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Decay of the Local Energy for the Charged

Klein-Gordon Equation in the Exterior De

Sitter-Reissner-Nordström Spacetime

Nicolas BESSET†

Abstract

We show decay of the local energy of solutions of the charged Klein-Gordon equation in the exterior De
Sitter-Reissner-Nordström spacetime by means of a resonance expansion of the local propagator.

1 Introduction

There has been enormous progress in our understanding of scattering properties of solutions of hy-
perbolic equations on black hole type backgrounds over the last years. The aim of such studies is
multifold. First of all these equations and thus their scattering properties are very important in their
own right. Secondly, the understanding of dispersive properties of the solutions of these equations
is a first step in the understanding of stability properties of the underlying spacetime. Eventually
understanding the classical equation is also a first step in understanding the quantization of the field.
The most important spacetime in this context is the (De Sitter) Kerr spacetime, which is conjectured
to be the unique solution of the Einstein equations describing a rotating black hole (for uniqueness
results see [1] and references therein, and also [17] for the charged case). In the case of positive cos-
mological constant, nonlinear stability of the De Sitter Kerr spacetime is now known thanks to the
seminal result of Hintz and Vasy [18]. The case of zero cosmological constant is still open, but see [19]
for recent progress in this direction. Scattering theories for classical equations are also at the origin of
many results in quantum field theory, see e.g. the mathematically rigorous description of the Hawking
effect in [15].

When studying linear waves on a black hole type spacetime, one encounters several difficulties.
The first is linked to trapping and it is already present in the case of the (De Sitter) Schwarzschild
spacetime, which describes spherically symmetric black holes. The second is superradiance, which
means that there is no positive conserved quantity for spin 1 equations on the (De Sitter) Kerr metric.
Whereas this difficulty is not present for the wave equation on the (De Sitter) Schwarzschild metric, it
also appears when one considers a charged Klein Gordon field on the (De Sitter) Reissner-Nordström
metric which describes a spherically symmetric charged black hole. In this context the phenomenon is
linked to the charge of the black hole and the test particle and thus different from the Kerr case, where
it is linked to the geometry of the spacetime. Superradiance already appears in flat spacetime when
one considers a charged Klein-Gordon field which evolves in a strong electric field. In this context the
natural setting seems to be the one of Krein spaces, see e.g. [9]. This setting however is not available
in the context of black holes, see [10].

In the present paper we show a resonance expansion for the solutions of the charged Klein-Gordon
equation on the De Sitter Reissner-Norström metric. As a corollary we obtain exponential decay of
the local energy for these solutions. We restrict our study to the case where the product of charges is
small. Such a resonance expansion for the solutions of the wave equation has been obtained first by
Bony-Häfner for the wave equation on the De Sitter Schwarzschild metric [5]. This result has been
generalized to much more complicated situations which include perturbations of the De Sitter Kerr
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metric by Vasy [30]. This last paper has developed new methods including a Fredholm theory for non
elliptic problems. These methods could probably also be applied to the present case. In the present
paper however we use the more elementary methods of Bony-Häfner [5] and Georgescu-Gérard-Häfner
[10].

The results of this paper hold if the product of the charges of the field and the black hole is
sufficiently small. This allows at many places of the paper to use perturbation arguments with respect
to the non charged case. As far as we are aware the absence of growing modes for the present system
is not known for general charge products. In contrast to that absence of growing modes is known for
the wave equation on the Kerr metric for general angular momentum of the black hole, see [31]. The
question of the existence or not of such modes is a very subtle question and growing modes appear
for example for the Klein-Gordon equation on the Kerr metric, see [25].

Let us also mention that it is crucial for our results that the cosmological constant is strictly
positive in order to define resonances as the poles of the meromorphic extension of the weighted
resolvent. The low frequency behaviour is more complicated in the zero cosmological constant case
and only polynomial decay of the local energy is expected in this case.

The paper is organized as follows. In Section 2 we give an introduction to the De Sitter Reissner-
Nordström metric and the charged Klein-Gordon equation on it. In Section 3, a meromorphic extension
result is shown for the cut-off resolvent and resonances are introduced. The resonance expansion is
presented in Section 4. Suitable resolvent-type estimates are obtained in Section 5. In section 6 we
prove the main theorem by a suitable contour deformation and using the resolvent-type estimates of
Section 5. The appendix contains a semiclassical limiting absorption principle for a class of generalized
resolvents which might have some independent interest.

Notations. The set {z ∈ C | =z ≷ 0} will be denoted by C±. For any complex number λ ∈ C, we

will write 〈λ〉 :=
√

1 + |λ|2, D(λ,R) will be the disc centered at λ ∈ C of radius R > 0 and D(λ,R){

its complementary set. For all ω = |ω|eiθ ∈ C\] −∞, 0], θ ∈ R, we will use the branch of the square
root defined by

√
ω :=

√
|ω|eiθ/2.

The notation Ckc will be used to denote the space of compactly supported Ck functions. Also, the
Schwartz space on R will be noted S . If V,W are complex vector spaces, then L(V,W ) will denote
the space of bounded linear operators V → W . All the scalar products 〈· , ·〉 will be linear in the
second component. For any function f , the range (respectively the support) of f will be noted Ran f
(respectively Supp f). If A is an operator, we will note D (L) its domain, σ (A) its spectrum and ρ (A)
its resolvent set.

Now we define the symbol classes on R2d

Sm,n :=
{
a ∈ C∞(R2d,C) | ∀(α, β) ∈ N2d, ∃Cα,β > 0, |∂αξ ∂βxa(x, ξ)| ≤ Cα,β〈ξ〉m−|α|〈x〉n−|β|

}
for any (m,n) ∈ Z2d. We then define the semiclassical pseudodifferential operators classes

Ψm,n := {aw(x, hD) | a ∈ Sm,n} , Ψ−∞,n :=
⋂
m∈Z

Ψm,n

with aw(x, hD) the Weyl quantization of the symbol a. For any c > 0, the notation P ∈ cΨm,n means
that P ∈ Ψm,n and the norm of P is bounded by a positive multiple of c.

2 Functional framework

2.1 The charged Klein-Gordon equation on the De Sitter-Reissner-Nordström
metric

Let

F (r) := 1− 2M

r
+
Q2

r2
− Λr2

3
.
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with M > 0 the mass of the black hole, Q ∈ R \ {0} its electric charge and Λ > 0 the cosmological
constant. We assume that the parameters

∆ := 1− 4ΛQ2, mk :=

√
1 + (−1)k

√
∆

2Λ
, Mk := mk −

2

3
Λm3

k

satisfy for any k ∈ {1, 2} the relations

4ΛQ2 < 1, M1 < M < M2 (1)

so that F has four distinct zeros −∞ < rn < 0 < rc < r− < r+ < +∞ and is positive for all r ∈ ]r−, r+[
(see [23], Proposition 1 with Λ replaced by Λ/3 in our setting). We also assume that 9ΛM2 < 1 so
that we can use the work of Bony-Häfner [5] (the condition (1) only ensures that 9ΛM2 < 2). The
exterior De Sitter-Reissner-Nordström spacetime is the lorentzian manifold (M, g) with

M = Rt × ]r−, r+[r × S2
ω, g = F (r) dt2 − F (r)−1 dr2 − r2dω2

where dω2 is the standard metric on the three-dimensional unit sphere S2.
Let Aµ := (Q/r, 0, 0, 0). Then the charged wave operator on (M, g) is

���g = (∇µ − iqAµ) (∇µ − iqAµ) =
1

F

((
∂t − i

qQ

r

)2

− F

r2
∂rr

2F∂r −
F

r2
∆S2

)
and the corresponding charged Klein-Gordon equation reads

���gu+m2u = 0 m > 0.

We set s := qQ ∈ R the charge product (which appears in the perturbation term of the standard wave
operator), X := ]r−, r+[r × S2

ω and V (r) := r−1 so that the above equation reads

(∂t − isV )2 u+ P̂ u = 0 (2)

with

P̂ = −F
r2
∂r
(
r2F∂r

)
− F

r2
∆S2 +m2F = −F 2∂2

r − F
(

2F

r
+
∂F

∂r

)
∂r −

F

r2
∆S2 +m2F (3)

defined on D(P̂ ) :=
{
u ∈ L2

(
X,F−1r2drdω

)
| P̂ u ∈ L2

(
X,F−1r2drdω

) }
(this is the spatial operator

in [5] with the additional mass term m2F ). It turns out that the positive mass makes the study of
the equation easier. Besides the fact that massless charged particles do not exist in physics, it is not
excluded that the resonance 0 for the case s = 0 (see [5]) can lift up to C+.

2.2 The Regge-Wheeler coordinate

We introduce the Regge-Wheeler coordinate x ≡ x (r) defined by the differential relation

dx

dr
:=

1

F (r)
. (4)

Using the four roots rα of F , α ∈ I := {n, c,−,+}, we can write

1

F (r)
= −3r2

Λ

∑
α∈I

Aα
r − rα

where Aα =
∏
β∈I\{α}(rα − rβ)−1 for all α ∈ I, and ±A± > 0. Integrating (4) then yields

x (r) = − 3

Λ

∑
α∈I

Aαr
2
α ln

∣∣∣∣r − rαr− rα

∣∣∣∣ (5)

3



with r := 1
2

(
3M +

√
9M2 − 8Q2

)
(we will explain this choice below); note that |Q| < 3√

8
M if (1)

holds (see the discussion below (17) in [23]). Therefore, we have

|r − rα| = |r− rα|
∏

β∈I\{α}

∣∣∣∣r − rβr− rβ

∣∣∣∣−Aβr2
β/(Aαr

2
α)

exp

(
− Λ

3Aαr2
α

x

)
∀α ∈ I

which entails the asymptotic behaviours

F (r (x)) + |r (x)− r±| . exp

(
− Λ

3A±r2
±
x

)
x→ ±∞. (6)

Note here that

Λ

3A±r2
±

= F ′(r±) = 2κ± (7)

where κ− > 0 is the surface gravity at the event horizon and κ+ < 0 is the surface gravity at the
cosmological horizon. Recall that κ± is defined by the relation

Xµ∇µXν = −2κ±X
ν X = ∂t

where the above equation is to be considered at the corresponding horizon.
In the appendix A, we follow Proposition IV.2 in [4] to show the extension result :

Proposition 2.1. There exists a constant A > 0 such that the function x 7→ r(x) extends analytically
to {λ ∈ C | |<λ| > A }.

On L2 (X,dxdω), define the operator P := rP̂ r−1, given in the coordinates (x, ω) by the expression

P = −r−1∂xr
2∂xr

−1 − F (r)

r2
∆S2 +m2F (r) = −∂2

x −W0∆S2 +W1

where

W0 (x) :=
F (r (x))

r (x)2 , W1 (x) :=
F (r (x))

r (x)

∂F

∂r
(r (x)) +m2F (r (x)) .

It will happen in the sequel that we write F (x) for F (r (x)) and also V (x) for V (r (x)). Observe
that the potentials W0 and W1 satisfy the same estimate as in (6).

As

dW0

dx
= F (r)

dW0

dr
=

2F (r)

r5

(
3Mr − 2Q2 − r2

)
,

we see that the maximum ofW0 occurs when x = 0, which corresponds to r = 1
2

(
3M +

√
9M2 − 8Q2

)
.

We stress here that the radius r has a geometrical meaning. Indeed, consider γ = (t, r, ω) a null
geodesic. We can assume that γ satisfies the equatorial initial conditions so that the motion lies in
the plane defined by θ = π/2 (see [22], Chapter 13, Proposition 11). Because ∂t and ∂φ are Killing
vector fields for the metric g, Noether’s theorem implies that

g (γ̇, ∂t) = F (r) ṫ = E ∈ R, g (γ̇, ∂φ) = r2 φ̇ = L ∈ R

where the constants E and L are respectively the energy and the angular momentum of the null
geodesic. Then the mass equation g (γ̇, γ̇) = 0 yields the relation

E2 = ṙ2 + F (r)
L2

r2

4



which is equivalent to (
1

r2

dr

dφ

)2

+
F (r)

r2
=

1

b2

where b = |L/E| is the impact parameter of the null geodesic. A trivial solution is given by r = r,
since the quantity

d

dr

r√
F (r)

=
1√
F (r)

(
1− r

2

F ′(r)

F (r)

)
cancels if and only if r = r. Observe that this solution corresponds to the energy E = W0(0) = F (r)

r2
.

The sphere in R3 centered at 0 with radius r is called the photon sphere : it is an unstable equilibrium
of the potential W0, describing closed null geodesic. In [23], it is shown this is the only trapping orbit
for null geodesics in the exterior De Sitter-Reissner-Nordström spacetime.

W0(x)

x

←− Black hole horizon Cosmological horizon −→

0

Figure 1: The potential W0 in the Regge-Wheeler coordinates.

2.3 The charge Klein-Gordon operator

Taking advantage of the spherical symmetry, we write

L2
(
R× S2,dxdω

)
'
⊕
`∈N

(
L2 (R, dx)⊗ Y`

)
=:
⊕
`∈N
V`

where for all ` ∈ N, Y` is the (2` + 1)-dimensional eigenspace of the operator
(
−∆S2 , H2(S2, dω)

)
associated to the eigenvalue ` (`+ 1). On each V`, we define P` as the restriction of P onto V` which
will be identified with an operator acting on L2(R, dx), i.e.

P` = −∂2
x + ` (`+ 1)W0 +W1 (8)

and we set D (P`) := H2(R,dx) so that P` is self-adjoint. In the sequel, we will use the following
(self-adjoint) realization of the total operator P :

P :=
⊕
`∈N

P`, D (P ) :=
{
u = (u`)`∈N ∈

⊕
`∈N
V` | ∀` ∈ N, u` ∈ D(P`)

}
.

Now the charged Klein-Gordon equation reads

(∂t − isV )2 u+ Pu = 0. (9)

The point is to see that if u is a solution of (9), then v := (u,−i∂tu− sV u) solves the first order
equation

−i∂tv = K̂(s)v (10)

where

K̂ (s) :=

(
sV Id
P sV

)
(11)

5



is the charge Klein-Gordon operator. Conversely, if v = (v0, v1) solves (10), then v0 solves (9). We
also define K̂` ≡ K̂`(s)

1 with P` in place of P for any ` ∈ N. Following [10], we realize K̂` with the
domain

D(K̂`) :=
{
u ∈ P−1/2

` L2(R, dx)⊕ L2(R,dx) | K̂`u ∈ P
−1/2
` L2(R,dx)⊕ L2(R,dx)

}
and realize the operator K̂ as the direct sum on N 3 ` of the K̂`.

