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I. INTRODUCTION

The Strong Disorder Renormalization Group (SDRG)
approach has been introduced by Ma, Dasgupta and Hu
[1] and later further developed by D. Fisher [2] to study
the low-energy excitations and spatial and temporal cor-
relations of random quantum spin chains. In these sys-
tems, the critical properties are controlled by so called
Infinite-Disorder-Fixed-Points (IDFPs), at which disor-
der fluctuations dominate over quantum fluctuations, so
that the calculated properties (critical exponents and
scaling functions) are asymptotically exact. Soon after
Fisher’s results, the RG approach has been applied to a
large number of disordered systems, either quantum (in
one and higher dimensions) or classical (Sinai random
walk, classical random spin chains and polymers, stochas-
tic systems with quenched disorder, etc.). For the mod-
els where exact results are available via other approaches,
the RG method has been not only able to reproduce them
correctly, but has allowed in addition to predict many
new critical exponents and scaling functions. All the de-
velopments that have occoured before 2005 have been
already summarised in our Review [3]. The goal of the
present colloquium paper is thus to give an overview of
the various developments since 2005. We will stress the
physical ideas and the SDRG-way-of-thinking for each
type of problem, but we will usually omit the detailed
derivation of results that can be found in the original
papers.

This colloquium paper is organized as follows. We be-
gin with the ground state properties of random quantum
systems, such as the random transverse-field Ising model
in different dimensions d in Section II, the effects of Long-
Ranged interactions in Section III, as well as various
other quantum models (antiferromagnets, Ashkin-Teller
models, anyonic models, the superfluid-insulator transi-
tion) in Section IV. The scaling properties of the entan-
glement in critical ground states are described in Section
V. We then focus on the dynamical properties of Local-
ized and Many-Body-Localized models within three dif-
ferent settings, namely the unitary dynamics of isolated
models in Section VI, the Floquet dynamics of period-
ically driven models in Section VII, and the dissipative
dynamics of open quantum models in Section VIII. Sec-
tion IX is then devoted to Anderson Localization tight-
binding models for electrons. We then turn to classi-
cal disordered models, with the random contact process
for epidemic spreading in section X, the renormalization
of general master equations with randomness in section
XI, the dynamics of random classical oscillators with or
without dissipation in section XII, as well as some other
miscellaneous topics in section XIII.

II. RANDOM QUANTUM ISING MODEL IN
VARIOUS DIMENSIONS d

The quantum Ising model with random couplings
and/or with random transverse fields (RTIM) is the pro-
totype of disordered quantum magnets having discrete
symmetry. The model is defined by the Hamiltonian:

H = −1

2

∑

ij

Jijσ
x
i σ

x
j − 1

2

∑

i

hiσ
z
i , (1)

where the σx,zi are Pauli-matrices and i, j denote sites
of a lattice. In Eq.(1) the couplings Jij and the trans-
verse fields hi are independent random variables, which
are taken from the distributions, p(J) and q(h), respec-
tively. In the following, we will discuss the case of fer-
romagnetic models Jij ≥ 0, where the order parame-
ter is the magnetization, but it should be stressed that
this is not restrictive : the SDRG approach has been
applied as well to the spin-glass case where the sign of
the couplings is also random. The numerical computa-
tions are usually done either with two box-distributions

p(J) = Θ(J)Θ(1−J) and q(h) = 1

hb
Θ(h)Θ(hb−h) (Θ(x)

being the Heaviside step-function), or with the fixed-h
distribution q(h) = δ(h−hf), while p(J) follows the box-
distribution as before. The quantum control parameter
is defined as θ = lnh − ln J , where x stands for the av-
erage value of the variable x over quench disorder. In
any dimension the RTIM has a zero-temperature quan-
tum phase transition, located at some θc, separating a
paramagnetic disordered (θ > θc) and a ferromagnetic
ordered phase (θ < θc).
The simplest geometry that one can consider is the

one-dimensional chain with nearest-neighbour couplings,
which has been solved analytically through the Strong
Disorder RG method by Fisher [2], as described in de-
tails in Review [3]. Later, more general geometries have
been considered, such as ladders; star-like objects; hyper-
cubic lattices in dimensions d = 2, 3, 4 ; Bethe lattices,
Erdős-Rényi random graphs and other type of complex
networks, as well as systems with long-range interactions.
Besides the bulk quantities, the critical behaviour of sev-
eral observables at surfaces, edges, wedges and cones have
also been calculated.

A. Strong Disorder RG rules

The basic steps of the renormalization procedure are
identical in every geometry: at each step the largest term
of the Hamiltonian in Eq.(1), denoted by Ω, is eliminated
and new terms are generated through a second-order per-
turbation calculation between the remaining degrees of
freedom.
i) If the largest term is a coupling, say Jij = Ω, then the
two connected sites, i and j are coupled to form a cluster.
This spin-cluster then perceives an effective transverse
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field of strength

h̃ij ≈
hihj
Jij

, (2)

and the magnetic moments transform additively: µij =
µi + µj , while originally µi = µj = 1.
ii) If the largest term is a transverse field, say hi = Ω,
then this site has negligible contribution to the (longi-
tudinal) susceptibility, and is therefore decimated out.
At the same time, new effective couplings are generated
between all sites, say j and k, which were nearest neigh-
bours of i. The new contributions to the couplings are

given by: J̃jk ≈ JijJik

hi
.

In higher dimensions d > 1, the topology of the lattice is
modified during the renormalization and often the new

contribution J̃jk ≈ JijJik

hi
concerns a pair of sites that

were already coupled via some coupling Jjk. In this case,
one can use their sum (sum rule), or their maximum
value (maximum rule) as the renormalized coupling

J̃jk ≈ max

[

Jjk,
JijJik
hi

]

. (3)

The maximum rule is justified at an IDFP, furthermore
the numerical algorithms are more efficient in this case,
as explained in Refs.4–7. If, however, the critical be-
haviour is controlled by a conventional random fixed
point, such as in the superfluid-insulator transition (see
section IVD), the sum rule can lead to more accurate
results [8].

