergence time distribution associated to n is

SN Y caP(Hrg T < 1)
Y Y caP(Hre)

Unfortunately, because of its variance, the estimator above requires millions of samples to converge
in our dataset. A usual way to tackle this issue is to perform importance sampling (see, e.g., Robert
and Casella/2013). The general idea is to estimate the integral [ > .o P(H7¢, 7 < t)df by sampling
the fossil ages not uniformly but following a density q* biased toward the ages corresponding to high
values of ) .o P(H7 ¢, 7, <t). Since

<
/Z ’Hn,mStdf—/Z H”’T" PHTe ™ =0 6y,

T e TeEQ

it f], ..., £y, are independently sampled from density q*, an estimator of this integral is

Z Y7 eaP(Hre,m <1)
N &~ q*(f7)

The fact that ) .o P(H7 ¢, 7, < t) is bounded by (and strongly related to) > . P(H7 ) sug-
gests that considering a density q*(f) proportional to ) . P(H7 ) is suited for the importance sam-
pling of [; > 7cq P(H7e, 7 < t)df. Let us set

q* (f/) o ZTGQ (HT f/)
fI ZTeQ HT f)
If £, ..., £ are iid samples with the density q* just above, the ratio of Equation [3|is estimated by

N ZT caP(Hr £ ™ <t)

N = a () Z YreaPHrg,m <t)
fI ZT eQ HT f)d N Z’Teﬂ (HT,Q’)

Since it is not possible to directly sample following the density q*, which is known only up to the
intractable normalization constant [; . P(H7 ¢)df, we used the Metropolis-Hastings algorithm (e.g.,
Robert and Casellaj|2013) to build a Markov chain with target density q*. Given the i** vector of fossil
ages f! of this chain, we generate a candidate vector f first by uniformly selecting a fossil f among all the
fossils of the dataset and by replacing the corresponding entry of f/ by a uniform sample in the interval
centered on this entry of width equal to a time the with of the interval Iy that represents the uncertainty
on the age of fossil f (i.e., we use a usual sliding window proposal with reflection; « is a user-defined
parameter). This proposal transition kernel is basically symmetrical, i.e., getting the candidate vector
f from f! has the same probability as getting the candidate vector f! from f. The next fossil age vector
fi, 1 in the Markov chain is

ZTeQ P(HT,f{) ’
ZTGQ P(HT,F) 1
Z’TGQ P(HT,f,{) ’

- P(H,;
f with probability min{ 2.7en P T’f) 1} and

/ —
fi+1 -

(2

£/ with probability 1 — min{
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In the case where the speciation, extinction and fossilization rates of the model are not given a priori
(e.g., estimated by maximum likelihood), we sum over all their possible values by assuming that they all
follow the improper uniform distribution over [0, 4+o00] and by following a similar importance sampling
procedure. In plain English, the importance sampling is now perform over both the fossil age vector f
and the model rates © = (A, p1,9) by using the biased density q*(f, ©) proportional to > . Pe(Hr1 ),
where Pg(Hr ¢) is the probability of the phylogeny with fossils #7 ¢ under the FBD model with rates
O = (A p, ).

The proposal mechanism of the Markov chain used to sample according to this density first draws a
Bernoulli random variable with a probability 3 (provided by the user) according to which either a change
in a fossil age or a change in the speciation, extinction or fossilization rate is proposed. The change in
a fossil age is proposed in the exact same way as just above. The change in a rate is proposed first by
selected randomly the speciation, extinction or fossilization rate according to user-defined probabilities
then by using a sliding window of fixed length centered on the current selected rate.

The densities presented in the results section were obtained from the MCMC procedure presented
just above by discarding the first 10000 iterations then by keeping only 1 iteration over 300. We consider
a window of width equal to 80% of the length of the age interval Iy to propose a change in the age
of fossil f and windows of size 0.1, 0.1 and 0.01 to propose changes in the speciation, extinction and
fossilization rates respectively. We propose a change in a fossil age with probability 0.75 and a change in
the speciation, extinction or fossilization rate otherwise (the rate to be changed among the the speciation,
extinction and fossilization rate is then drawn uniformly). We run the MCMC procedure until get 2000
iterations. The iterations thus obtained pass all the convergence tests of the coda R package with an
effective size greater than 200 for all the parameters (fossil ages and rates, [Plummer et al.|2006). All
the parameters of the MCMC can be modified by calling the corresponding R function in the package.
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