Let Ė` be the completion of P
−1/2
` L2(R, dx)⊕ L2(R,dx) for the norm2

‖u‖2
Ė`

:= 〈u0, P`u0〉L2(R,dx)
+ ‖u1 − sV u0‖2

L2(R,dx)
u = (u0, u1) ∈ Ė`

and define
(
Ė , ‖.‖Ė

)
as the direct sum of the spaces Ė`. Lemma 3.19 of [10] shows that K̂` generates a

continuous one-parameter group (e−itK̂`)t∈R on (Ė`, ‖.‖Ė` ). We similarly construct the spaces
(
E`, ‖.‖E`

)
and

(
E , ‖.‖E

)
with 〈P`〉 instead of P`. Let us mention here that for any n ∈ R the quantity

〈v |v〉n := 〈v1 − nv0, v1 − nv0〉L2(R,dx)
+ 〈(P − (sV − n)2 )u0, u0〉L2(R,dx)

is formally conserved if v = (u,−i∂tu) with u solution of (9) and is continuous with respect to the
norm ‖.‖E . However, it is in general not positive nor continuous with respect to the norm ‖.‖Ė (see
paragraph 3.4.3 in [10] for more details) : this is superradiance. When Λ = 0 (that is, when the
cosmological horizon is at infinity), the natural energy 〈. | .〉sV− is positive for s small enough and it
can be used to define a Hilbert framework.

An important observation is the fact that the norms ‖.‖
Ė`

and ‖.‖E` are locally equivalent, meaning

that for any v ∈ Ė and any cut-off χ ∈ C∞c (R,R), we have

‖χv‖
Ė
. ‖χv‖E . ‖χv‖Ė . (12)

The first inequality is obvious, and the second one is established with the Hardy type estimate
‖χv‖

L2 . ‖P 1/2v‖
L2 (see Lemma 9.5 in [10]; the validity of this result in our setting is discuted

in the subsection 3.4 below).

2.4 The quadratic pencil

Let u be a solution of (9). If we look for u of the form u = eiztv with z ∈ C for some v, then v satisfies
the equation (P − (z − sV )2)v = 0. We define the harmonic quadratic pencil

p` (z, s) := P` − (z − sV )2 , D(p`(z, s)) := 〈P`〉−1L2(R, dx) = H2(R,dx)

and realize the total quadratic pencil as

p (z, s) :=
⊕
`∈N

p` (z, s) ,

D(p(z, s)) :=
{
u = (u`)`∈N ∈

⊕
`∈N
V` | ∀` ∈ N, u` ∈ D(p`(z, s)),

∑
`∈N
‖p`(z, s)u`‖V` < +∞

}
.

Proposition 3.15 in [10] sets the useful relations

ρ(K̂`) ∩ C \ R =
{
z ∈ C \ R | p` (z, s) : H2(R,dx)→ L2(R,dx) is bijective

}
(13)

and

R̂ (z, s) := (K̂(s)− z)−1 =

(
p (z, s)−1 (z − sV ) p (z, s)−1

Id + (z − sV ) p (z, s)−1 (z − sV ) (z − sV ) p (z, s)−1

)
(14)

for all z ∈ ρ(K̂`) ∩ C \ R. In comparison, the relation (1.7) in [5] involves the resolvent of P`, which
corresponds to the case s = 0 for us. Proposition 3.12 in [10] shows that (14) is valid for z ∈ ρ(K̂`)∩R;
by using the local equivalence (12) of the norms ‖.‖

Ė`
and ‖.‖E` , we can use (14) for z ∈ ρ(K̂`) ∩ R

if we consider the cut-off resolvent χR̂ (z, s)χ with χ ∈ C∞c (R,R). In the sequel, we will simply call
p`(z, s) the quadratic pencil when ` ∈ N will be fixed.

1We will often drop the dependance in s.
2Note that the norm ‖.‖2

Ė`
is conserved if [P`, sV ] = 0; it is the case if s = 0.
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3 Meromorphic extension and resonances

In this Section, we are concerned with some meromorphic extension results as well as analyticity near
0 of weighted resolvents associated to K̂(s). Using [10], we first define asymptotic hamiltonians which
are somehow comparable to the well-known case of s = 0 studied in [5]. From there, we ”glue” together
the asymptotic operators in order to construct a meromorphic extension for the charge Klein-Gordon
operator. We then deduce the existence of a meromorphic extension for the cut-off inverse of the
quadratic pencil.

3.1 Notations

We introduce some notations following Section 2.1 in [10]. First observe that if u solves (2), then

v := e−isr−1
+ tu satisfies

(∂2
t − 2is(V − r−1

+ )∂t − s2(V − r−1
+ )2 + P )v = 0.

We can therefore work with the potential Ṽ := V − V+ = Or→r+(r+− r) in this Section. In order not

to overload notations, we will still denote Ṽ by V .
Let us define H := L2 (X,drdω) and

P := rF−1/2P̂ r−1F 1/2 = −r−1F 1/2∂rr
2F∂rr

−1F 1/2 − F

r2
∆S2 +m2F (15)

with P̂ given by (3). Since u 7→ r−1F 1/2u is an unitary isomorphism from H to L2
(
X,F−1r2drdω

)
,

the results obtained below on P will also apply to P̂ (and thus to P ). Observe that the space
Ė has been defined in our setting with the operator P which is rP̂ r−1 expressed with the Regge-
Wheeler coordinate, and P̂ is equivalent to P as explained above; in the sequel, we will denote by
Ė the completion of P−1/2H ⊕ H for the norm ‖(u0, u1)‖2

Ė
:= 〈u0,Pu0〉H + ‖u1 − sV u0‖2H . Let

i±, j± ∈ C∞(]r−, r+[ ,R) such that

i± = j± = 0 close to r∓, i± = j± = 1 close to r±,

i2− + i2+ = 1, i±j± = j±, i−j+ = i+j− = 0.

We then define the operators

k± := s(V ∓ j2
∓r
−1
− ), P± := P − k2

±, P̃− := P − (sr−1
− − k−)2.

We now define the isomorphism on Ė (see comments above Lemma 3.13 in [10])

Φ(sV ) :=

(
Id 0
sV Id

)
and we introduce the energy Klein-Gordon operator

Ĥ(s) = Φ(sV )K̂(s)Φ−1(sV ) =

(
0 Id

P − s2V 2 2sV

)
with domain

D(Ĥ(s)) =
{
u ∈P−1/2H⊕H | Ĥ(s)u ∈P−1/2H⊕H

}
and the asymptotic hamiltonians

Ĥ±(s) =

(
0 Id

P± 2k±

)

7



with domains

D(Ĥ+(s)) =
(
P
−1/2
+ H ∩P−1

+ H
)
⊕ 〈P+〉−1/2H,

D(Ĥ−(s)) = Φ(sr−1
− )

(
P̃
−1/2
− H ∩ P̃−1

− H
)
⊕ 〈P̃−〉−1/2H.

These operators are self-adjoint on the following spaces (see the beginning of the paragraph 5.2 in
[10]) :

Ė+ := P
−1/2
+ H⊕H,

Ė− := Φ(sr−1
− )

(
P̃
−1/2
− H⊕H

)
.

In the sequel, we will also use the spaces E± defined as above but with the operators 〈P±〉 instead of
P±. Finally, we define the weight w(r) :=

√
(r − r−)(r+ − r).

3.2 Abstract setting

Meromorphic extensions in our setting follow from the works of Mazzeo-Melrose [21] and Guillarmou
[13], as stated in Proposition 5.3 of [10]. The abstract setting in which this result can be used is
recalled in this paragraph.

We first recall for the reader convenience the Abstract assumptions (A1)-(A3), the Meromorphic
Extensions assumptions (ME1)-(ME2) as well as the ”Two Ends” assumptions (TE1)-(TE3) of [10] :

P > 0, (A1)

sV ∈ B(P−1/2L2) > 0,

if z 6= R then (z − sV )−1 ∈ B(P−1/2L2) and there exists n > 0
such that ‖(z − sV )−1‖

B(P−1/2L2)
. |=z|−n,

there exists c > 0 such that ‖(z − sV )−1‖
B(P−1/2L2)

.
∣∣|z| − ‖sV ‖

L∞

∣∣
if |z| ≥ c‖sV ‖

L∞

, (A2)



(a) wV w ∈ L∞,
(b) [V,w] = 0

(c) (P − s2V 2)−1/2[(P − s2V 2), w−ε]wε/2 ∈ B(L2) for all 0 < ε ≤ 1,

(d) if ε > 0 then ‖w−εu‖
L2 . ‖(P − s2V 2)1/2u‖

L2 for all u ∈ (P − s2V 2)−1/2L2,

(e) w−1〈(P − s2V 2)〉−1 ∈ B(L2) is compact

, (ME1)

For all ε there exists δε > 0 such that w−ε(P − z2 − s2V 2)−1w−ε extends from C+

to {z ∈ C | =z > −δε} as a finite meromorphic function with values
in compact operators acting on L2

, (ME2)


[x, sV ] = 0,

x 7→ w(x) ∈ C∞(R,R),

χ1(x)Pχ2(x) = 0 for all χ1, χ2 ∈ C∞(R,R) bounded with all their derivatives
and such that Suppχ1 ∩ Suppχ2 = ∅

, (TE1)

There exists `− ∈ R such that (P+, k+) and (P̃−, (k− − `−)) satisfy (A2), (TE2)
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

(a) wi+sV i+w,wi−(sV − `−)i−w ∈ L∞,
(b) [P − s2V 2, i±] = ĩ[P − s2V 2, i± ]̃i for some ĩ ∈ C∞c (]−2, 2[ ,R) such that ĩ [−1,1] ≡ 1

(c) (P+, k+, w) and (P−, (k− − `−), w) fulfill (ME1) and (ME2),

(d) P
1/2
± i±P

−1/2
± ,P1/2i±P−1/2 ∈ B(L2),

(e) w[(P − s2V 2), i±]wP
−1/2
± , w[(P − s2V 2), i±]wP−1/2, [(P − s2V 2), i±]P

−1/2
± ,

(e) [(P − s2V 2), i±]P−1/2,P−1/2[w−1,P]w are bounded operators on L2,

(e) if ε > 0 then ‖w−εu‖
L2 . ‖P1/2u‖

L2 for all u ∈P−1/2L2

. (TE3)

Section 9 in [10] shows that all the above hypotheses actually follow from some geometric assump-
tions (the assumptions (G1)-(G7) of the paragraph 2.1.1 in [10]). We show here that the charged
Klein-Gordon equation in the exterior De Sitter-Reissner-Nordstöm spacetime can be dealt within
this geometric setting :

(G1) The operator P in [10] is −∆S2 for us, and satisfies of course [∆S2 , ∂φ] = 0.

(G2) The operator h0,s in [10] is P for us, that is α1(r) = α3(r) = r−1F (r)1/2, α2(r) = rF (r)1/2 and
α4(r) = mF (r)1/2. These last coefficients are clearly smooth in r. Furthermore, since we can
write F (r) = g(r)w(r)2 with g(r) = Λ

3r2 (r − rn)(r − rc) & 1 for all r ∈ ]r−, r+[, it comes for all
j ∈ {1, 2, 3, 4} as r → r±

αj(r)− w(r)
(
i−(r)α−j + i+(r)α+

j

)
= w(r)

(
g(r)1/2 − α±j

)
= Or→r±

(
w(r)2

)
,

α±1 = α±3 =
1

r2
±

√
Λ(r± − rn)(r± − rc)

3
,

α±2 =

√
Λ(r± − rn)(r± − rc)

3
,

α±4 =
m

r±

√
Λ(r± − rn)(r± − rc)

3
.

Also, we clearly have αj(r) & w(r). Direct computations show that

∂mr ∂
n
ω

(
αj − w

(
i− α

−
j + i+ α

+
j

))
(r) = Or→r±

(
w(r)2−2m

)
for all m,n ∈ N.

(G3) The operator ks in [10] is sV (r) for us, so ks = ks,v and ks,r = 0. We have V (r) = Or→r+(r+ −
r) = Or→r+

(
w(r)2

)
(recall the discussion at the beginning of Subsection 3.1), V (r) − r−1

− =
Or→r−(r − r−) = Or→r−

(
w(r)2

)
and ∂mr ∂

n
ωV(r) is bounded for any m,n ∈ N.

(G4) The perturbation k in [10] is simply k = ks = sV for us, so that this assumption is trivially
verified.

(G5) The operator h0 in [10] is simply h0 = h0,s = P for us, and we have

P = −α1(r)∂rw(r)2r2g(r)∂rα1(r)− α1(r)2∆S2 + α1(r)2m2r2

= α1(r)
(
−∂rw(r)2r2g(r)∂r −∆S2 +m2r2

)
α1(r)

& α1(r)
(
−∂rw(r)2∂r −∆S2 + 1

)
α1(r).

(G6) This assumption is trivial in our setting.

(G7) We check that (P+, k+) and (P̃−, k−−sr−1
− ) satisfy (G5). Since α1(r), k+(r) = Or→r±(|r±−r|),

we can write for |s| < mr−

P+ = −α1(r)∂rw(r)2r2g(r)∂rα1(r)− α1(r)2∆S2 + α1(r)2m2r2 − k+(r)2

= α1(r)

(
−∂rw(r)2r2g(r)∂r −∆S2 +m2r2 − k+(r)2

α1(r)2

)
α1(r)

& α1(r)
(
−∂rw(r)2∂r −∆S2 + 1

)
α1(r).
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As k−(r)− sr−1
− = Or→r±(|r± − r|) too, we get the same conclusion with P̃−.

To end this Subsection, we recall from Section 9 of [10] that

(G3) =⇒ (A1)-(A3), (G3) =⇒ (ME1), (G3)-(G5) =⇒ (TE1)-(TE3)

and (ME2) is satisfied by assumptions (G1), (G2) and (G7) on the form of the operator P using
Mazzeo-Melrose standard result (see paragraph 9.2.2 in [10] and also [21] for the original work of
Mazzeo-Melrose).

3.3 Study of the asymptotic hamiltonians

The aim of this paragraph is to show the existence of a meromorphic continuation of the weighted
resolvent wδ(Ĥ±(s)− z)−1wδ form C+ into a strip in C− which is analytic in z in a tight box near 0.
We start with the meromorphic extension.

Lemma 3.1. For all δ > 0, there exists εδ > 0 such that, for all s ∈ R, wδ(Ĥ±(s) − z)−1wδ has a
meromorphic extension from C+ to {ω ∈ C | =ω > −εδ/2} with values in compact operators acting on

Ė±.

Proof. Since hypotheses (G) are satisfied, we can apply Lemma 9.3 in [10] which shows that we can
apply Mazzeo-Melrose result : the meromorphic extension of wδ(P± − z2)−1wδ exists from C+ to a
strip Oδ. This strip is explicited in the work of Guillarmou (Theorem 1.1 of [13]) :

Oδ =

{
z ∈ C | z2 = λ(3− λ), <λ > 3

2
− δ
}
.