B. Solution in one dimension - a reminder[3]

In one dimension with nearest neighbour couplings, the
topology does not change during renormalization. The
cut-off (Ω) dependence of the distribution functions (cou-
plings, transverse fields, lengths, moments, etc) is writ-
ten in the form of integro-differential equations, which
are solved analytically. At the fixed point Ω → 0, the
distribution of transverse fields and that of the couplings
are given in the form:

P0(h,Ω) =
p0(Ω)

Ω

(

Ω

h

)1−p0(Ω)

(4)

R0(J,Ω) =
r0(Ω)

Ω

(

Ω

J

)1−r0(Ω)

, (5)

1. Critical point - infinite disorder fixed point

At the critical point where the decimation of couplings
and transverse fields are symmetric, we have

p0 = r0 =
1

ln(Ω0/Ω)
, (6)

where Ω0 is a reference energy scale. This is an infinite
disorder fixed point, since the ratio of typical couplings
and transverse fields is going to zero or to infinity. There-
fore the decimation steps are asymptotically correct and
consequently the calculated critical properties are asymp-
totically exact. At this fixed point the relation between
length-scale, L, and energy-scale, Ω is given by the acti-
vated scaling

ln

(

Ω0

Ω

)

∼ Lψ, ψ = 1/2 , (7)

and the average moment of clusters scales as:

µ = µ0

[

ln

(

Ω0

Ω

)]φ

, φ =
1 +

√
5

2
. (8)

leading to the fractal dimension df

µ ∼ Ldf , df = ψφ =
1 +

√
5

4
. (9)

2. Griffiths phases - strong disorder fixed points

Outside the critical point, the decimation of the cou-
plings and the transverse fields is asymmetric, which is
characterized by the parameter ∆ = (p0 − r0)/2. ∆ is
expressed in terms of the original distributions as:

[

(

J2

h2

)∆
]

av

= 1 , (10)

and close to the critical point: ∆ ∼ θ, since θc = 0. In
the paramagnetic or disordered Griffiths phase, almost
exclusively transverse fields are decimated out and the
solution close to the line of fixed points, i.e. in the limit
Ω/Ω0 ≪ 1 is given by:

p0 = 2∆, r0 ∼ (Ω/Ω0)
2∆

. (11)

In the ferromagnetic or ordered Griffiths phase the ex-
pressions for p0 and r0 are reversed.
Relation between the length scale (distance between

non-decimated sites) and the energy-scale reads as:

Ω ∼ L− 1
2|∆| , (12)

thus ∆ is simply related to the dynamical exponent as
z = 1/2|∆|.
The properties of the Griffiths phases can be inter-

preted in terms of rare regions, as reviewed in [9, 10].

3. Consequences for the ground-state wavefunction

The SDRG procedure allows to evaluate any observ-
able in each given disordered sample. Besides all the
observables of interest reviewed in [3], a particular atten-
tion has been paid in recent years towards the character-
ization of the ground-state wavefunction, via its fidelity
[11] and its multifractality [12], while the entanglement
properties will be discussed in detail in Section V.
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C. Higher dimensions d > 1

Figure 1. Structure of connected clusters at the critical point
of the 2D RTIM with L = 64. Left panel: fixed-h distribu-
tion, right panel: box-distribution. The colour-code is used
to indicate the moment of the clusters.

In more complicated geometries, in particular in higher
dimensions, the SDRG can in principle be performed nu-
merically and the first results are reviewed in [3]. In
practical applications, a large finite sample with N sites
is renormalized up to the last effective spin, and the orig-
inal sites of the sample are parts of effective clusters of
different sizes. In the paramagnetic phase, the clusters
have a finite typical linear extent ξ, which character-
izes the correlation length of the system. As the crit-
ical point is approached, ξ diverges as ξ ∼ |θ − θc|−ν .
In the ferromagnetic phase θ < θc, there is a huge con-
nected cluster, which is compact and contains a finite
fraction m of the sites, that directly represents the av-
erage longitudinal magnetization. At the critical point,
the giant cluster is a fractal : its total moment µ scales
with the linear size L of the system as µ ∼ Ldf , df be-
ing the fractal dimension as in Eq.(9). This is related to
the scaling dimension of the longitudinal magnetization
as x = d − df . Renormalizing sites at a special posi-
tion (surfaces, edges, wedges and cones), one obtains the
scaling behaviour of the system at the special local en-
vironment, which is characterised with the actual local
scaling exponent[13]. One can also consider more special
geometries, such as multiple-junctions, at which several
semi-infinite chains or plans meet [14, 15].
Transverse-spin correlations are defined as: 〈σzi σzj 〉,

which are of O(1), if both sites i and j are one-site clus-
ters, (i.e. both are immediately decimated out, and these
are the white sites in Fig.1) otherwise the correlation is
negligible. At the critical point one should consider the
connected part of the average transverse-spin correlation
function, which decays with the distance as a power with
the exponent ηt. Numerical SDRG results indicate[16],
that this exponent is approximately ηt ≈ 2 + 2d, for
1 ≤ d ≤ 3, see in Table I.

One important point is the relation between the
energy-scale Ω (or inverse time-scale) and the length-
scale: in the numerical procedure, Ω is the transverse
field associated with the last effective spin. If the scaling
is controlled by an IDFP, then the scaling relation is acti-
vated lnΩ ∼ L−ψ as in Eq.(7). For strong disorder Fixed
Point, the scaling relation is in the conventional power-
law form Ω ∼ L−z, which generally holds in the Griffiths
phase, and the dynamical exponent z depends on the
value of the control parameter, see also in Eq.(12). Dis-
tribution of the smallest gap in different random samples,
P (Ω, L) depends on the variable u = ΩLz : it is universal
and given by the limit distribution of extremes of inde-
pendent and identically distributed random numbers[17],
as explained in the framework of the SDRG approach in
Ref. [18].

Table I. Critical exponents of the RTIM in different dimen-
sions. In 1D the analytical results are from[2], in 2D the
numerical results are taken from[5], in 3D and 4D these are
from[6, 7]. The surface magnetization exponent xs and the
decay exponent of the transverse magnetization, ηt are from
[13] and [16], respectively.

1D 2D 3D 4D

ν 2. 1.24(2) 0.98(5) 0.79(5)

x 3−
√

5

4
0.982(15) 1.840(15) 2.72(12)

xs 0.5 1.60(2) 2.65(15) 3.7(1)

ηt 4.1(2) 6.0(2) 8.1(2)

ψ 1/2 0.48(2) 0.46(2) 0.46(2)

The numerical implementation of the SDRG procedure
needs some care. Naive application of the decimation
rules leads to a computational time which scales as t ∼
O(N3). Such type of procedure has been used for ladders
[4] and for square samples of linear size up to L ≈ 160
[19, 20]. In Ref. [21], the so called planar approximation
is introduced and in this way they could go up to L = 500.
Finally, using the maximum rule, an efficient numerical
procedure has been introduced in Refs. [6, 7] which works
as t ∼ O(N lnN + E), where E stands for the number
of edges of the lattice. In models with nearest-neighbour
interaction E ∼ N and one can go up to N = 4 × 106,
c.f. in 2D up to L = 2048. Numerical studies of the
RTIM in 2D, 3D and 4D indicate, that in each case the
critical behaviour is governed by an IDFP, like in the one-
dimensional case. The probably most accurate values of
the critical exponents are collected in Table I. The critical
exponents of the RTIM in any studied dimension have
found universal, i.e. they do not depend on the actual
form of the initial disorder.
To decide about the upper critical dimension of the

IDFP, the critical properties of the RTIM have been stud-
ied on Erdős-Rényi random graphs [6, 7], which are for-
mally infinite-dimensional objects. The numerical results
have indicated that the critical behaviour is controlled by
a logarithmically infinite disorder fixed point, pointing
towards an infinite upper critical dimension for this type
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of problem.

D. Approximate RG methods

Simpler approximation methods have been developed
and applied to the RTIM [22–28]. One of those [22]
is based on the quantum cavity approach [29], which
is found to reproduce some of the exact results in 1D.
The quantum cavity method is equivalent to a linearized
transfer matrix approach [24]. If no linearization is per-
formed, i.e. in the so called non-linear transfer matrix
approach, one obtains IDFP behavior for d ≥ 2 [24].
Also approximate renormalization group schemes have
been suggested [25–28], during which the order of the
RG steps is changed in such a way that the proliferation
of new couplings is avoided. These methods have repro-
duced some exact 1D results and also provide IDFP be-
havior for d ≥ 2, in agreement with the standard SDRG
method.

III. RANDOM QUANTUM SYSTEMS WITH
LONG-RANGE INTERACTIONS

In nature there are magnetic materials in which order-
ing is due to long-range (LR) interactions which decay as
a power α = d+σ with the distance. The best known ex-
amples are dipolar systems, such as the LiHoF4. Putting
this compound into an appropriate external magnetic
field we obtain an experimental realisation of a dipolar
quantum ferromagnet [30]. Similar systems have been ex-
perimentally realised recently by ultracold atomic gases
in optical lattices [31–35]. Here we consider quantum
magnets with LR interactions in the presence of quenched
disorder. Such type of a system is realised by the com-
pound LiHoxY1−xF4, in which a fraction of (1 − x) of
the magnetic Ho atoms is replaced by non-magnetic Y
atoms [30]. A related, but somewhat simplified quantum
model which describes the low-energy properties of this
system is the random transverse-field Ising model with
LR interactions given by the Hamiltonian:

H = −
∑

i6=j

bij
rαij
σxi σ

x
j −

∑

i

hiσ
z
i . (13)

where the bij > 0 parameters and the hi > 0 transverse
fields are i.i.d. random variables with given initial distri-
butions.
In the LR model couplings and transverse fields play

a different role and this asymmetry is manifested in the
SDRG trajectories. At the critical trajectory couplings
are very rarely decimated and the renormalised trans-
verse fields follow Eq.(2). On the contrary almost always
transverse fields are decimated out, and according to the
maximum rule in Eq.(3) we have typically: J̃jk ≈ Jjk.
Using these observations a primary model has been for-
mulated, which has an exact solution in one dimension.

A. 1D - solution of the primary model [36]

In the primary model, the transverse fields are ran-
dom, but the couplings are non-random, i.e. bij = b = 1.
In the paramagnetic phase and at the critical point, al-
most always transverse fields are decimated. After deci-
mating hi, the effective coupling between nearest clusters
i − 1 and i + 1 will always be smaller than the deleted
ones, Ji−1,i and Ji,i+1 and we assume that according

to the maximum rule J̃i−1,i+1 = Ji−1,i+1. Then the
renormalization rule of couplings between nearest clus-
ters can be expressed in terms of the length variables as

J̃
−1/α
i−1,i+1 = J

−1/α
i−1,i +J

−1/α
i,i+1 +wi, where wi is the extension

of the cluster, which will be neglected in the following.

Using reduced variables ζ =
(

Ω
J

)1/α − 1 and β = 1
α ln Ω

h ,
the approximate renormalization rules are

ζ̃ = ζi−1,i + ζi,i+1 + 1 (14)

and

β̃ = βi + βi+1 (15)

for field and bond decimation, respectively. Since, in the
ferromagnetic phase, the effective couplings between re-
mote clusters may be stronger than those between adja-
cent ones due to the large mass of clusters, this approach
is justified only in the paramagnetic phase and at the
critical point.
The decimation equations in Eqs.(14) and (15) are

identical to those of the 1d disordered O(2) quantum ro-
tor model of granular superconductors [37, 38] with the
grain charging energy Ui and Josephson coupling Ji,i+1

corresponding to Ui ↔ J
1/α
i,i+1 and Ji,i+1 ↔ h

1/α
i , see in

Sec.IVD.
The fixed-point solution for the distributions ζ and β

can be found in [36], here we recapitulate the basic re-
sults. The solutions are parameterised with a variable a,
which is positive a > 0 in the paramagnetic phase and
vanishes a = 0 at the critical point. The relation between
the average distance of clusters, L, and the energy-scale
Ω is given by:

L ∼
(

Ω0

Ω

)

1+a
α

, (16)

with an additional factor ln2(Ω/Ω0) for a = 0. Thus the
dynamical exponent z = α/(1 + a) is a continuous func-
tion of a, and it is maximal but finite at the critical point:
zc = α. The limit distribution of the transverse fields for
Γ → ∞ follows the power law g(h) ∼ h1/z−1, thus the
transition is controlled by a strong disorder fixed point.
The average correlation length scales at the vicinity of
the critical point as:

ξ ∼ exp(C′/a), a = (θ − θc) , (17)

which is similar to that at a Kosterlitz-Thouless transi-
tion point. The ratio of decimated couplings and deci-
mated fields scales at the critical point with the size of
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the system, L, as:

r(L) ≃ 2 ln−ω(L/L0), ω = 2 . (18)

The typical magnetic moment of critical clusters scales
also logarithmically:

µ(L) ∼ lnχ L, χ = 2 , (19)

thus the fractal dimension is formally df = 0. Finally,
the entanglement entropy SL of a finite block of size L in
an infinite system is found to approach a finite limiting
value as L→ ∞, even at the critical point.
Results of the numerical SDRG analysis (with the max-

imum rule) of the LR random transverse-field Ising chain
are in agreement with the findings of the primary model,
even if the couplings, i.e. the parameters bij are random.