The absence of essential singularity is due to the fact that the metric g is even (see Theorem 1.4 and
also Definition 1.2 in [13]). We have to check that the set Oδ contains a strip in C−. To see this, write
λ = α+ iβ and z = a+ ib with α, β, a, b ∈ R, b ≤ 0 and z2 = λ(3− λ). Solving for{

a2 − b2 = α(3− α) + β2

2ab = (3− 2α)β
(16)

we find β = ±
√

1
2(a2 − b2 − 9/4) + 1

2

√
(a2 − b2 − 9/4)2 + 4a2b2

α = 3
2 −

ab
β

and these expressions make sense since β = 0 can happen only if ab = 0, and

β = ± |a||b|√
b2 + 9/4

+Oa→0(a), β = Ob→0(b).

If b = 0 then α = 3/2 and β solves a2 = 9/4 + β2, and conversely α = 3/2 implies b = 0. Hence
α = 3/2 allows all z ∈ R. We may now assume b < 0 (hence α 6= 0). The condition <λ = α > 3/2− δ
reads ab

β < δ, and this condition is trivially satisfied if α ≥ 3/2 since (16) implies that ab
β ≤ 0 < δ.

Otherwise, if α < 3/2 then (16) implies that ab
β > 0 and

b > −
∣∣∣∣βa
∣∣∣∣ δ.

We compute (
β

a

)′
=
aβ′ − β
a2
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where ′ denotes here the derivative with respect to a, and

β′ =
a

2β

(
1 +

(a2 − b2 − 9/4) + 2b2√
(a2 − b2 − 9/4)2 + 4a2b2

)

so that

aβ′ − β = 0 ⇐⇒ a2

(
1 +

(a2 − b2 − 9/4) + 2b2√
(a2 − b2 − 9/4)2 + 4a2b2

)
= 2β2

⇐⇒ a2(a2 − b2 − 9/4) + 2a2b2

= −(b2 + 9/4)
√

(a2 − b2 − 9/4)2 + 4a2b2 + (a2 − b2 − 9/4)2 + 4a2b2

⇐⇒ (b2 + 9/4)2((a2 − b2 − 9/4)2 + 4a2b2) = (b4 + 81/16 + a2b2 − 9a2/4 + 9b2/2)2.

After some tedious simplifications, we obtain the very simple condition

aβ′ − β = 0 ⇐⇒ 9a4b2 = 0.

Thus a = 0 is the only possible extremum of β when b < 0. One can check that β → 1 as a → ±∞,
whence

{z ∈ C | 0 ≥ =z > −δ} ⊂ Oδ.

From there, we deduce the existence of the meromorphic extension of wδ(Ĥ±(s) − z)−1wδ for
z ∈ {ω ∈ C | =ω > −εδ/2} thanks to Lemma 4.3 and Proposition 4.4 of [10].

Before proving the analyticity near 0 of the weighted resolvent, we need to prove the following
result :

Lemma 3.2. For all δ > 0, wδ(P − z2)−1wδ has no pole in R.

Proof. We can work with the operator P expressed in the Regge-Wheeler coordinate since P 7→P is
an unitary transform (as explained at the beginning of Subsection 3.1). Applying the arguments of
Subsection 2.1 in [5], we know that there is no eigenvalue on R and only 0 could be a pole.

We introduce then the Jost solutions following [3]. Fix ` ∈ N and s ∈ R. Let W̃` := `(`+1)W0+W1.
Recall that κ− > 0 is the surface gravity at the event horizon (cf. (7)). For any α ∈ ]0, 2κ−[,∫ +∞

−∞

(
(r−1
− − V (x))1]−∞,0](x) + V (x)1[0,+∞[(x) + |W̃`(x)|

)
eα|x|dx < +∞.

The convergence of the above integral comes from the exponential decay of r− r± and W̃` at infinity.
For all z ∈ C such that =z > −κ−, Proposition 2.1 in [3] shows that there exist two unique C2 functions
x 7→ e± (x, z, s, `), that we will simply write e±(x) or e±(x, z), satisfying the Schrödinger equation

(∂2
x + (z − sV )2 − W̃`(x))e±(x) = 0 ∀x ∈ R.

with ∂xe± ∈ L∞`oc(Rx,C), and such that if =z > −κ−, then ∂jxe± is analytic in z for all 0 ≤ j ≤ 1 and

lim
x→±∞

(
|e±(x)− e±izx|+ |∂xe±(x)∓ ize±izx|

)
= 0. (17)

By checking the formula on C2(R,C) first and then extending it on H2(R,dx) by density, one easily
shows that the kernel K of (P` − z2)−1 for =z > −κ− is given by

K(x, y, z) =
1

W (z)

(
e+(x, z)e−(y, z)1x≥y(x, y) + e+(y, z)e−(x, z)1y≥x(x, y)

)
where W (z) = e+(x)(e−)′(x) − (e+)′(x)e−(x) is the wronskian between e+ and e− (independent of
x ∈ R, see the very beginning of the proof of Proposition 2.1 in [3]). In particular, a pole z of order

11



n > 0 for (P − z2)−1 with =z > −κ− is a zero of order n of the wronskian W , and e+(·, z) and e−(·, z)
are then collinear and in L2(R, dx).

We now reproduce the computation (2.14) in [5]. Assume that z = 0 is a pole. Then for all ` ∈ N,
e+(·, 0, s, `) ∈ L2(R, dx). Using that e+ solves (P` − s2V 2)e+ = 0, we can write

0 =

∫ R0

−R0

(
(P` − s2V 2)e+

)
e+dx

=
[
re+∂x

(
r−1e+

)]R0

−R0
+

∫ R0

−R0

∣∣r∂x (r−1e+

)∣∣2 dx+ ` (`+ 1)

∫ R0

−R0

F (r)
∣∣r−1e+

∣∣2 dx

+m2

∫ R0

−R0

F (r) |e+|2 dx.

Letting R0 → +∞ and using the decay of the derivative of e+ in (17) show that e+ = 0, a contradiction.

We are now ready to prove the analyticity.

Proposition 3.3. Let 0 < δ < κ− and R > 0. There exists ε0 ≡ ε0(δ) > 0 such that the extension of
wδ(Ĥ±(s)− z)−1wδ is holomorphic in (s, z) for s ∈ R sufficiently small and z ∈ ]−R,R[ + i ]−ε0, ε0[.

The restriction δ < κ− comes from the fact that the extension of (Ĥ± − z)−1 depends itself on δ
(see formula (18) in the proof).

Proof. Observe that (Ĥ−(s)−z)−1 = (Φ(−sr−1
− )Ĥ−(s)Φ(sr−1

− )−z)−1 on Ė−, so it is sufficient to prove

the announced results for wδ(Ĥ+(s)− z)−1wδ and wδ(
˜̂
H−(s)− z)−1wδ with

˜̂
H−(s) := Φ(−sr−1

− )Ĥ−(s)Φ(sr−1
− ) =

(
sr−1
− 1

P̃− 2k− − sr−1
−

)
.

Proceeding as in the proof of Proposition 4.4 in [10], we can work on the operators P − (z − k̃±)2

with

k̃+ := k+, k̃− := k− − sr−1
−

so that k̃± are now exponentially decaying potentials at infinity (and are polynomial in s).
We reproduce the perturbation argument of Lemma 4.3 in [10]. Choose ε0 ∈ ]0, εδ[, εδ as in Lemma

3.1, and pick z ∈ ]−R,R[+i ]−ε0, ε0[ so that wδ(P−z2)−1wδ is holomorphic (it is possible since there
is no pole in R by Lemma 3.2) and wδ(P − (z − k̃±)2)−1wδ is meromorphic3 in z. Write then in H

wδ(P − z2)−1wδ = wδ(P − (z − k̃±)2)−1wδ
(
Id +K±(s, z)

)
(18)

with

K±(s, z) := w−δk̃±(2z − k̃±)w−δwδ(P − z2)−1wδ.

K±(s, z) is clearly analytic in s ∈ D(0, 1) and in z ∈ ]−R,R[+i ]−ε0, ε0[. Since k̃± = Or→r−±∞
(
w2κ−

)
by (6) (we use here that κ− < |κ+|), δ < κ− and wδ(P − z2)−1wδ is compact by Lemma 3.1, we
see that K±(s, z) is compact. By two-dimensional analytic Fredholm theory, there exists a subvariety
S ⊂ D(0, 1)×

(
]−R,R[ + i ]−ε0, ε0[

)
such that (Id +K±(s, z))−1 exists and is holomorphic in (s, z) ∈(

D(0, 1)×
(

]−R,R[ + i ]−ε0, ε0[
))
\ S. We then get the representation formula for the extension :

wδ(P − (z − k̃±)2)−1wδ = wδ(P − z2)−1wδ
(
Id +K±(s, z)

)−1
. (19)

3Lemma 3.1 of course applies if we replace k− by k̃−.
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We claim that for σ > 0 sufficiently small, we have(
D(0, σ)×

(
]−R,R[ + i ]−ε0, ε0[

))
∩ S = ∅. (20)

Otherwise, for every n ∈ N \ {0}, there is a couple (sn, zn) ∈ D(0, 1/n) ×
(

]−R,R[ + i ]−ε0, ε0[
)

such that Id + K(sn, zn) is not invertible. By compactness, we can assume that (sn, zn) → (0, z0) as
n → +∞ for some z0 ∈ [−R,R] + i[−ε0, ε0]. But Id + K(0, z0) = Id is invertible for all z ∈ C, so
Id +K±(s, z) must be invertible too for all (s, z) in a small neighbourhood of (0, z0), a contradiction.

Assuming now that s is sufficiently small so that (20) is true, we deduce by (19) that the poles of
wδ(P − (z − k̃±)2)−1wδ are exactly the poles of wδ(P − z2)−1wδ. Since for z ∈ ]−R,R[ + i ]−ε0, ε0[,
wδ(P − z2)−1wδ has no pole, the same conclusion applies for wδ(P − (z − k̃±)2)−1wδ.

3.4 Construction of the meromorphic extension of the weighted resolvent

The aim of this paragraph is to show the existence of a meromorphic extension for wδ(K̂(s)− z)−1wδ

in a strip near 0 of width uniform in s. Since the operators K̂(s) and Ĥ(s) are equivalent modulo the
isomorphism Φ(sV ) (by (3.19) in [10]), we will work with the latter one.

We first need some preliminary results. The starting point is the following result :

Proposition 3.4 (Proposition 5.5 in [10]). There is a finite set Z ∈ C \ R with Z̄ = Z such that
the spectrum of Ĥ(s) is included in R ∪ Z and the resolvent has a meromorphic extension to C \ R.
Moreover, the set Z consists in eigenvalues of finite multiplicity of Ĥ(s).

An important fact is that Proposition 3.6 in [10] shows that Z ≡ Z(s) is contained in the disc
D(0, C|s|) for some constant C > 0.

We will henceforth use the Regge-Wheeler coordinate x introduced in Subsection 2.2 and will
abusively note P and H respectively the operator P expressed in the coordinates (x, ω)

P = −F−1/2(r(x)) ∂2
x F
−1/2(r(x))−W0(x)∆S2 +W1(x)

and the space L2(R× S2
ω, F (r(x))dxdω).

Lemma 3.5. For all δ > 0, wδ sends Ė into Ė± and Ė into itself.

Proof. Let u = (u0, u1) ∈ Ė . We only show that wδĖ ⊂ Ė−, the proof of the other statements being

slightly easier. We thus look for v = (v0, v1) ∈ P̃
−1/2
− H⊕H such that (wδu0, w

δu1) = (v0, sr
−1
+ v0+v1).

Since wδ is bounded on R, wδu1 ∈ H. Next, using the facts that (wδ)′u0, V+w
δu0 and W

1/2
j wδu0 are

in H thanks to (ME1) (d) (0 ≤ j ≤ 1), we compute

‖P̃1/2
− wδu0‖2H =

〈
Pwδu0, w

δu0

〉
H
− ‖s2(r−1

− − k−)2wδu0‖2H︸ ︷︷ ︸
. ‖P1/2u0‖2H

and working with the operators P` defined as P` (` ∈ N), we get〈
P`w

δu0, w
δu0

〉
H

= ‖∂xwδu0‖2H +
〈
(−`(`+ 1)W0 +W1)wδu0, w

δu0

〉
H︸ ︷︷ ︸

. ‖P1/2
` u0‖2H

,

‖∂xwδu0‖2H . ‖(w
δ)′u0‖2H + ‖wδu′0‖2H . ‖P

1/2
` u0‖2H .

This proves that wδu0 ∈ P̃
−1/2
− H. Hence v0 := wδu0 ∈ P̃

1/2
− H, and the problem boils down to show

that v1 := wδu1−sr−1
+ v0 = wδu1−sr−1

+ wδu0 is in H; this is a consequence of (ME1) (d) which implies
that sr−1

+ wδu0 ∈ H.

For z ∈ C+ and s ∈ R, we introduce for the operator

Q(s, z) := i2−(Ĥ−(s)− z)−1 + i2+(Ĥ+(s)− z)−1 =
∑
±
i2±(Ĥ±(s)− z)−1.
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By Lemma 3.5, Q(s, z)wδ is well-defined on Ė . A direct computation shows that on Ė

(Ĥ(s)− z)Q(s, z)wδ =

(
Id +

∑
±

[Ĥ(s), i2±](Ĥ±(s)− z)−1

)
wδ

whence for z /∈ Z (see Proposition 3.4)

wδQ(s, z)wδ = wδ(Ĥ(s)− z)−1wδ
(
Id + K̂±(s, z)

)
. (21)

with

K̂±(s, z) := w−δ
∑
±

[Ĥ(s), i2±](Ĥ±(s)− z)−1wδ

Lemma 3.6. The operators on the left and right-hand sides of (21) send Ė into itself.

Proof. For the left-hand side of (21), we successively use Lemma 3.5, the facts that (Ĥ±(s) − z)−1

sends Ė± into D(Ĥ±(s)) ⊂ Ė± and i± sends Ė± into Ė (by Lemma 5.4 of [10]), and again Lemma 3.5.
We now deal with the right-hand side of (21). By Lemma 3.5, we only have to show that

w−δ[Ĥ(s), i±](Ĥ±(s)−z)−1 sends Ė± into Ė . Let u ∈ Ė± and write v = (v0, v1) : (Ĥ±(s)−z)−1u ∈ Ė±.
We have

w−δ[H(s), i±](H±(s)− z)−1u = w−δ
(

0 0
[P, i±] 0

)
(v0, v1) =

(
0

w−δ [P, i±] v0

)
=

(
0

w−δ [P, i±]w−δwδv0

)
.

Since wδĖ± ⊂ Ė±, we can use (TE3) (e) to conclude that the second component is in H, whence

w−δ[Ĥ(s), i±](Ĥ±(s)− z)−1Ė± ⊂ Ė (when ± = −, we use that P1/2P̃
−1/2
− is bounded on H).