B. 3D - numerical Strong Disorder RG study

The 3D LR model has been studied by the SDRG ap-
proach with the maximum rule [39] and similar behaviour
of the RG trajectories are observed as in 1D. At a given
energy scale, Ω, the renormalization is characterised by
the ratio of decimated couplings and decimated fields, r.
In the paramagnetic phase and at the critical point,

where the maximum rule is expected to hold, at the line
of fixed points, Ω → 0 we have r → 0, and these fixed
points are stable. In the vicinity of this fixed line almost
exclusively transverse fields are decimated, the distribu-
tion of which is given by a power-law:

g(h) =
d

z
h−1+d/z , (20)

with an effective (Ω, i.e. r dependent) dynamical expo-
nent z. At the fixed line z is maximal at the critical
point, having a value zc ≈ α, as in 1D. The other criti-
cal parameters (correlation length, decimation ratio and
cluster moment) have similar behaviour as in 1D, thus
the relations in Eqs.(17,18,19) are valid, only the expo-
nents of the logarithm in Eqs.(18) and (19) are somewhat
different.
The RG phase-diagram can be extended to include the

ferromagnetic phase, too, where the RG-flow scales to
r → ∞. This is shown in Fig.2. The line of fixed points at
r = 0 at other side of the critical point with α/z < 1 are
unstable and the RG-flow scales to r → ∞. In this regime
the maximum rule in the SDRG procedure is certainly
not valid. The two regimes of fixed points are separated
by the critical fixed point at α/z = 1.
In the vicinity of the line of fixed points at r = 0, al-

most exclusively transverse fields are decimated out. In
a finite cluster of linear size ℓ however, there are the few
smallest ones which remain intact. From the distribu-
tion of the fields in Eq.(20) one can estimate the value of
these non-decimated fields through extreme value statis-
tics. This type of analysis leads to basically identical
results, as obtained through the SDRG approach. Using

Figure 2. (Color online) Schematic SDRG phase diagram ob-
tained through the maximum rule as a function of the ratio
r and the effective dynamical exponent defined in Eq.(20).
The arrows indicate the direction the parameters evolve as
the energy-scale is reduced. Fixed points (blue circles) are at
r = 0: the attractive fixed points of the paramagnetic phase
(α/z > 1) and the repulsive ones (α/z < 1) are separated by
the critical fixed point (red circle).

this type of analysis it has been argued that the extrapo-
lated value of the magnetization from the ferromagnetic
side has a finite limiting value and thus the transition is
of mixed-order.

C. Other quantum models with LR interactions

1. Ising chains with other type of LR interactions

The case where the Long-ranged interactions are dilute
are analyzed in [40]. The Dyson hierarchical version of
the quantum Ising chain with LR power-law ferromag-
netic couplings and pure or random transverse fields is
studied via real-space renormalization in [41], while the
Dyson Hierarchical LR Quantum Spin-Glasses are inves-
tigated in [42].
The critical properties of random quantum systems, in

particular the RTIM in one dimension in the presence
of LR interactions which decay in a stretched exponen-
tial fashion, as J(r) ∼ exp(−Cra) has been studied in
Ref. [43]. Using a variant of the SDRG approach similar
to the primary model presented in Sec.III A, the critical
behaviour is found to depend on the parameter a. For
0 < a < 1/2 the critical behaviour is controlled by an
IDFP, in which the critical exponents are a-dependent
and these are different from those in the SR model. For
example one obtains ψ = a, which is understandable,
since the relation between energy-scale and length-scale
is dominated here the form of LR interactions. On the
contrary for a > 1/2 the LR interactions are irrelevant
and the critical properties of the model are the same as
its SR variant.
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2. Random Heisenberg chains with LR interactions

In Refs. [44, 45] the Hamiltonian of N LR interacting
S = 1/2 spins is considered:

HHeis =
∑

i6=j,β
JβijS

β
i S

β
j , (21)

which are placed randomly on a periodic lattice of length
L and lattice spacing s. The interaction between all pairs
of sites i, j are antiferromagnetic:

Jβij = J |(ri − rj)/a|−α exp(−|(ri − rj)|/ξ) , (22)

having a power-law decay with exponent α and an expo-
nential cut off with a length scale ξ. This model is aimed
to better understand the magnetic properties of doped
semiconductors. The singular properties of the model
are studied by the SDRG method with the use of the
sum rule. In the LR limit, ξ → ∞, the distribution func-
tion of the low energy excitations are studied by various
values of α and at a critical value αc = 1.6 it coincides
with a critical function pointing towards the existence of
a many body localization transition.
In Ref. [45] the magnetic susceptibility χ(T ) is studied

as a function of the temperature T . In the LR limit,
ξ → ∞ a crossover is observed at α∗ = 1.066 between
a phase with a divergent low-temperature susceptibility
χ(T → 0) for α > α∗ to a phase with a vanishing χ(T →
0) for α < α∗.

IV. OTHER RANDOM QUANTUM MODELS

The RTIM is one of the most studied random quan-
tum models, for wich some new quantities, such as the
transverse magnetization[16] and the magnetic Grüneisen
ratio[46] have been studied by the SDRG method. Be-
sides models that can be directly mapped onto the RTIM,
such as for instance the Majorana model considered in
[47], many other short-ranged random quantum models
have been analyzed via SDRG since the Review [3].

A. Models with discrete symmetry

1. Antiferromagnetic random quantum Ising chain

The antiferromagnetic random quantum Ising chain is
defined by the Hamiltonian:

HAF =
∑

i

Jiσ
z
i σ

z
i+1 −

∑

i

hiσ
x
i −

∑

i

Hiσ
z
i , (23)

with Ji, hi, Hi > 0. The clean model has paramagnetic
and antiferromagnetic ordered phases, which are sepa-
rated by a critical line, which for h > 0 is controlled by
the Ising quantum fixed point at h/J = 1 and H/J = 0.

At h = 0, when the model is classical there is a multicrit-
ical point at H/J = 2 separating the antiferromagnetic
phase from the ferromagnetic one.
In the random chain, where the couplings are dis-

tributed uniformly in 0 < J < 1 and the random
transverse-fields are distributed uniformly in 0 < h < h0
(but the longitudinal fields were non-random, Hi = H),
infinite disorder scaling is observed only at H = 0, which
is equivalent to the RTIM in 1D. For any finite value
of H > 0 the numerical results indicate strong disorder
scaling, thus a paramagnetic phase with Griffiths singu-
larities [48]. More recent studies indicate, that the region
of infinite disorder criticality is extended to H > 0, pro-
vided the distributions of the couplings and that of the
transverse fields have a finite bounding value from below
and above [49].

2. Ashkin-Teller chains

The N -colour Ashkin-Teller chain is defined in terms of
α = 1, 2, . . . , N -sets Pauli-matrices by the Hamiltonian:

HAT = −
∑N
α=1

∑

i

(

Jiσ
z
α,iσ

z
α,i+1 + hiσ

x
α,i

)

−∑N
α<β

∑

i

(

Kiσ
z
α,iσ

z
α,i+1σ

z
β,iσ

z
β,i+1 + giσ

x
α,iσ

x
β,i

)

,(24)

which is the generalization of the standard Ashkin-Teller
chain with N = 2, which has been studied before and
reviewed in [3]. In terms of positive random parameters,
however keeping the ratios ǫh,i = gi/hi and ǫJ,i = Ki/Ji
spatially homogeneous: ǫh,i = ǫJ,i = ǫi the model has
been investigated by the SDRG method in a series of pa-
pers [50, 52, 53, 83] Different phases and various critical
and multicritical points have been identified, which all
are of the infinite disorder type. Various numerical stud-
ies have been performed to confirm the SDRG predictions
[54–57].

B. Models with continuous symmetry

The random Heisenberg Antiferromagnetic spin chain
is the first model where SDRG has been introduced [1].
After the various works already reviewed in [3], more re-
cent studies include the effects of next-nearest-neighbor
interaction in d = 1 [58], the case of wealkly coupled
chains [59], models in dimension d = 2 [60–62], as well
as the generalizations to various type continuous sym-
metry (SU(3), SU(N), SO(N)) considered in the series
of papers[63–67], where different types of random singlet
phases are identified via SDRG and the low-energy be-
haviour is controlled by infinite disorder fixed points.
The S = 1 random spin chain is studied by the numer-

ical application of the SDRG method [68], finding that
the cross-over in the critical behaviour with the strength
of disorder is in agreement with the analytical theory .
Other studies of random spin chains with string-order
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parameter include the random Majumdar-Ghosh Chain
[69] and the random Cluster-Ising-Model [70].
The one-dimensional Hubbard model with random-

hopping matrix-elements, and with random onsite
Coulomb repulsion terms is studied by the SDRG method
[71]. Two critical phases are identified, which correspond
to an infinite disorder spin random singlet for strong in-
teractions and to an orbital infinite disorder fixed point
for vanishing interactions. To each critical infinite disor-
der fixed point is connected a Griffiths phase.
Layers and bilayers of S=1/2 Heisenberg antiferromag-

nets with different types of disorder: bond randomness,
site dilution, and dimer dilution are studied by the nu-
merical application of the SDRG method [72]. Generally
the systems exhibit an ordered and a disordered phase
separated by a phase boundary on which the static criti-
cal exponents appear to be independent of bond random-
ness in the strong-disorder regime, while the dynamical
exponent is a continuous function of the bond disorder
strength. The low-energy fixed points of the off-critical
phases are affected by the actual form of the disorder,
and the disorder-induced dynamical exponent depends
on the disorder strength. As the strength of the bond
disorder is increased, there is a set of crossovers in the
properties of the low-energy singularities.

C. Disordered non-abelian anyonic chains

Non-abelian order is a particular feature in two-
dimensional quantum systems and non-abelian excita-
tions are present in fractional quantum Hall states.
Chains of interacting anyonic quasiparticles are intro-
duced recently and their properties in the presence of
quenched disorder has been studied through the SDRG
method [73–76].
Let us consider a simple example of anyonic models,

the Fibonacci or golden chain, which is introduced on
the analogy of the S = 1/2 Heisenberg model with SU(2)
symmetry: H =

∑

i JiSiSi+1, for which the energy of a
nearest neighbour pair is different in the singlet and in
the triplet chanels, and according to tensor product or
the fusion rule we have: 1

2 ⊗ 1
2 = 0 ⊕ 1. The Fibonacci

chain consists of non-abelian anyons carrying a topolog-
ical charge, τ , and their interaction is described by the
fusion rule: τ ⊗ τ = 1⊕ τ , which means that the Hilbert
space of two neighbouring anyons is the direct sum of
unity and a copy of τ . This type of construction can
only be described by a truncated tensor product, where
the SU(2) representations are truncated at a level k. The
Hamiltonian of the Fibonacci chain is given in the form:

H =

N
∑

i=1

JiP
A
i (25)

where Ji are the random interactions and PAi is the sin-
glet projection operator between site i and i + 1. Gen-
erally the Hilbert space of N + 1 anyons is given by the

N th Fibonacci number. Other type of non-abelian any-
onic chains can be constructed in similar way, impor-
tant class being the SU(2)k anyonic chains, the Fibonacci
chain corresponds to k = 3.
In the SDRG procedure we choose the strongest cou-

pling in the chain, Ω = |Ji|, and decimate it. For a strong
antiferromagnetic coupling the sites i and i + 1 form a

singlet, and an effective coupling J̃ ≈ κJi−1Ji+1

Ji
is formed

between sites i− 1 and i+2, with κ = φ2 and φ = 1+
√
5

2 ,
the golden mean ratio. For a strong ferromagnetic bond
sites i and i+1 form a cluster, having effective couplings

to the nearby sites: J̃ ≈ −Ji±1

φ .