Lemma 3.7. Let 0 < δ < κ− and R > R0. Id + K̂±(s, z) is a holomorphic family of Fredholm
operators acting on Ė for (s, z) ∈ D(0, σ)×

(
]−R,R[ + i ]−ε0, ε0[

)
, with σ > 0 sufficiently small and

ε0 > 0 as in Proposition 3.3.

Proof. Write

K̂±(s, z) =
∑
±
w−δ[Ĥ(s), i2±]w−δwδ(Ĥ±(s)− z)−1wδ.

By Lemma 3.1, wδ(Ĥ±(s)− z)−1wδ is compact on Ė± and Proposition 3.3 shows that the extension is
holomorphic in (s, z). Furthermore,

w−δ[Ĥ(s), i2±]w−δ =

(
0 0

w−δ
[
P, i2±

]
w−δ 0

)
is bounded on Ė± (as a consequence of (TE3) (e), see the end of the proof of Lemma 3.6). Hence
K̂±(s, z) is compact and thus Id + K̂±(s, z) is Fredholm.

We are now ready to construct the meromorphic extension of the weighted resolvent. We keep in
mind that Proposition 3.4 and the remark below show that for |s| < s0, s0 > 0 fixed, and R > R0 :=
2Cs0, we have Z ⊂ D(0, R/2).

Theorem 3.8. Let 0 < δ < κ−.

1. For all s ∈ R, wδ(Ĥ(s)− z)−1wδ has a meromorphic extension from C+ \ Z to {ω ∈ C | =ω >
−εδ/2} with values in compact operators acting on Ė , with εδ/2 > 0 as in Lemma 3.1.

2. For all R > R0 and s ∈ ]−s0, s0[ sufficiently small, the extension of wδ(Ĥ(s)−z)−1wδ is analytic
in z ∈ ]−R,R[ + i ]−ε0, ε0[ with ε0 > 0 as in Proposition 3.3.
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Proof. Our strategy is to compare Ĥ(s) with the assymptotic hamiltonians Ĥ±(s) in order to invert
Id + K̂±(s, z) in formula (21) by analytic Fredholm theory (the argument is similar to the one used
for Proposition 3.3).

We first show Part 1. Fix s ∈ R and let z ∈ ]−R,R[+ i
]
−εδ/2, εδ/2

[
with εδ/2 > 0 as in Propositon

3.3. Since Ĥ±(0) = Ĥ(0), we observe that K̂±(0, z) = 0 andQ(0, z) = (Ĥ(0)−z)−1. Hence the operator
Id + K̂±(0, z) = Id is invertible for all z ∈ C. Finally, Lemma 3.1 shows that wδ(Ĥ±(s) − z)−1wδ is
meromorphic in z. We can therefore use the meromorphic Fredholm theory to invert Id + K̂±(s, z) on
Ė . Using (21) to write the representation formula

wδ(Ĥ(s)− z)−1wδ = wδQ(s, z)wδ
(
Id + K̂±(s, z)

)−1
(22)

which valid for z ∈ ]−R,R[ + i
]
−εδ/2, εδ/2

[
. This shows that wδ(Ĥ(s) − z)−1 has a meromorphic

extension in this strip and Part 1 is settled.
Let us show Part 2. of the theorem. We pick this time (s, z) ∈ D(0, σ) ×

(
]−R,R[ + i ]−ε0, ε0[

)
.

Lemma 3.7 shows that, if σ is small enough, Id + K̂±(s, z) is a holomorphic family of Fredholm
operators acting on Ė . We can thus use the two-dimensional analytic Fredholm theory which implies
that there is a meromorphic extension D(0, σ)×

(
]−R,R[ + i ]−ε0, ε0[

)
3 (s, z) 7→

(
Id + K̂±(s, z)

)−1
,

and (22) is valid for (s, z) ∈ D(0, σ)×
(

]−R,R[ + i ]−ε0, ε0[
)

with σ small. This shows that the poles

of wδ(Ĥ(s)− z)−1wδ are the poles of (Id + K̂±(s, z))−1 and wδQ(s, z)wδ, the last ones being the poles
of wδ(Ĥ±(s)− z)−1wδ.

The multidimensional analytic Fredholm theory also implies that there exists a (possibly empty)
subvariety S ⊂ D(0, σ)×

(
]−R,R[ + i ]−ε0, ε0[

)
such that Id + K̂(s, z) is invertible for (s, z) /∈ S. We

claim that we can take σ > 0 small enough so that(
D(0, σ)×

(
]−R,R[ + i ]−ε0, ε0[

))
∩ S = ∅.

Otherwise, for every n ∈ N \ {0}, there is a couple (sn, zn) ∈ D(0, 1/n) ×
(

]−R,R[ + i ]−ε0, ε0[
)

such that Id + K̂(sn, zn) is not invertible. By compactness, we can assume that (sn, zn) → (0, z0) as
n → +∞ for some z0 ∈ [−R,R] + i[−ε0, ε0]. But Id + K̂(0, z0) = Id is invertible for all z ∈ C, so
Id + K̂±(s, z) must be invertible too for all (s, z) in a small neighbourhood of (0, z0), a contradiction.

We now assume s small enough so that Id+ K̂±(s, z) is invertible on Ė for z ∈ ]−R,R[+ i ]−ε0, ε0[.
Using then the formula (22), we conclude that the poles of wδ(Ĥ(s)− z)−1wδ are precisely the poles
of wδQ(s, z)wδ, which are the poles of wδ(Ĥ±(s)− z)−1wδ. We then use Proposition 3.3 to conclude
that there is no pole for z ∈ ]−R,R[ + i ]−ε0, ε0[. This completes the proof.

As a first consequence, we deduce a holomorphy result for the resolvent.

Corollary 3.9. Let s ∈ R such that |s| < s0 with Cs0 < ε0. The resolvent (Ĥ(s)−z)−1 is holomorphic
in z ∈ C+ for s ∈ R small enough.

Proof. We know by Theorem 3.8 that the weighted resolvent wδ(Ĥ(s) − z)−1wδ is holomorphic
in z ∈ (]−R,R[ + i ]−ε0, ε0[) ∩ C+ ⊂ D(0, R/2) ⊂ C+ if we assume s sufficiently small.
By Proposition3.4, (Ĥ(s) − z)−1 is holomorphic in C+ \ Z. Assume then that z0 ∈ C+ ∩ Z is a
pole of order m0 ∈ N : there exist some finite rank operators A1, . . . , Am0 : H → H such that

(Ĥ(s)− z)−1 =

m0∑
j=1

Aj
(z − z0)j

+ holomorphic term ∀z ∈ C+ near z0.

Since R > R0, Z ∩ C+ ∈ D(0, R/2) ∩ C+ and then

wδ(Ĥ(s)− z)−1wδ =

m0∑
j=1

wδAjw
δ

(z − z0)j
+ holomorphic term.

is holomorphic in z near zj , so that A1 = . . . = Am0 = 0 and (Ĥ(s)−z)−1 is holomorphic in z ∈ C+.
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We finally deduce the existence of the cut-off inverse of the quadratic pencil and define resonances.

Corollary 3.10. The operator χp(z, s)−1χ : L2(R,dx)→ H2(R, dx) defines for any χ ∈ C∞c (R,R) a
meromorphic function of z ∈ {ω ∈ C | =ω > −εκ−/2} and analytic if =z > −ε0, with εκ−/2, ε0 > 0
given in Lemma 3.1 (for δ = κ−) and Proposition 3.3 respectively.
The poles z of this extension are exactly the poles of the cut-off resolvent χ(Ĥ(s) − z)−1χ and are
independent of the choice of χ. We call them resonances of p and write z ∈ Res(p). Similarly, we
define Res(p`) as the poles of χp`(z, s)

−1χ for all ` ∈ N.

Proof. Let R > 0 and let z ∈ C with −R ≤ <z ≤ R and =z > −εκ−/2. The meromorphic extension

w(Ĥ(s)− z)−1w : Ė → Ė entails the meromorphic extension w(K̂(s)− z)−1w : Ė → Ė since Ĥ(s) and
K̂(s) are equivalent on Ė modulo the isomorphism Φ(sV ) introduced in Subsection 3.1. Since w(x) is
exponentially decaying by (6), the operator χ(K̂(s)− z)−1χ : Ė → Ė has a meromorphic continuation
in a strip in C− for any cut-off χ ∈ C∞c (R,R).

By formula (14) and the discussion below, we see that we can define the operator χp(z, s)−1χ :
L2(R,dx) → H2(R, dx) for any χ ∈ C∞c (R,R) as a meromorphic function of z, and its poles are
precisely the poles of χ(K̂(s)− z)−1χ.

To conclude the proof, it remains to prove the analyticity in the whole strip
{
=z > −ε0

}
: this

follows from Theorem 4.1 below.

4 Resonance expansion for the charged Klein-Gordon equation

We present in this section the main result of this paper which is an extension of Theorem 1.3 in [5].
By using the formula (13) and (14) as well as (3.21) in [10] and the local equivalence (12) of the norms
‖.‖
Ė`

and ‖.‖E` if z ∈ R, we can define for =z > −ε1 (ε1 as in Theorem 3.8) the meromorphic extension

of the cut-off resolvent R̂χ,`(z) := χ(K̂`− z)−1χ. For all resonance z0 ∈ Res(p`), denote by m(z0) ∈ N
its multiplicity and set

Πχ,`
j,k :=

1

2πi

∮
∂γ

(−i)k

k!
R̂χ,`(z)(z − z0)kdz

defined for all integer k ≥ −(m(z0) + 1) with γ a small positively oriented circle enclosing z0 and no
other resonance. We will denote by R̂χ(z) and Πχ

j,k the cut-off resolvent of the full operator K̂ and the
corresponding generalized projector, respectively. Recall that Res(p) is introduced in Corollary 3.10.

We first introduce the set of pseudo-poles of P whose points approximate high frequency resonances.
The proof is given in Appendix B.

Theorem 4.1. There exist K > 0 and θ > 0 such that, for any C > 0, there exists an injective map
b̃ : Γ→ Res(p) with

Γ =

√
F (r)

r

(
±N \ {0} ± 1

2
± qQ√

F (r)
− i

2

√∣∣∣∣3− 12M

r
+

10Q2

r2

∣∣∣∣ (N +
1

2

))
.

the set of pseudo-poles, such that all the poles in

ΩC = {λ ∈ C | |λ| > K,=λ > −max{C, θ|<λ|}}

are in the image of b̃. Furthermore, if µ ∈ Γ and b̃(µ) ∈ ΩC , then

lim
|µ|→+∞

(b̃(µ)− µ) = 0.

If <µ =

√
F (r)

r

(
±` \ {0} ± 1

2 ±
qQ√
F (r)

)
for ` ∈ N \ {0}, then the corresponding pole b̃(µ) has multi-

plicity 2`+ 1.

We can now state our main result :
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Theorem 4.2. Let χ ∈ C∞c (R,R).

(i) Let ν > 0 such that ν /∈ Γ (Γ is the set of pseudo-poles as in Theorem 4.1), ν < εκ−/2 (εκ−/2 as
in Theorem 3.8) and Res(p) ∩ {λ ∈ C | =λ = −ν} = ∅. There exists N > 0 such that, for all
u ∈ Ė with 〈−∆S2〉Nu ∈ Ė and s small enough, we have

χe−itK̂χu =
∑

zj∈Res(p)
=zj>−ν

m(zj)∑
k=0

e−izjt tk Πχ
j,ku+ E(t)u (23)

for t > 0 sufficiently large, with

‖E(t)u‖
Ė
. e−νt‖〈−∆S2〉Nu‖

Ė

and the sum is absolutely convergent in the sense that

∑
zj∈Res(p)
=zj>−ν

m(zj)∑
k=0

‖Πχ
j,k〈−∆S2〉−N‖

Ė→Ė
< +∞.

(ii) There exists ε > 0 such that, for any increasing positive function g with limx→+∞ g(x) = +∞
and g(x) ≤ x for x� 0, for all u ∈ Ė with g(−∆S2)u ∈ Ė and s small enough, we have

‖χe−itK̂χu‖Ė . (g(eεt))−1‖g(−∆S2)u‖Ė

for t > 0 sufficiently large.

Remark 4.3. 1. Formula (23) provides a physical interpretation of resonances : they are the fre-
quencies and dumping rates of charged Klein-Gordon field in presence of the charged black hole
(see Chapter 4.35 in [7] for a discussion on the interpretation of resonances).

2. Part (ii) of Theorem 4.2 shows that a logarithmic derivative loss in the angular direction (ln〈−∆S2〉)αu ∈
Ė with α > 1 entails the integrability of the local energy :∥∥∥∥∫ +∞

0
χe−it(K̂−z)χudt

∥∥∥∥
Ė

. ‖(ln〈−∆S2〉)α‖
Ė
.

3. When Q = Λ = 0, r = 3M and κ− = 1/4M . Denote by Γ̃ the set of pseudo-poles of Theorem
4.1 for Q = Λ = 0. For any pseudo-pole λ ∈ Γ̃ with negative imaginary part, |=λ| ≥ 1

12
√

3
. By

Theorem 3.8, we have a meromorphic extension of the weighted charge Klein-Gordon operator

for =λ > −κ−
2 . Thus, if M < 3

√
3

2 , then Γ̃ ∩ {ω ∈ C | =ω > −κ−/2} 6= ∅. Since F is a smooth
function, this holds true with Γ when Q and Λ are small and in this case the resonance expansion
(23) is not only an exponential decay of solutions.

5 Estimates for the cut-off inverse of the quadratic pencil

In this section, we show some estimates on the cut-off inverse of the quadratic pencil. We can work
with ` ∈ N fixed but our estimates have to be uniform in `. Since

(
χp(−z̄ + 2sV, s)χ

)∗
= χp(z, s)χ,

we can restrict ourselves to consider z ∈ C with <z > −2s0‖V ‖L∞ for some fixed s0 > 0 such that
0 < |s| < s0. In the following, we are simply denoting by L2 the space L2(R, dx). For some real
numbers R,C0, C1 > 0 (determined by Theorem 5.1 below), we define the

• zone I as [−R,R] + i [−C0, C0],

• zone II as [R, `/R] + i [−C0, C0],
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=λ = −C0 − C1 ln 〈λ〉

iR

R
0

−iC0

−R R `/R R`

zone I

zone II zone III zone IV

Figure 2: The four zones.

• zone III as [`/R,R`] + i [−C0, C0],

• zone IV as ([R`,+∞[ + i ]−∞, C0]) ∩ {λ ∈ C | =λ ≥ −C0 − C1 ln〈λ〉} ∩ Ωε

with Ωε :=
{
ω ∈ C | =ω > −ε

}
and ε = εκ−/2 > 0 (see Part 1. of Theorem 3.8.

We quote here all the estimates that we are going to show in this chapter in the following theorem,
which is similar to Theorem 2.1 in [5].