The SDRG transformation has an infinite disorder
fixed point, so that the ground state is a random singlet
phase. The relation between energy-scale and length-
scale is activated, with the critical exponent ψAF = 1/2
if the original model is antiferromagnetic, and ψAF/F =
1/3 if in the original model there is a finite fraction of
ferromagnetic bonds. The SDRG analysis has been ex-
tended for other non-abelian anyonic chains, a detailed
analysis of the results can be found in Ref. [76]. Relation
with SU(N) symmetric random chains has been noticed
in [63–67].

D. Superfluid-insulator transition

One-dimensional Josephson junction array with ran-
dom couplings Ji and random charging energies Ui are
described by a quantum rotor Hamiltonian:

H =
∑

i

Ui(n̂i − ni)
2 −

∑

i

Ji cos(θ̂i − θ̂i+1) , (26)

with charges n̂i and phases θ̂i at site i, which satisfy

the commutation relations:
[

n̂k, θ̂l

]

= −iδkl. At each

site there is a random offset charge (or chemical poten-
tial), which is taken as −1/2 < ni < 1/2 and the integer
part is absorbed into the definition of n̂i. This model
is considered as an effective theory of interacting bosons
propagating in a random potential and the type of the
insulating phase is found to depend on the symmetry
properties of the offset charge distribution.
The SDRG treatment of this model is described in

Refs. [8, 77–81] and has been recently reviewed in[82].
Here we just recapitulate the main ideas. The energy gap
due to charging energy is ∆i = Ui(1− 2|ni), that should
be compared with the interaction coupling Ji, and their
maximum term defines the energy-scale Ω.
If Ω = ∆i corresponds to a large gap, this site is fixed

to its lowest energy state and an effective coupling is
generated between sites i− 1 and i+ 1:

J̃ =
Ji−1Ji

Ω(1 + 2|ni|)
, (27)

and in the denominator the term 1+2|ni| is set to unity.
On the contrary, if Ω = Ji corresponds to a large Joseph-
son coupling, a cluster with a coherent phase is formed
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with an effective capacitance: C̃ = Ci + Ci+1, thus the
effective charging energy follows the rule:

1

Ũ
=

1

Ui
+

1

Ui+1
. (28)

Introducing scaling variables: βi = ln(Ω/Ji) and ξi =
Ω/Ui− 1 in the vicinity of the fixed point, where the ex-
pressions for the offset charges are simplified, one arrives
at the same form of the flow equation of the distribution
functions as for the primary model of the one-dimensional
RTIM with LR interactions of Sec.III A. The paramag-
netic phase of the LR RTIM corresponds to the superfluid
phase, while the ferromagnetic one to the insulator phase.
The superfluid phase is just a Griffiths phase with a dy-
namical exponent z = 1/(1 + a), the supefluid-insulator
transition is of strong disorder type with z = 1 and with
an exponentially diverging correlation length. Details of
the solution and a review of the numerical results are
given in Ref. [82]. As a final remark, let us stress that
the nature of Superfluid-Bose Glass Transition has re-
mained controversial over the years, as summarized in
recent numerical investigations[83, 84].

E. Superconductor-Metal transition

An Infinite-Randomness Fixed Point has also been
found for the Superconductor-Metal Quantum Phase
Transition [85–88].

F. The Rainbow Spin Chain

Although the so-called ’Rainbow spin chain’ is not ran-
dom, the spatial structure of its inhomogeneity allows to
apply iteratively the Ma-Dasgupta SDRG rule to con-
struct the ground state and analyze its entanglement
properties [89–93]. The addition of disorder in this rain-
bow spin chain has been also studied recently via SDRG
[94].

V. ENTANGLEMENT PROPERTIES

The entanglement of quantum many body systems is
a promising concept to understand their topological and
universal properties, in particular in the vicinity of a
quantum phase-transition point (see the reviews [95–97]).
The entanglement of the ground state |Ψ〉 between the
subsystem A and the rest B of the system is quantified
by the von Neumann entropy S = −TrA (ρA log2 ρA) of
the reduced density matrix ρA = TrB|Ψ〉〈Ψ |. Generally
S scales with the area of the interface separating A and
B. In some cases however, there are singular corrections
to the area law. In one-dimensional pure systems, S is
logarithmically divergent at a quantum critical point[98–
100]: S = c

3 log2 ℓ+ cst. Here ℓ is the size of the subsys-
tem A and the prefactor is universal, c being the central

charge of the conformal field theory. Besides this entan-
glement entropy, it is interesting to consider also the full
entanglement spectrum [101].
In random quantum systems the entanglement proper-

ties are conveniently studied by the SDRG approach and
many of the obtained results, mainly in one-dimension
are thoroughly reviewed in Refs. [76, 97]. Therefore here
we just shortly mention the known results in 1D and we
concentrate on the higher dimensional results, as well as
on the more recent developments.

A. Random quantum chains

The ground state of the S = 1/2 random-bond Heisen-
berg chain in the SDRG approach is a random singlet
phase and each singlet bond which connects the two sub-
systems A and B has a contribution 1 to the entangle-
ment entropy. The entanglement entropy scales logarith-
mically: S =

ceff

3 log2 ℓ + cst, with an effective central
charge ceff = ln 2. The entanglement across a weak-
ened link is studied in Ref. [102], while the multifractal
Orthogonality Catastrophe produced by a local cut is an-
alyzed in [103].
The ground state of random S > 1/2 chains depends

on the strength of disorder. For strong enough disorder
it is a spin-S random singlet phase having an effective
central charge ceff = ln(2S + 1)[104–107]. For weaker
disorder there are a set of multi-critical points, at which
the central charge has not yet been calculated exactly.
The case S = 1 is studied in Ref. [105].
For the RTIM the ground state in the SDRG approach

consists of a set of clusters of different sizes (see in Fig.1)
and each cluster which has points in both subsystems A
and B has a contribution 1 to the entanglement entropy.
In one dimension, according to SDRG calculations in the
off-critical region, S is finite and thus satisfies the area
law. At the critical point, it is logarithmically divergent,
and the effective central charge is ceff = ln 2/2, i.e. just
the half of that in the random XX- and S=1/2 Heisenberg
chains, which follows also from an exact mapping [108].
In a given sample of finite length, the position of the
maximum of the average entanglement entropy (the av-
erage is made over all possible positions of the subsystem)
can be used to define a sample dependent pseudo-critical
point [109].
The effective central charge of random one-dimensional

systems calculated from the average entanglement en-
tropy is generally smaller than its analogous value in the
pure model. One can however construct models, in which
the effective central charge of the random model is the
larger [110]. One can also construct models with (lo-
cally) correlated disorder, so that the local control pa-
rameter stays constant [111]. In such models the critical
behaviour, as well as scaling of the critical entanglement
entropy follows the same form as in the pure systems
[111, 112].
The entanglement entropy between a random and a
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clean part of a system, such in the XX-chain has also been
considered recently. In this case, at the critical point,
a very weak, double-logarithmic dependence is observed
[113]: S ∼ ln ln ℓ. For a related study of entanglement
across extended random defects see [114]. Entanglement
entropy at multiple junctions of random quantum chains
has been studied in [115]. The SDRG approach has also
been used to study the critical properties of aperiodic
quantum spin chains [116–119] and their entanglement
entropy is calculated in the strong aperiodicity limit [120,
121].
Other entanglement measures have been also studied in

random quantum chains, like the entanglement [122, 123]
or the concurrence [124] between distant pairs of q-bits,
the full entanglement spectrum of random singlet critical
points [125], the Rényi entropies [126], the fluctuations of
the entanglement entropy [127], the full probability dis-
tribution of the entanglement entropy [128], the Schmidt-
gap ( i.e. the difference between the two largest eigen-
values of the entanglement spectrum) for the RTIM and
for the S = 1 random spin chain [129]. Using the SDRG
method the entanglement negativity in random singlet
phases are shown to scale logarithmically with the size of
the system [130].
Motivated by the entanglement entropy in the random

singlet phase of the random S = 1/2 spin chain, entan-
glement measure through valence bond entanglement has
been proposed for SU(2) quantum systems [131], which
can be efficiently measured through quantum MC calcu-
lations both in one- and two-dimensions [132, 133].

B. RTIM in higher dimensions

The entanglement entropy of the RTIM is given by the
number of such clusters in the ground state which have
points both in A and B. This quantity has been consid-
ered first in Ref. [19] and at the critical point, a singular
behavior in the form of S ∼ ℓ ln ln ℓ has been found in
finite systems with linear size L = 64. Soon after the cal-
culation has been extended up to L = 160 [20] and the
numerical results have been interpreted as a logarithmic
correction to the are law: S ≈ aℓ + b ln ℓ. To decide
between the two suggested singular forms, a calculation
has been performed with the very efficient numerical al-
gorithm up to L = 2028 and by two different forms of
disorder. These calculations have been performed also
for 3D and 4D [134].
At the critical point of a D-dimensional system, the

entanglement entropy when the subsystem A is a cube is
found to be in the form:

S(D)
cube(ℓ) = aD−1fD−1 +

D−2
∑

E=1

aEfE + S(D)
cr (ℓ) , (29)

where the first term represents the area-law, the second
terms are analytical corrections due to E-dimensional
edges and the last term is the corner contribution, which

is logarithmically divergent: S(D)
cr (ℓ) = b(D) ln ℓ + const.

According to numerical estimates the prefactors are uni-
versal, i.e. disorder independent and given by b(2) =
−0.029(1), b(3) = 0.012(2) and b(4) = −0.006(2).
The corner-entropy has also been studied in the vicin-

ity of the critical point and found to be extremal at the

critical point. Outside the critical point, S(D)
cr (ℓ, δ) is fi-

nite and can be obtained by replacing ℓ with the finite
correlation length ξ, where the divergence of ξ at the
critical point is characterised by the given exponent in
Table I.

C. Bond diluted quantum Ising model

The bond diluted quantum Ising model is defined by
the Hamiltonian in Eq.(1) with hi = h and with nearest-
neighbour couplings which are J > 0 with probability p
and J = 0 with probability 1 − p. At the percolation
transition point pc, for small transverse field h, there is
a line of phase transition, the critical properties of which
are controlled by the percolation fixed point [135], for a
review see [136]. The ground state of H is given by a
set of ordered clusters, which are in the same form as for
percolation. Now consider a subsystem A with boundary
Γ and calculate the entanglement entropy between the
subsystem and the environment, which is given by the
number of clusters in A which intersect Γ and contain
also at least one point of the environment.
In two dimensions it is given in the same form as for

the RTIM [137]:

SΓ = aLΓ + b logLΓ , (30)

where LΓ is the length of Γ. The prefactor of the loga-
rithm in Eq.(30) is given by the Cardy-Peschel formula
[138]:

b =− 5
√
3

96π

∑

k

[(

π

γk

)

−
(γk
π

)

+

(

π

2π − γk

)

−
(

2π − γk
π

)]

, (31)

where γk is the interior angle at each corner. In
the special case of the square subsystem one has b =
−5

√
3/(36π) = −0.07657. The conformal prediction in

Eq.(31) has been confirmed by numerical calculations for
different shapes of Γ [137].
In d = 3, numerical calculations have confirmed that

the singular contributions to the entanglement entropy of
the bond diluted quantum Ising model are due to corners,
and the prefactor of the logarithm is given by b = 1.72(3),
which is different from that in the RTIM [139].

D. Relations between SDRG and
Entanglement-Algorithms

Since Tensor-Networks have become very popu-
lar in recent years, it is interesting to point out
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that the SDRG actually corresponds to a spe-
cial type of Multi-scale-Entanglement-Renormalization-
Ansatz (MERA) (see section IV of the review [140]) and
has been integrated into various tensor-network algo-
rithms [48, 141–144]. Recently, in analogy with SDRG, a
Strong-Disorder-Disentangling procedure [145] has been
introduced : at each step, one chooses the most strongly
entangled pair of sites, in order to construct iteratively
the appropriate unitary circuit that transforms a given
quantum state into an unentangled product state. The
goal is to reveal the emergent entanglement geometry.

VI. LOCALIZED AND
MANY-BODY-LOCALIZED PHASES OF

QUANTUM SPIN CHAINS

For random quantum spin chains that can be mapped
onto free-fermions via the Jordan-Wigner transforma-
tion, the presence of disorder in this one-dimensional
geometry leads to the Anderson-real-space-localization
of all fermionic modes. In the presence of interactions,
the issue of Many-Body-Localization in isolated random
quantum spin chains has attracted a lot of attention re-
cently, as reviewed in [146–150]. Among the various
methods that have been proposed to construct the Lo-
cal Integrals of Motion (LIOMs) that characterize the
Many-Body-Localized-Phase (see the reviews [151, 152]
on LIOMs), Strong Disorder RG procedures have been
introduced under the names of RSRG-X and RSRG-t, in
order to construct the excited eigenstates or the effective
dynamics respectively.