Theorem 5.1. Let χ ∈ C∞c (R,R), s ∈ R and ε, Ωε as above. If s is small enough, then the following
estimates hold uniformly in ` ∈ N :

1. For all R > 0, C > 0 and 0 < C0 < ε, Res(p) ∩ ([−R,R] + i [−C0, C]) = ∅ and the operator

χp (z, s)−1 χ : L2 → L2 (24)

exists and is bounded uniformly in z ∈ [−R,R] + i [−C0, C]. Moreover, we have

‖χp` (z, s)−1 χ‖
L2→L2 ≤ ‖χp (z, s)−1 χ‖

L2→L2 .
∏

zj∈Res(p)
|zj |<2R

1

|z − zj |
. (25)

2. There exist R > 0 and 0 < C0 < ε such that there is no resonance in [R, `/R] + i [−C0, C0].
Furthermore, for all z ∈ [R, `/R] + i [−C0, C0], we have

‖χp`(z, s)−1χ‖
L2→L2 .

1

〈z〉2
. (26)

3. Let R > 0 and 0 < C0 < ε be fixed and suppose that ` � 0. The number of resonances of p`
in [`/R,R`] + i[−C0, C0] is bounded uniformly in ` and there exists C > 0 such that, for all
z ∈ [`/R,R`] + i[−C0, C0],

‖χp`(z, s)−1χ‖
L2→L2 . 〈z〉C

∏
zj∈Res(p`)
|z−zj |<1

1

|z − zj |
. (27)

Furthermore, there exists ε > 0 such that there is no resonance in [`/R,R`] + i[−ε, 0] and we
have for all z ∈ [`/R,R`] + i[−ε, 0]

‖χp`(z, s)−1χ‖
L2→L2 .

ln〈z〉
〈z〉

e|=z| ln〈z〉. (28)

4. Let R� 0, C0 > 0 and C1 > 0. Set

Ω̃` :=
(
[R`,+∞[ + i ]−∞, C0]

)
∩
{
λ ∈ C | =λ ≥ −C0 − C1 ln〈λ〉

}
∩ Ωε.

There is no resonance in Ω̃` and there exists C > 0 such that for all z in this set,

‖χp`(z, s)−1χ‖
L2→L2 ≤ C〈z〉−1eC|=z|. (29)
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Remark 5.2. High frequency resonances of the zone III (i.e. resonances whose real part are of order
`� 0) are localized in Theorem 4.1.

The announced estimate in the zone I is a direct application of results of Section 3 (see Theorem
3.8). We thus show the estimates for the zones II, III and IV.

5.1 Estimates in the zone II

We prove part 2. of Theorem 5.1 using the complex scaling introduced in Section 4 of [33]. Observe
that the zone II does not exist if ` = 0, so that we can assume that ` ≥ 1. Let z ∈ [R, `/R]+i [−C0, C0]
and choose N ∈ [R, `/R] such that z ∈ [N, 2N ]+i [−C0, C0]. We introduce the semiclassical parameter

h := N−1

and the new spectral parameter

λ := h2z2 ∈ [1/4, 4] + i [−4C0h, 4C0h] .

In this setting, we define the operator

p̃h(
√
λ, s) := h2p` (z, s) = −h2∂2

x + α2W0 (x)︸ ︷︷ ︸
=:Qh

−λ+ h2W1 (x) + 2h
√
λsV (x)− h2s2V (x)2︸ ︷︷ ︸

=:Rh(λ)

where α := h(`(`+ 1))1/2 � 2A > 0, A as in Proposition 2.1.
We now use the (α-dependent) contour Γθ := Γ−θ ∪ Γ+

θ for 0 < θ < π/2, with4

Γ±θ :=
{
x+ if±θ (x, ln(g±∞)/κ±) | x ∈ R±

}
where (using estimate (6) for W0)

g±∞ := lim
x→±∞

e2κ±xW0(x)

and

f±θ (x, β) :=

{
0 if |x| ≤ β/2− C1

θ(x− β/2) if |x| ≥ β/2 + C2

with constants C1, C2 > 0 as in (4.4) in Section 4 of [33] (see Figure 3 for the behaviour of Γθ). Define
next L2(Γθ) and H2(Γθ) as the associated Lebesgue and Sobolev spaces. Using the analytic extension
of x 7→ r(x) on the set Σ := {η ∈ C | |<η| > A }, we extend V , W0 and W1 on Σ (and still denote
them V , W0 and W1). We then define the distorted operators

p̃h,θ(
√
λ, s) = p̃h(

√
λ, s) �Γθ , Qh,θ := Qh �Γθ , Rh,θ (λ) = Rh (λ) �Γθ .

If qh,θ denotes the symbol of Qh,θ, then Lemma 4.3 in [33] shows that there exists 0 < c < 1 and
θ0 > 0 such that

|qh,θ (x, ξ)− λ| & θ(〈ξ〉2 + eκ±x〈α〉2) ±x ≥ 0

provided that <(λ) > 0, =(λ) < c and 0 < θ < θ0 (recall that ±κ± < 0). For h small enough (that is
R large enough), we can apply Proposition 4.1 in [33] to get

‖(Qh,θ − λ)−1‖
L2(Γθ)→H2(Γθ)

= O(θ−1).

In order to invert the distorted quadratic pencil, we use a Neumann series argument by showing
that Rh,θ(λ) = OL2(Γθ)(h) (as a multiplication operator). In view of the form of Rh,θ in (5.1) and

4The factor 1/κ± in the second argument of f±θ comes from the fact that κpmx for us corresponds to Zworski’s
variable r.
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Figure 3: The contour Γθ.

because the extension of r is analytic, it is enough to bound x 7→ r(x + if±θ (x)) below and above for
|x| > 2A . By Lagrange inversion formula (41), we can write

|r(x+ if±θ (x))− r±| ≤
+∞∑
k=1

ck
e2kκ±x

k!

for some coefficients ck > 0 (recall from Subsection 2.2 that 2κ± = Λ
3A±r2

±
), and the series converges

(because (41) converges uniformly when |<x| > A ). Since the sum is decreasing with respect to x,
we deduce r < +∞ on Γθ. On the other hand,

|r − r±| = C(r − rn)
− Anr

2
n

A±r2± (r − rc)
− Acr

2
c

A±r2± |r − r∓|
−
A∓r

2
∓

A±r2± e2κ±x

with C ∈ R. Since no terms on the right-hand side can blow up when restricted on Γθ and since the
exponential goes to zero when |x| → +∞, it follows that r → r± > 0 as x → ±∞. We therefore
conclude that the restriction of r on Γθ ∩ D(0, R0){ is bounded from below and above for R0 � 0,
giving Rh,θ(λ) = OL2(Γθ)(h). Thus,

p̃h,θ(
√
λ, s)−1 =

(
1 + (Qh,θ − λ)−1Rh,θ(λ)

)−1
(Qh,θ − λ)−1.

We finally choose χ ∈ C∞ (R,R) and increase if necessary the value of the number A so that
Suppχ ⊂ [−A ,A ]. From Lemma 3.5 in [28], we have in the L2 sense

χp̃h,θ(
√
λ, s)−1χ = χp̃h(

√
λ, s)−1χ

whence

‖χp`(z, s)−1χ‖
L2→L2 = h2‖χp̃h(

√
λ, s)−1χ‖

L2→L2 . 〈z〉−2.

5.2 Estimates in the zone III

We turn to the proof of part 3. of Theorem 5.1. We define the semiclassical parameter

h := (`(`+ 1))−1/2

with again ` > 0 since the zone does not exist for ` = 0. For z ∈ [`/R,R`] + i [−C0, C0], we define a
new spectral parameter

λ := h2z2 ∈
[

1

3R2
, R2

]
+ i[−

√
2C0Rh,

√
2C0Rh] ⊂ [a, b] + i[−ch, ch]

20



for some 0 < a < b and c > 0. Finally, we set

P̃h := h2P` = −h2∂2
x +W0 + h2W1, p̃h(

√
λ, s) := P̃h − (

√
λ− hsV )2

and write P̃θ and p̃θ for the corresponding distorted operators on the contour Γθ as we did in the
paragraph 5.1. We are still using the subscript L2 when we work with the distorted operators.

As W0 admits a non-degenerate maximum at x = 0 (see Section 2, Figure 1), (x, ξ) = (0, 0) is a
trivial solution of the Hamilton equations associated to the principal symbol of P̃h :{

ẋ = 2ξ

ξ̇ = −W ′0(x)
.

Therefore the energy level E0 := W0(0) is trapping. For this reason, the zone III is called the trapping
zone.

We first show an adaptation of Lemma 6.5 of [6] to our setting.

Proposition 5.3. For θ = Nh with N > 0 large enough and s ∈ R sufficiently small, there exist
C ≡ C(N) > 0 and ε > 0 such that, for all E ∈ [E0 − ε,E0 + ε] and |λ− E| ≤ εθ/2, it holds

‖(P̃θ − (
√
λ− hsV )2)−1‖

L2→L2 = O(h−C)
∏

λj∈Res(p̃)
|λ−λj |<εθ

h

|λ− λj |
.

Proof. The announced estimate is known for the resolvent (P̃θ − λ)−1 = p̃θ(
√
λ, 0)−1 corresponding

to the case s = 0. The argument can be found in [29] which uses techniques developed in [27], and
the authors of [6] adapted it for the one dimensional case of a non degenerate trapping energy level
E0. More precisely, for θ = Nh with N � 0 large enough, one can construct a bounded operator
K̃ ∈ L

(
L2, L2

)
(see (6.15) in [6]) satisfying the following properties :

(i) ‖K̃‖
L2→L2 = O(1),

(ii) r := rank K̃ ≤ O(θh−1 ln(1/θ)),

(iii) for h small enough, there exists ε > 0 such that, for all E ∈ [E0−ε,E0+ε] and λ ∈ [E−εθ,E+εθ],

‖(P̃θ − iθK̃ − λ)−1‖
L2→D

≤ O(θ−1), D := D(P̃θ).

In [28] Lemma 3.2, it is shown that P̃θ − λ is a Fredholm operator from its domain D to L2, so we
can construct a well-posed Grushin problem

P(λ) :=

(
P̃θ − λ R−
R+ 0Cr→Cr

)
: D ⊕ Cr → L2 ⊕ Cr (30)

where R− and R+ are constructed with P̃θ − iθK̃ − λ (see [27], page 401, below (6.12) for the con-
struction).

Now consider s 6= 0. If s is small enough, (P̃θ − iθK̃ − (
√
λ− hsV )2)−1 is invertible by pseudodif-

ferential calculus5 as for the case s = 0. By the resolvent identity, one can show that

‖(P̃θ − iθK̃ − (
√
λ− hsV )2)−1‖

L2→D
≤ O(θ−1) +O(h|s|)‖(P̃θ − iθK̃ − (

√
λ− hsV )2)−1‖

L2→D
O(θ−1)

since |λ| ≤ h(|<z|+ |=z|) ≤ O(1) +O(h). Hence for s sufficiently small, we have

‖(P̃θ − iθK̃ − (
√
λ− hsV )2)−1‖

L2→D
≤ O(θ−1) λ ∈ [E − εθ, E + εθ].

5See the definition of the operator K at the beginning of the proof of Lemma 6.5 in [6].
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Because the quadratic pencil remains a Fredholm operator provided that ‖hsV ‖
L∞ is sufficiently

small6, we can write a new well-posed Grushin problem

P(λ) :=

(
p̃θ(
√
λ, s) R−

R+ 0Cr→Cr

)
: D ⊕ Cr → L2 ⊕ Cr.

where this time R+ and R− are constructed with P̃θ − iθK̃ − (
√
λ− hsV )2. If we note

E(λ) := P(λ)−1 =

(
E(λ) E+(λ)
E−(λ) E0(λ)

)
: L2 ⊕ Cr → D ⊕ Cr,

then the relations E(λ)P(λ) = P(λ)E(λ) = Id as well as the following estimate (which results of
properties (i) and (iii) above)

(P̃θ − iθK̃ − (
√
λ− hsV )2)−1(P̃θ − (

√
λ− hsV )2) = O(1)

imply as in [6] that ‖E(λ)‖
L2→D

, ‖E−(λ)‖
L2→Cr

= O(θ−1) and ‖E+(λ)‖Cr→D
, ‖E0(λ)‖Cr→Cr = O(1).

Applying formula (8.11) in [27], we obtain

(P̃θ − (
√
λ− hsV )2)−1 = E(λ)− E+(λ)E0(λ)−1E−(λ)

which implies

‖(P̃θ − (
√
λ− hsV )2)−1‖

L2→D
= O(θ−1)(1 + ‖E0(λ)−1‖Cr→Cr ).

as in Lemma 6.5 of [6], and we then follow the end of its proof to conclude.

We can now follow the arguments below Lemma 2.2 in [5]. The set of pseudo-poles (2.28) and the
injective map (2.29) in this reference exist in our setting by Theorem 4.1 (but are quite different).
This implies there is no resonance in Ω(h) := [a/2, 2b] + i[−εh, ch] provided that h and s are small
enough. As a result, (27) holds true. As for the estimate (28), we use Burq’s Lemma :

Lemma 5.4 (Lemma 2.3 in [5]). Suppose that f(λ, h) is a family of holomorphic functions defined
for 0 < h < 1 in a neighbourhood of Ω(h) := [a/2, 2b] + i[−ch, ch] with 0 < a < b and c > 0, such that

|f(λ, h)| .

h
−C in Ω(h)
1

|=λ|
in Ω(h) ∩ C+

Then, there exists h0 , C > 0 such that, for any 0 < h < h0 and any λ ∈ [a, b] + i[−ch, 0],

|f(λ, h)| ≤ C | lnh|
h

eC|=λ||lnh|/h.

We apply this result to the function f(λ, h) := ‖χ(P̃h − (
√
λ− hsV )2)−1χ‖, observing that for all

λ ∈ Ω(h) ∩ C+ the resolvent identity gives

‖(P̃h − (
√
λ− hsV )2)−1‖ ≤ 1

|=λ|
+ ‖(P̃h − (

√
λ− hsV )2)−1‖O(h|s|)

|=λ|
.

1

|=λ|

because ‖(P̃h − (
√
λ− hsV )2)−1‖ is uniformly bounded on this set for h and s small enough.

6Recall that the set of Fredholm operators in L(D , L2) is open for the norm topology.
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5.3 Estimates in the zone IV

This last paragraph is devoted to the proof of part 4. of Theorem 5.1. For z ∈ ([R`,+∞[ + i ]−∞, C0])∩
{λ ∈ C | =λ ≥ −C0 − C1 ln〈λ〉}, there exists a numberN > R` > 0 such that z ∈ [N, 2N ]+i [−C lnN,C0].
We introduce the semiclassical parameters

h :=
1

N
, µ := ` (`+ 1)h2, ν := h2.

Observe that these parameters are very small when N � 0. Moreover, we can consider that h ≤ 1
even if ` = 0, simply by taking R ≥ 1 in the zone I if it was not the case (R as in Theorem 5.1). We
then define a new spectral parameter

λ := z2h2 ∈ [1, 2] + i [Ch lnh,C0h] ⊂ [a, b] + i [−ch |lnh| , ch]

where 0 < a ≤ 1 < 2 ≤ b < +∞ and max {C,C0} < c < +∞ (observe that a and b do not depend on
h). Let J := [a, b] and set

J+ := {η ∈ C+ | <(η) ∈ J}.

Define then

P̃h := h2P` = −h2∂2
x + µW0 + νW1, p̃h(

√
λ, s) := h2p` (z, s) = P̃h − (

√
λ− hsV )2.

Semiclassical limiting absorption principle for the quadratic pencil. As in [5], we first get
a control until the real line by using a semiclassical limiting absorption principle for the semiclassical
quadratic pencil. The appendix C provides a proof, close to the idea developed by Gérard [11], of
such a result for a class of perturbed resolvents, so we only have to check if the required abstract
assumptions are satisfied.

Introduce the generator of dilationsA := −ih (x∂x + ∂xx) with domain D (A) :=
{
u ∈ L2 | Au ∈ L2

}
.

We then pick ρ ∈ C∞c (R, [0, 1]) such that Supp ρ ⊂ [a/3, 3b] and ρ ≡ 1 on I := [a/2, 2b], and we define
A as the closure of the operator ρ(P )Aρ(P ). In this setting, ρ(P )Aρ(P ) is well-defined on D(A), A
is self-adjoint and we have P ∈ C2 (A) (see [5], Section 2.4) so that (I) holds. A direct computation
shows that

ih−1[P,A] = 4P − 4µW0 − 4νW1 − 2µxW ′0 − 2νxW ′1

so that, for µ and ν sufficiently small, we get the Mourre estimate (M) (uniform in µ, ν)

1I(P )[P, iA]1I(P ) ≥ ah1I(P ).

Since V ∈ B(D(P ), L2) it is clear that V ∈ L∞`oc(P̃h). Moreover, assumption (C) is fulfilled for
f(z,B) := (

√
z − sB)2.

It remains to show that assumption (A) is satisfied for B = hV . Observe that this abstract assump-
tion is particularly well adapted to semiclassical pseudodifferential calculus framework, especially the
commutator estimate which provides the supplementary term h. In [14], it is shown that A ∈ Ψ−∞,1

(A is the operator cχ̃ in [14], see above Lemma 3.3). We are going to use it to show the following
result :

Lemma 5.5. For all 0 ≤ σ ≤ 1, V ∈ B(D(〈A〉σ)) and [V, χ(P̃h)] ∈ hB(D(〈A〉σ)).

Proof. Let Ω := [0, 1] + iR and let z ∈ Ω. On D(〈A〉2)×D(〈A〉2), we define the sesquilinear form

Qz(ϕ,ψ) := 〈V 〈A〉−2zϕ, 〈A〉2zψ〉 ∀ϕ,ψ ∈ D(〈A〉2).

By functional calculus, Qz is well-defined and analytic in z ∈ Ω. When z ∈ {0}+ iR, |(1 + λ2)z/2| = 1
for all λ ∈ R so that functional calculus first applied to 〈A〉2z and then to 〈A〉−2z gives

|Qz(ϕ,ψ)| ≤ |〈V 〈A〉−2zϕ,ψ〉|
= |〈〈A〉−2zϕ, V ψ〉|
≤ |〈ϕ, V ψ〉|
≤ ‖V ‖

L∞‖ϕ‖L2‖ψ‖L2 .
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When z = 1, pseudodifferential calculus shows that 〈A〉2V 〈A〉−2 ∈ Ψ0,0, so that for all z ∈ {1} + iR
(using again functional calculus for 〈A〉±2i=z),

|Qz(ϕ,ψ)| ≤ |〈〈A〉2V 〈A〉−2〈A〉−2i=zϕ,ψ〉|
≤ ‖〈A〉2V 〈A〉−2‖

L2→L2‖〈A〉−2i=zϕ‖
L2‖ψ‖L2

≤ ‖〈A〉2V 〈A〉−2‖
L2→L2‖ϕ‖L2‖ψ‖L2 .

By the maximum principle, there exists a constant C > 0 such that Qz is bounded by C for all
0 ≤ <z ≤ 1. In particular, we can extend Qσ/2 on L2 ×D(〈A〉2) as a bounded sesquilinear form and
for σ ∈ [0, 1] and ϕ ∈ L2, we have

|Qσ/2(ϕ,ψ)| ≤ C‖ϕ‖
L2‖ψ‖L2 .

This means that the map D(〈A〉σ) 3 ψ 7→ 〈V 〈A〉−σϕ, 〈A〉σψ〉 is continuous. By definition of the
adjoint operator and because 〈A〉σ is self-adjoint, this implies that V 〈A〉−σϕ ∈ D(〈A〉σ) for all ϕ ∈ L2.

Consider now the sesquilinear form

Q̃z(ϕ,ψ) := 〈[V, χ(P̃h)]〈A〉−2zϕ, 〈A〉2zψ〉 ∀ϕ,ψ ∈ D(〈A〉2).

By semiclassical pseudodifferential calculus, we have (see e.g. (4.4.19) in [34])

[V, χ(P̃h)] =
h

i
{V (x), χ(ξ2 + µW0(x) + νW1(x))}w + h3Ψ−∞,0

= hΨ−∞,−∞ + h3Ψ−∞,0

because V (x) ∈ Ψ0,0, V ′(x) ∈ Ψ0,−∞ and χ(P̃h) ∈ Ψ−∞,0. Despite the fact that the error term above
looks less regular than the main term, it is in fact more regular as it can be shown using expansion
(4.4.15) in [34] (but we will not need such a regularity). Now we can proceed as above with Qz and
V to conclude.

Now that all assumptions in appendix C have been checked, we can use Theorem C.1 as well as
the fact that ‖〈x〉−σ〈A〉σ‖ . 1 for all σ ≤ 17 : for σ ∈ ]1/2, 1] and h small enough, we have uniformly
in µ, ν

sup
λ∈J+

∥∥∥〈x〉−σp̃h(
√
λ, s)−1〈x〉−σ

∥∥∥ ≤ ∥∥〈x〉−σ〈A〉σ∥∥( sup
λ∈J+

∥∥∥〈A〉−σp̃h(
√
λ, s)−1〈A〉−σ

∥∥∥)∥∥〈A〉σ〈x〉−σ∥∥ . h−1.

Estimates below the real axis. Next, we can use the work of Martinez [20] to get a bound
under the real line. Indeed, Section 4 of the last reference applies in our setting because p̃h(

√
λ, s)

is a differential operator (so that Proposition 3.1 and Corollary 3.2 of [20] apply) and because (λ −
hsV (x))2 ∈ [λ − δ, λ + δ] + i[ch lnh, 0] for all λ in the zone IV and all x ∈ R if s is small enough (so
that the estimate (4.6) in [20] still holds). It follows that equation (4.13) holds with p̃h(

√
λ, s) instead

of Pθ − ρ8. In our setting, this reads

‖χp̃h(
√
λ, s)−1χ‖ ≤ Ch−C (31)

for some C > 0.
To get (29), we reproduce the argument at the end of the proof of Lemma 2.4 in [5]. Choose f

holomorphic satisfying the following conditions :
|f | < 1 for λ ∈ [a/2, 2b] + i[ch lnh, 0],

|f | ≥ 1 for λ ∈ [a, b] + i[ch lnh, 0],

|f | ≤ hC for λ ∈ [a/2, 2b] \ [2a/3, 3b/2] + i[ch lnh, 0]

7We show it using the sesquilinear form (ϕ,ψ) 7→ 〈〈x〉−σ〈A〉σϕ,ψ〉 first well-defined on D(A2) × D(A2) because
〈x〉−2 ∈ Ψ0,−2, and then extended to L2 × L2 by maximum principle.

8We can in fact insert any pseudodifferential operator here provided that hypotheses of Section 2 in [20] are verified.
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where C > 0 is the constant in (31). Since f is holomorphic, the function

g(λ) := ln ‖χp̃(
√
λ, s)−1χ‖

L2→L2 + ln |f(λ)|+ C

ch
=λ

is subharmonic. We can check that g(λ) . ln(h−1) on the boundary of [a/2, 2b] + i[ch lnh, 0]. By the
maximum principle, this estimate holds for all λ ∈ [a/2, 2b] + i[ch lnh, 0], whence

‖χp̃h(
√
λ, s)−1χ‖

L2→L2 . h
−1e

C
ch
|=λ|.

The desired estimate (29) then follows.

6 Proof of the main theorem

We prove in this section Theorem 4.2. The resonance expansion (23) follows from the theory of
resonances as presented in Section 3 of [5], and we can follow the proof of this paper. We only have
to adapt the estimate for the first order operator :

Proposition 6.1 (Proposition 3.1 in [5]). Let ` ∈ N and let χ ∈ C∞c (R,R). There exists χ̃ ∈ C∞c (R,R)
satisfying χ̃χ = χ such that for all z ∈ C \ Res(p`), the cut-off resolvent χ(K̂` − z)−1χ is a bounded
operator on Ė` and satisfies uniformly in `

‖R̂χ,`(z)‖Ė`→Ė` . 〈z〉‖χ̃p`(z, s)
−1χ̃‖

L2→L2 .

Proof. Since the norms ‖.‖E` and ‖.‖
Ė`

are locally equivalent thanks to the Hardy type estimate

‖χ.‖
L2 . ‖P

1/2
` .‖

L2 uniformly in ` (see Lemma 9.5 in [10]), we can work on (E`, ‖.‖E` ). For (u0, u1) ∈ E`,
we have

R̂χ,`(z)

(
u0

u1

)
=

(
χp`(z, s)

−1χ((z − sV )u0 + u1)
χ(1 + (z − sV )p`(z, s)

−1(z − sV ))χu0 + (z − sV )χp`(z, s)
−1χu1

)
(32)

and since it holds

‖(z − sV )χp`(z, s)
−1χu1‖L2 ≤ (1 + |s|‖V ‖

L∞ )〈z〉‖χp`(z, s)−1χ‖
L2→L2‖u1‖L2 ,

the E`-norm of (32) can be bounded if we show the following estimates :

‖P 1/2
` χp`(z, s)

−1χ(z − sV )u0‖L2 ≤ Ca〈z〉‖χ̃p`(z, s)−1χ̃‖
L2→L2‖P

1/2
` u0‖L2 , (33a)

‖P 1/2
` χp`(z, s)

−1χu1‖L2 ≤ Cb〈z〉‖χ̃p`(z, s)−1χ̃‖
L2→L2‖u1‖L2 , (33b)

‖χ(1 + (z − sV )p`(z, s)
−1(z − sV ))χu0‖L2 ≤ Cc〈z〉‖χ̃p`(z, s)−1χ̃‖

L2→L2‖P
1/2
` u0‖L2 . (33c)

We use complex interpolation.

Estimate (33a). Let us define

Λa(θ) := 〈z〉−2θP θ` χp`(z, s)
−1χP−θ` .

By functional calculus, Λa is analytic from [0, 1] + iR to L(L2, L2) because P` > 0 and 〈z〉 > 0. We
want to show that

‖Λa(1/2)u‖
L2 ≤ Ca‖χ̃p`(z, s)−1χ̃‖

L2→L2‖u‖L2 ∀u ∈ L2
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for some Ca > 0. By the maximum principle, it is sufficient to bound Λa(θ) for θ ∈ {0, 1} + iR, and
since P` is self-adjoint, it is sufficient by functional calculus to restrict ourselves to =θ = 0. If θ = 0,
there is nothing to do. Now for θ = 1, we put u = (z − sV )u0 and try to show that

‖P`χp`(z, s)−1χu‖
L2→L2 ≤ Ca〈z〉‖χ̃p`(z, s)−1χ̃‖

L2→L2‖P`u‖L2 . (34)

Write

P`χp`(z, s)
−1χ = [P`, χ]p`(z, s)

−1χ︸ ︷︷ ︸
=:A

+χP`p`(z, s)
−1χ︸ ︷︷ ︸

=:B

. (35)

We first deal with A. Pick z0 ∈ ρ(K̂`) ∩ C+ so that p`(z0, s)
−1 exists (cf. (13)). Then[

P`, χ
]
p`(z, s)

−1 = p`(z0, s)
−1
[
p`(z0, s),

[
P`, χ

]]
p`(z, s)

−1 + p`(z0, s)
−1
[
P`, χ

]
p`(z0, s)p`(z, s)

−1

with [
P`, χ

]
= −χ∂x − χ′,[

p`(z0, s),
[
P`, χ

]]
= 2χ′∂2

x + (χ′ + χ′′)∂x + 2z0sV
′χ− 2s2V V ′χ.

By pseudodifferential calculus, we get :

p`(z0, s)
−1 ∈ Ψ−2,0,

[
P`, χ

]
∈ Ψ1,−∞,

[
p`(z0, s),

[
P`, χ

]]
∈ Ψ2,−∞.

On the other hand, we have

p`(z0, s)p`(z, s)
−1 =

(
p`(z, s) + (z2 − z2

0)− 2(z − z0)sV )
)
p`(z, s)

−1

= 1 + p`(z, s)
−1(z2 − z2

0)− 2(z − z0)sV p`(z, s)
−1

= p`(z, s)
−1(P` − (z2

0 − 2zsV + s2V 2))− 2(z − z0)sV p`(z, s)
−1. (36)

Using the identity

χp`(z, s)
−1P`χ = χp`(z, s)

−1
[
P`, χ

]
+ χp`(z, s)

−1χP`

and the uniform bound in `

‖χ′u′‖
L2 . ‖χ1v‖L2 + ‖χ2u

′′‖
L2 χj ∈ C∞c (R,R), Suppχj = Suppχ, (37)

we obtain from (35)

‖Au‖
L2 ≤ C̃a〈z〉‖χ̃p`(z, s)−1χ̃‖

L2→L2‖u‖L2 (38)

where the constant C̃a only depends on z0, s, V, V
′, χ, χ′, χ′′, χ1 and χ2.

We now turn to B. Using again (36), we see that

‖χP`p`(z, s)−1χu‖
L2 ≤ ‖χp`(z0, s)p`(z, s)

−1χu‖
L2

+ ‖χ(z2
0 − 2z0sV + s2V 2)p`(z, s)

−1χu‖
L2

≤ ‖χp`(z, s)−1(P` − (z2
0 − 2zsV + s2V 2))χu‖

L2 + 2
(
|z|+ |z0|

)
|s|‖V ‖

L∞‖χp`(z, s)
−1χu‖

L2

+
(
|z0|2 + 2|z0||s|‖V ‖L∞ + s2‖V ‖2

L∞

)
‖χp`(z, s)−1χu‖

L2

≤ ‖χp`(z, s)−1P`χv‖L2

+ 2
〈
|z0|+ 2|s|‖V ‖

L∞

〉2︸ ︷︷ ︸
=: ˜̃Ca

〈z〉‖χp`(z, s)−1χ‖
L2→L2‖u‖L2 .

Commuting P` with χ and using (37), we get (34) with Ca = max
{
C̃a, 1 + ˜̃Ca

}
.
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Estimate (33b). Let us define

Λb(θ) = 〈z〉−2θP θ` χp`(z, s)
−1χ θ ∈ [0, 1] + iR.

Λb is analytic from [0, 1] + iR to L(L2, L2). As the above estimate, it is sufficient to show a bound on
Λb(1), the imaginary part of θ playing no role and the case θ = 0 being trivial. We get (33b) if we
show that

‖P`χp`(z, s)−1χu‖
L2 ≤ Cb〈z〉2‖χ̃p`(z, s)−1χ̃‖

L2‖u‖L2∀u ∈ L2 (39)

for some Cb > 0. Using the identity (35) and the estimate (38), we obtain

‖P`χp`(z, s)−1χu‖
L2→L2 ≤ C̃a〈z〉‖χ̃p`(z, s)−1χ̃‖

L2→L2‖u‖L2 + ‖χp`(z, s)−1P`χu‖L2

but this time we ask for L2 norm of u. Hence, we use that

p`(z, s)
−1P` = 1 + p`(z, s)

−1(z − sV )2

which yields (39) with Cb = max
{
C̃a, 2

〈
s‖V ‖

L∞

〉2}
.

Estimate (33c). Let us define

Λc(θ) := 〈z〉2(θ−1)χ(1 + (z − (sV )2(1−θ))p`(z, s)
−1(z − 22θ−1sV ))χP−θ` .

Once again, Λc is analytic from [0, 1] + iR to L(L2, L2) and (dropping the imaginary part)

‖Λc(0)‖
L2→L2 ≤ (2 + |s|‖V ‖

L∞ )3‖χp`(z, s)−1χ‖
L2→L2 .

We then get a bound on Λc(1) : we prove

‖χ(1 + zp`(z, s)
−1(z − 2sV ))χu‖

L2 ≤ Cc‖χ̃p`(z, s)−1χ̃‖
L2→L2‖P`u‖L2 ∀u ∈ L2.

We have

‖χ(1 + p`(z, s)
−1z(z − 2sV ))χu‖

L2 ≤ ‖χ(1 + p`(z, s)
−1(z − sV )2χ)u‖

L2 + ‖χp`(z, s)−1s2V 2χu‖
L2

and

χ(1 + p`(z, s)
−1(z − sV )2)χ = χp`(z, s)

−1P`χ.

Commuting P` with χ and using (37) gives us

‖χp`(z, s)−1z(z − 2sV )χv‖
L2 ≤ Cc‖χ̃p`(z, s)−1χ̃‖

L2→L2‖〈P`〉v‖L2

with Cc = max
{

(1 + |s|‖V ‖
L∞ )3, ‖χ‖

L∞ , ‖χ1‖L∞ + ‖χ2‖L∞
}

.

The proof is now straightforward. For ν > 0 fixed and for ` ∈ N, we define L2
ν(R, Ė`) as the

class of functions t 7→ v (t) with values in Ė` such that t 7→ e−νtv(t) ∈ L2(R, Ė`). For u ∈ Ė`, the
componentwise defined function

v (t) =

{
e−itK̂`u for t ≥ 0

0 for t < 0
.

is in L2
ν(R, Ė`) if ν is sufficiently large. For all t ≥ 0, this means that

e−itK̂`u =
1

2πi

∫ +∞+iν

−∞+iν
e−izt(K̂` − z)−1udz.

in the L2
ν(R, Ė`) sense. We then use the following result :
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Lemma 6.2 (Lemma 3.2 in [5]). Let N ∈ N, χ ∈ C∞c (R,R) and define for all j ∈ N the spaces

Ė`
−j

:= (K̂` − i)j Ė`. Then for all k ∈ {0, . . . , N}, there exist bounded operators Bj ∈ L(Ė−k` , Ė−k−j` )

and B ∈ L(Ė−k` , Ė−k−N−1
` ) such that

R̂χ,`(z) =

N∑
j=0

Bj
(z − i(ν + 1))j+1

+
BR̂χ̃,`(z)χ

(z − i(ν + 1))N+1

for some χ̃ ∈ C∞c (R,R) satisfying χ̃χ = χ.

Now define

R̃χ,`(z) := R̂χ,`(z)−
1∑
j=0

Bj
(z − i(ν + 1))j+1

with Bj ∈ L(Ė`, Ė−j` ) as in Lemma 6.2. We can show that

χe−itK̂`χu =
1

2πi

∫ +∞+iν

−∞+iν
e−iztR̃χ,` u dz (40)

and the integral absolutely converges in L(Ė`, Ė−2
` ). On the other hand, if we integrate e−iztR̃χ,` u

iR

R
−K

−R`

K

R`

−iµ

iν

{=z = − ln 〈|<z| −R`〉 − µ}

Figure 4: The contour used for the derivation of the resonance expansion.

other the contour described in Figure 4 (defined for K,µ > 0), then letting K → +∞ and using
residue theorem as well as estimates collected in Theorem 5.1 yield the equality between (40) and the
resonance expansion of Theorem 4.2 in the space Ė`. We refer to [5] Section 3.2 for more details.
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A Analytic extension of the coordinate r

In this appendix, we prove Proposition 2.1 which is the equivalent to Proposition IV.2 in [4]. Let
r ∈ ]r−, r+[. By equation (5), we have

exp

(
− Λ

3A±r2
±
x

)
=
∏
α∈I

∣∣∣∣r − rαr− rα

∣∣∣∣
Aαr

2
α

A±r2± .

Call the left-hand side z and the right-hand side g±(r). Observe that g±(r±) = 0. Since r 7→ x(r) is
increasing and analytic, we can apply the Lagrange’s inversion theorem (see for example [8], paragraph
2.2 and reference therein) to write

r = r± +
+∞∑
`=1

z`

`!

[
d`−1

dr`−1

(
r − r±
g±(r)

)` ]
r=r±

. (41)

Let us introduce Kronecker’s symbol

δα,± :=

{
1 if α = ±
0 otherwise

and the notation

B±,α :=
Aαr

2
α

A±r2
±
− δα,±.

Observe that B−,− = B+,+ = 0. We then have

d`−1

dr`−1

(
r − r±
g±(r)

)`
=

 ∏
α∈I\{±}

|r− rα|`B±,α
 d`−1

dr`−1

 ∏
α∈I\{±}

|r − rα|−`B±,α
 .

We now fix ± = + (the conclusion will not be changed if we choose ± = −). Then

d`−1

dr`−1

 ∏
α∈I\{+}

(r − rα)−`B+,α

 =
∑

0≤k2≤k1≤`
C`,k1,k2

(
d`−k1

dr`−k1
(r − rn)−`B+,n

)
×

×
(

dk1−k2

drk1−k2
(r − rc)−`B+,c

)(
dk2

drk2
(r − r−)−`B+,−

)
where

C`,k1,k2 =

(
`
k1

)(
k1

k2

)
.

Direct computation shows that

dp

drp
(r − rα)−`B+,α = (−1)p(`B+,α)(`B+,α + 1) . . . (`B+,α + p− 1)(r − rα)−`B+,α−p.

If we let

K :=
∏

α∈I\{+}

(r− rα)B+,α , B+ := max
α∈I\{+}

{|B+,α|},

then it follows that

d`−1

dr`−1

(
r − r+

g+(r)

)`
= K`

∑
0≤k2≤k1≤`

C`,k1,k2(−1)`×

× (`B+,n)(`B+,n + 1) . . . (`B+,n + (`− k1)− 1)(r − rn)−`B+,n−(`−k1)×
× (`B+,c)(`B+,c + 1) . . . (`B+,c + (k1 − k2)− 1)(r − rc)−`B+,c−(k1−k2)×
× (`B+,−)(`B+,− + 1) . . . (`B+,− + k2 − 1)(r − rα)−`B+,−−k2
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and thus∣∣∣∣∣ d`−1

dr`−1

(
r − r+

g+(r)

)`∣∣∣∣∣ ≤ K```(B+ + 1)`

 ∏
α∈I\{+}

(r+ − rα)−B+,α

`

×

×
∑

0≤k2≤k1≤`
C`,k1,k2(r+ − rn)−(`−k1)(r+ − rc)−(k1−k2)(r+ − r−)−k2

= K```(B+ + 1)`

 ∏
α∈I\{+}

(r+ − rα)−B+,α

` ∑
α∈I\{+}

(r+ − rα)−1

`

=

K(B+ + 1)
∏

α∈I\{+}

(r+ − rα)−B+,α
∑

α∈I\{+}

(r+ − rα)−1

`

``

=: K̃```.

Therefore, the convergence of the original series is absolute for z ∈ C if

(|z|`K̃)`

`!
< `−(1+ε)

for any ε > 0. Using Stirling approximation `! ∼
√

2π``+1/2 for large values of `, we see that it is
sufficient to have

K̃|z| < e−(1/2+ε) ln `/`

√
2π

`
< 1.

and this condition is fulfilled if

<x >
3A+r

2
+

Λ
ln K̃.

B Localization of high frequency resonances

We provide in this section an asymptotic approximation of resonances near the maximal energy
W0(0) = maxx∈R{W0(x)} as h → 0. This a generalization of the main Theorem in [24] to the
case Q 6= 0. More precisely, we show that the resonances associated to the meromorphic extension
of p(z, s)−1 are close to the ones associated with the extension of (P − z2)−1, provided that Q is
sufficiently small. This is a direct consequence of the fact that the extra term hsV in the semiclassical
quadratic pencil is O(hs).

As in the paragraph 5.2, we set h := (`(` + 1))−1/2 with ` > 0 and consider z ∈ [`/R,R`] +
i [−C0, C0]. We then define the spectral parameter λ := h2z2 and also P̃h the semicalssical operator

associated to P`. Recall also that r = 3M
2

(
1 +

√
1− 8Q2

9M2

)
is the radius of the photon sphere and

W0(0) = F (r)/r2 with our definition of the Regge-Wheeler coordinate x (see (5)).

Theorem B.1. Let

Γ0(h) :=

{
W0(0) + h

(
2
√
W0(0)sV (0) + i−1

√
W ′′0 (0)/2

(
k +

1

2

))
| k ∈ N

}
.

For all C0 > 0 such that ∂D(W0(0), C0h) ∩ Γ0(h) = ∅, there is a bijection b ≡ b(h) from Γ0(h) onto
the set of resonances of P̃h in D(W0(0), C0h) (counted with their natural multiplicity) such that

b(h)(µ)− µ = oh→0(h) uniformly for µ ∈ Γ0(h).
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Proof. This is a direct application of the results of Sá Barreto-Zworski [24] which are based on the work
of Sjöstrand [26] (see Theorem 0.1), the latter dealing with resonances generated by non-degenerate
critical points when the trapping set is reduced to a single point (the difference for us is W0(0) 6= 0).

We recall that in the zone III the symbol of the semiclassical quadratic pencil is the function
(x, ξ) 7→ ξ2 +W0(x) + h2W1(x)− (

√
λ− hsV (x))2 =: p(x, ξ)− λ. We also recall the hypothesis in [26]

for the case of a Schrödinger operator of the form (0.1) in the reference:

• The trapping set is reduced to the point {(0, 0)} ((0.3) in [26]),

• 0 is a non-degenerate critical point ((0.4) in [26], which implies in the Schrödinger case the more
general assumptions (0.7) and (0.9) in the reference).

Although the symbol p depends on λ, its principal part p0 and subprincipal part p−1 do not : indeed,
for λ ∈ D (W0(0), C0h) with C0 > 0, we can write when h� 1

p(x, ξ) = ξ2 +W0(x)︸ ︷︷ ︸
p0(x,ξ)

+h 2
√
W0(0)sV (x)︸ ︷︷ ︸
p−1(x,ξ)

+ lower order terms in h.

This is enough to apply [26], Theorem 0.1 : using formula (0.14) in the reference, we get the result
for the set {

p0(0, 0) + h

(
p−1(0, 0) + i−1

√
W ′′0 (0)/2

(
k +

1

2

))
| k ∈ N

}
which is Γ0(h).

Approximation of high frequency resonances Γ0(h) 3 z2 = λ/h2 is obtained as in [24], by taking
the square root of any element of Γ0(h) and using Taylor expansion for 0 < h� 1 (corresponding to
`� 0) as well as symmetry with respect to the imaginary axis (for the choice of the sign of the square
root). In our setting, we obtain the set Γ of Theorem 4.1.

Remark B.2. 1. Let ΓDSS be the set of pseudo-poles in the De Sitter-Schwarzschild case (see the
Theorem at the end of [24]). Then ΓDSS is the limit of Γ as Q → 0 in the sense of the sets,
i.e. for all z ∈ Γ, there exists z0 ∈ ΓDSS such that z → z0 as Q → 0. In particular, the set of
pseudo-poles does not depend on the only Klein-Gordon field’s charge q.

2. The pseudo-poles in the charged case are shifted with respect to the uncharged case. If the Klein-
Gordon field charge and the black hole one have the same sign (that is if qQ > 0), then all
the pseudo-poles go to infinity with a real part which never vanishes. However, if the charges
have opposite sign (qQ < 0), then all the pseudo-poles real part cancels precisely when qQ =
−(k + 1/2)

√
F (r), k ∈ N \ {0}, before going to infinity. Notice that no pseudo-pole goes to C+

as |s| → +∞.

3. We can provide a physical interpretation of the set of pseudo-poles. First observe that
√
F (r)/r

is nothing but the inverse of the impact parameter b = |E/L| of trapped null geodesics (see the
end of the paragraph 2.2). Theorem 4.1 shows that resonances near the real line in the zone
III are qQ-dependent multiples of this quantity : they thus correspond to impact parameters of
trapped photons with high energy and angular momentum. This is in adequation with the first
remark above.

4. Observe that in Newtonian mechanics, the electric and gravitation effects exerted on chargeless
and massless photons by the black hole’s charge and mass are null. As a consequence, photons
are not deviated and only ones with impact parameter |b| ≤ r− can “fall“ in the black hole.
Hence, high frequency resonances in zone III are expected to be multiple of r−1

− . As r− → 0, all
resonances go to infinity : the trajectory are now classical straight lines as there is no obstacle
anymore.
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b

r−

Figure 5: On the left : a relativistic trapped null geodesic. On the right : classical null geodesic
trajectories.

C Abstract Semiclassical Limiting Absorption Principle for a class
of Generalized Resolvents

We show in this section an abstract semiclassical limiting absorption principle for perturbed resolvents.

Abstract setting. Let
(
H, 〈·, ·〉

)
be a Hilbert space, J := [a, b] ⊂ R, J+

µ := {ω ∈ C+ | <ω ∈
J, =ω < µ} for some µ > 0 fixed and h0 > 0. The norm associated to 〈·, ·〉 will be denoted by ‖ · ‖.
We consider families of self-adjoint operators P ≡ P (h) and A ≡ A(h) acting on H for 0 < h < h0.
We set

L∞`oc(P ) :=
{
A : H → H linear | ∀χ ∈ C∞c (R,R), ∀u ∈ D(P ), ‖χ(P )Au‖ < +∞

}
and ‖.‖P will be the operator norm on B(D(P ),H). We also define the local version of the operator
P :

Pτ := τ(P )P τ ∈ C∞c (R,R).

Let then and f : C×L∞`oc(P )→ L∞`oc(P ) satisfying the following continuity type relation near 0
L∞
`oc

(P )
:

there exist δJ,µ : R+ → R satisfying δJ,µ(r)→ 0 as r → 0 and εJ,µ : L∞`oc(P )→ L∞`oc(P ) such that, for
all (z,A) ∈ J+

µ × L∞`oc(P ) with ‖A‖P small,

f(z,A) = z + δJ,µ(‖A‖P ) εJ,µ(A). (C)

We make the following assumptions :

(P − f(z, hA))−1 exists for all z ∈ J+
µ and A ∈ L∞`oc(P ) if h ≤ h0 (I)

P ∈ C2(A) (P)

1I(P )[P, iA]1I(P ) ≥ ch1I(P ) for some c > 0 and J b I := ]α, β[ ⊂ R (M)

adkχ(P )(εJ,µ(A)) ∈ hkB(D(A)) for all k ∈ {0, 1}, χ ∈ C∞c (R,R), uniformly in A near 0
L∞
`oc

(P )
. (A)

Recall that P ∈ C2 (A) means for all z ∈ C \ σ(P ) that the map

R 3 t 7→ eitA(P − z)−1e−itA

is C2 for the strong topology of L2. Recall also that for all linear operators L1, L2 acting on H,
ad0

L1
(L2) := L2 and adk+1

L1
(L2) := [L1, adkL1

(L2)]. Our goal is to show the following result :

Theorem C.1. Assume hypotheses (C), (I), (P), (M) and (A). Then for all σ ∈ ]1/2, 1],

sup
z∈J+

µ

‖〈A〉−σ(P − f(z, hB))−1〈A〉−σ‖ . h−1. (42)

In the sequel, we will note R(z, hB) := (P − f(z, hB))−1 and call it the generalized resolvent (of
P ). Also, since J and µ are now fixed, we will simply note J, δ and ε instead of Jµ, δJ,µ and εJ,µ .
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Preliminary results. The purpose of this paragraph is to show preliminary results used to prove
Theorem C.1. We first prove an adapted version of Lemma 2.1 in [11] to our situation.

Lemma C.2. Let 0 ≤ σ ≤ 1, z ∈ J+ and let χ ∈ C∞c (R,R). If h is small enough, then R(z, hB) and
χ(P ) are bounded on D(〈A〉σ).

Proof. The result is true for (P−z)−1 and χ(P ) by Lemma 2.1 in [11]. Let us show thatR(z, hB)D(〈A〉σ) ⊂
D(〈A〉σ) :

‖〈A〉σR(z, hB)〈A〉−σ‖ ≤ ‖〈A〉σ(P − z)−1〈A〉−σ‖+ ‖〈A〉σ(R(z, hB)− (P − z)−1)〈A〉−σ‖
. 1 + ‖〈A〉σR(z, hB)(z − f(z, hB))(P − z)−1〈A〉−σ‖

and (using that ε(hB) ∈ B(D(A)) by Assumption (A) for k = 0)

‖〈A〉σR(z, hB)(z − f(z, hB))(P − z)−1〈A〉−σ‖
≤ ‖〈A〉σR(z, hB)〈A〉−σ‖‖〈A〉σ(z − f(z, hB))〈A〉−σ‖‖〈A〉σ(P − z)−1〈A〉−σ‖
. δ(h‖B‖P )‖〈A〉σε(hB)〈A〉−σ‖‖〈A〉σR(z, hB)〈A〉−σ‖.

We then use the uniformity in assumption (A) for k = 0 to write for h very small

δ(h‖B‖P )‖〈A〉σε(hB)〈A〉−σ‖‖〈A〉σR(z, hB)〈A〉−σ‖ < 1

2
‖〈A〉σR(z, hB)〈A〉−σ‖.

The proof is complete.

Corollary C.3. Let 0 ≤ σ ≤ 1, z ∈ J+ and τ, χ ∈ C∞c (R, [0, 1]) such that χ ≡ 1 on I and τχ = χ. If
h is small enough, then (Pτ−f(z, hB))χ(P ), (Pτ−f(z, hB))χ(P )(P+i)−1 and (P−f(z, hB))(P+i)−1

preserve D(〈A〉σ).

Proof. We have

〈A〉σ(Pτ − f(z, hB))χ(P )〈A〉−σ = 〈A〉σ(Pτ − z)χ(P )〈A〉−σ

+ 〈A〉σ(z − f(z, hB))〈A〉−σ〈A〉σχ(P )〈A〉−σ

which is bounded by assumption (A) for k = 0, Lemma C.2 and the fact that Pτχ(P ) = ϕ(P ) with
ϕ ∈ C∞c (R,R) by functional calculus. Next, Lemma 2.1 in [11] implies that (P + i)−1 preserves D(A),
so we can write

〈A〉σ(Pτ − f(z, hB))χ(P )(P + i)−1〈A〉−σ = 〈A〉σ(Pτ − f(z, hB))χ(P )〈A〉−σ〈A〉σ(P + i)−1〈A〉−σ

which is clearly bounded thanks to the above computation. Finally,

〈A〉σ(P − f(z, hB))(P + i)−1〈A〉−σ = 〈A〉σ(P + i− i− z + z − f(z, hB))(P + i)−1〈A〉−σ

= Id− (i + z)〈A〉σ(P + i)−1〈A〉−σ

+ 〈A〉σ(z − f(z, hB))〈A〉−σ〈A〉σ(P + i)−1〈A〉−σ

and we again use Lemma 2.1 in [11] and assumption (A) for k = 0.

The next result is an adaptation of Lemma 3.1 in [11] to our setting.

Lemma C.4. Let 0 < σ ≤ 1 and let τ, χ ∈ C∞c (R, [0, 1]) such that χ ≡ 1 on I and τχ = χ. Consider
the following three statements :

(i) sup
z∈J+

‖〈A〉−σR(z, hB)〈A〉−σ‖ . h−1;

(ii) For all z ∈ J+ and all u ∈ (P + i)−1D(〈A〉σ),

‖〈A〉−σu‖ . h−1‖(P − f(z, hB))u‖+ h−1‖〈A〉σ(P − f(z, hB))χ(P )u‖;

(iii) For all z ∈ J+ and all u ∈ D(〈A〉σ),

‖〈A〉−σχ(P )u‖ . h−1‖〈A〉σ(Pτ − f(z, hB))χ(P )u‖.

If h is sufficiently small, then (iii) implies (ii) and (ii) implies (i).
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Proof. First of all, observe that (i) makes sense by Lemma (C.2), and (ii), (iii) make sense by Corollary
C.3 and because Pχ(P ) = Pτχ(P ).

• We show that (ii) implies (i). Let u ∈ H and let v := R(z, hB)〈A〉−σu. Then

w := u− 〈A〉σ(f(z, hB)− i)R(z, hB)〈A〉−σu ∈ H.

This makes sense if h is small enough because R(z, hB) preserves D(〈A〉σ) by Lemma C.2 and
because

〈A〉σ(f(z, hB)− i)〈A〉−σ = 〈A〉σ(f(z, hB)− z)〈A〉−σ + (z − i)

is bounded by assumption (A) for k = 0. Next, using the resolvent identity (P+i)−1−R(z, hB) =
(P + i)−1(f(z, hB)− i)R(z, hB), we see that

(P + i)−1〈A〉−σw =
(
(P + i)−1 − (P + i)−1(f(z, hB)− i)R(z, hB)

)
〈A〉−σu

= R(z, hB)〈A〉−σu
= v

so that v ∈ (P + i)−1D(〈A〉σ). Hence, applying (ii) to v yields

‖〈A〉−σR(z, hB)〈A〉−σu‖ = ‖〈A〉−σv‖
. h−1‖〈A〉−σu‖+ h−1‖〈A〉σ(P − f(z, hB))χ(P )R(z, hB)〈A〉−σu‖
. h−1‖〈A〉−σu‖+ h−1‖〈A〉σ[P − f(z, hB), χ(P )]R(z, hB)〈A〉−σu‖
+ h−1‖〈A〉σχ(P )〈A〉−σu‖.

By assumption (A) for k = 1 and Lemma C.2, we have

‖〈A〉σ[P − f(z, hB), χ(P )]R(z, hB)〈A〉−σu‖
= ‖〈A〉σ[z − f(z, hB), χ(P )]R(z, hB)〈A〉−σu‖
≤ δ(h‖B‖P )‖〈A〉σ[ε(hB), χ(P )]〈A〉−σ‖‖〈A〉σR(z, hB)〈A〉−σu‖
. hδ(h‖B‖P ).

Therefore, (i) follows from (ii) if h is small enough.

• We show that (iii) implies (ii). Let χ̃ := 1− χ and let u ∈ (P + i)−1D (〈A〉σ). We write

‖〈A〉−σu‖ ≤ ‖〈A〉−σχ(P )u‖+ ‖〈A〉−σχ̃(P )u‖ (43)

and (iii) implies that

‖〈A〉−σχ(P )u‖ . h−1‖〈A〉σ(P − f(z, hB))χ(P )u‖

because τ ≡ 1 on Suppχ. In order to control the term involving χ̃(P ) in (43), we write χ̃ =
ψ− + ψ+ with ψ± ∈ C∞ (R, [0, 1]) such that Supp ψ− ⊂ ]−∞, α] and Supp ψ+ ⊂ [β,+∞[. We
also pick ρ ∈ C∞c (R,R) such that ρψ− = ψ−. Since B ∈ L∞`oc(P ), we have for any v ∈ D(P )

<
〈
ψ−(P )2(f(z, hB)− P )v, v

〉
= <

〈
ψ−(P )2zv, v

〉
+ <

〈
ψ−(P )2δ(h‖B‖P )ε(hB)v, v

〉
−<

〈
ψ−(P )2Pv, v

〉
≥ a‖ψ−(P )v‖2 − δ(h‖B‖P )‖ρ(P )ε(hB)‖P ‖ψ−(P )v‖2 − α‖ψ−(P )2v‖2

≥ c−‖ψ−(P )v‖2 (44)

where c− > 0 if h is sufficiently small. Using Cauchy-Schwarz inequality, we get ‖ψ−(P )(P −
f(z, hB))v‖ ≥ c−‖ψ−(P )v‖ and thus ‖ψ−(P )R(z, hB)v‖ . ‖ψ−(P )v‖. Similarly, one can show
‖ψ+(P )R(z, hB)v‖ . ‖ψ+(P )v‖. These inequalities and χ̃2 = (ψ−+ψ+)2 = ψ2

−+ψ2
+ then imply

‖χ̃(P )R(z, hB)v‖ . ‖χ̃(P )v‖
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which in turn implies for u ∈ D(P )

‖〈A〉−σχ̃(P )u‖ . ‖χ̃(P )u‖
= ‖χ̃(P )R(z, hB)(P − f(z, hB))u‖
. ‖χ̃(P )(P − f(z, hB))u‖
. ‖(P − f(z, hB))u‖.

Proof of Theorem C.1. We show that the regularity (P) and the Mourre estimate (M) are enough
to establish (42). As pointed out at the beginning of [11], the key point is the following energy estimate:
for any self-adjoint operators H acting on H, u ∈ D (H), τ ∈ C∞c (R, [0, 1]) and Pτ := τ(P )P , we have

2=
〈
Hu, (Pτ − f(z, hB))u

〉
=
〈
u, [Pτ , iH]u

〉
− 2=

〈
u, f(z, hB)Hu

〉
(45)

where the commutator must be understood as a quadratic form on D(H).
We follow the proof of Theorem 1 in [11]. Let τ, χ ∈ C∞c (R, [0, 1]) such that χ ≡ 1 on I and τχ = χ

and let

F (ξ) := −
∫ +∞

ξ
g(ζ)2dζ

with g ∈ C∞ (R, [0, 1]) satisfying g (ξ) = 0 for ξ ≥ 2 and g (ξ) = 1 for ξ ≤ 1. By Lemma C.4, it is
sufficient to prove the following estimate : for any z ∈ J+ and u ∈ D(〈A〉σ),

‖〈A〉−σχ(P )u‖ . h−1‖〈A〉σ(Pτ − f(z, hB))χ(P )u‖.

As P ∈ C2 (A), P and A are self-adjoint and satisfy the Mourre estimate (M) on I, we can apply the
estimate (3.30) in the proof of Theorem 1 in [11] :

χ(P )[Pτ , iF (A)]χ(P ) & hχ(P )〈A〉−2σχ(P ). (46)

Now we apply the identity (45) with H = F (A) : for all u ∈ D(A),

2=
〈
F (A)u, (Pτ − f(z, hB))u

〉
=
〈
u, [Pτ , iF (A)]u

〉
+ 2=

〈
f(z, hB)u, F (A)u

〉
.

Since F < 0 is bounded and =z > 0, we can write for all h sufficiently small

2=
〈
F (A)u, (Pτ − f(z, hB))u

〉
=
〈
u, [Pτ , iF (A)]u

〉
− 2(=z)

〈
u, F (A)u

〉
− 2δ(h‖B‖P )=

〈
u, ε(hB)F (A)u

〉
>
〈
u, [Pτ , iF (A)]u

〉
− 2δ(h‖B‖P )‖ε(hB)u‖‖F (A)u‖

where we used that that ε(hB) ∈ B(D(A)) by Assumption (A). It thus follows

2=
〈
F (A)u, (Pτ − f(z, hB))u

〉
≥
〈
u, [Pτ , iF (A)]u

〉
. (47)

Plugging the estimate (46) into inequality (47) and putting χ(P )u instead of u yield

‖〈A〉−σχ(P )u‖2 = 〈u, χ(P )〈A〉−2σχ(P )u〉
. h−1

〈
u, χ(P )[Pτ , iF (A)]χ(P )u

〉
≤ h−1

∣∣〈F (A)χ(P )u, (Pτ − f(z, hB))χ(P )u
〉∣∣.

Using again the boundedness of F , we get

‖〈A〉−σχ(P )u‖2 . h−1‖〈A〉−σχ(P )u‖‖〈A〉σ(Pτ − f(z, hB))χ(P )u‖

which establishes the point (iii) and thus the point (i) in Lemma C.4.
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[27] Sjöstrand, J. : A trace formula and review of some estimates for resonances, Microlocal analysis and
spectral theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol.490, Dordrecht : Kluwer
Acad. Publ., pp. 377–437 (1997)
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