A. RSRG-X for excited eigenstates

In order to construct the whole set of eigenstates, the
main idea of the RSRG-X procedure [153] is to keep the
two possible local-energy-branches at each step, instead
of projectiong systematically onto the lowest local energy
branch when the goal is to construct only the ground-
state. The RSRG-X can be formulated for the most gen-
eral Hamiltonian involving Pauli matrices [154]

H=
∑

[µ]

h[µ]σ
[µ] =

∑

µ1,..,µN

h[µ1,..,µN ]σ
µ1

1 σµ2

2 ...σµN

N (32)

where µi = 0, 1, 2, 3 is the index of the Pauli matrix
acting on spin i. One chooses the maximum Ω =
max(h[µ]) = h[µ0] among the real couplings h[µ] of the
Hamiltonian. The corresponding term

H0= h[µ0]σ
[µ0] (33)

has two levels (±h[µ0]) corresponding to the high/low en-
ergy sectors. The rest of the Hamiltonian can be classi-
fied according to the commutativity or anticommutativ-
ity with H0

H −H0= Hcomm
1 +Hanti

1 (34)

The part Hcomm
1 that commutes with H0 is kept to de-

scribe its effect withing each energy-level of H0. The
part Hanti

1 that anticommutes with H0 and that couples
the two sectors is taken into account by second-order per-
turbation theory to obtain the renormalized Hamiltonian
within each energy sector of H0

HR = H0 +Hcomm
1 −Hanti

1

1

2H0
Hanti

1 (35)

These rules are thus formally very similar to the Fisher
SDRG rules for the ground state. An alternative formula-
tion of the RSRG-X rules in terms of Majorana fermions
is described in [155] with its advantages.
While the writing of RSRG-X rules is a direct general-

ization of the SDRG-rules for the ground-state, it should
be stressed that their numerical implementation is much
more involved. Indeed, the exact construction of the 2N

eigenstates for a chain of N spins is limited to small sizes
as a consequence of the exponential cost. To overcome
this limitation, the authors of Ref [153] have thus pro-
posed to replace the exact application of the renormal-
ization rules on all branches by a Monte Carlo sampling
of the typical branches of the tree. The RSRG-X proce-
dure has been applied to many random models, including
the XX chain [156, 157], the XXX chain [158], the XXZ
chain [159], the XYZ chain [160], the three-state quan-
tum clock model [161] and anyonic spin chains [162, 163].
Variants of the RSRG-X procedure have been also in-
troduced to analyze the phase transition between differ-
ent MBL-phases in the Long-Ranged quantum spin-glass
model [164] and for the random Transverse Field Spin-
Glass Model on the Cayley tree [165].

B. RSRG-t for the unitary dynamics

The RSRG-t for the effective unitary dynamics of iso-
lated Quantum Spin chains [166, 167] is based on the
iterative elimination of the highest local frequency Ω.
The idea is that the local degree of freedom with the
two energy-levels e1 and e2 and corresponding projectors
P1,2

H0 = e1P1 + e2P2 (36)

that is associated to the highest frequency Ω = e2 − e1
oscillates freely. In the interaction picture, the rest of the
Hamiltonian

V ≡ H −H0 (37)

becomes the time-periodic Hamiltonian of high frequency
Ω

V int(t) = eiH0tV e−iH0t = V0 + V1e
iΩt + V−1e

−iΩt(38)

with the three Fourier coefficients

V0= P1V P1 + P2V P2

V1= P2V P1

V−1= P1V P2 = V†
1 (39)
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The high-frequency-expansion for Floquet dynamics
[168] then yields that the effective Hamiltonian for the
remaining degrees of freedom reads [169]

Veff = (P1V P1 + P2V P2)

+
1

Ω
(P2V P1V P2 − P1V P2V P1) +O

(

1

Ω2

)

(40)

The first ligne corresponds simply to the projection of V
onto the energy levels of H0, while the second ligne of
order 1/Ω contains virtual processes between the the two
energy levels. This formula for the RSRG-t rules is thus
equivalent to the RSRG-X rules of Eq 35 based on the
two first order perturbation theory for energy-levels, but
this dynamical point of view shed a different light on the
interpretation of the RG procedure. At some given time
t, the degrees of freedom are separated into two groups
with respect to Ωt =

1
t :

(i) the local degrees of freedom that would have had
higher eigenfrequencies |Ω| > Ωt have been converted
into Local Integrals of Motions (LIOMs) via the projec-
tors P1,2 that commute with Heff , i.e. they have con-
verged towards their asymptotic state described by the
diagonal ensemble of their local Hamiltonian H0, while
the off-diagonal contributions have been time-averaged-
out.
(ii) the remaining degrees of freedom that are charac-

terized by renormalized eigenfrequencies |Ω| < Ωt have
not yet converged towards their asymptotic state, since
they have not had enough time to oscillate with their
eigenfrequency.
The application of the RSRG-t procedure to various

models is described in [166, 167, 170]. As a final re-
mark, let us mention that another type of Nonequilib-
rium dynamical renormalization group has been studied
in [171, 172].

C. Non-equilibrium dynamical scaling of
observables

Following the experimental progress in non-
equilibrium dynamics of ultracold-atomic gases in
optical lattices, there are tremendous theoretical efforts
aimed at understanding the time-evolution of certain
observables in closed quantum systems after a sudden or
smooth change of Hamiltonian parameters. In a quench
process, both the functional form of the relaxation and
the properties of the stationary state are of interest.
Here we report numerical results obtained about the
non-equilibrium relaxation process in random quantum
systems, almost exclusively in one dimension.
Concerning the functional form of the time-dependence

of the entanglement entropy [173–177], the results de-
pends on whether the random quantum system can be
described in terms of free fermions or not. If the sys-
tem consists of non-interacting fermions - such as the
XX-spin chain with bond disorder or the critical random

transverse-field Ising chain - the dynamical entanglement
entropy grows ultraslowly in time as

S(t) ∼ a ln ln t , (41)

and saturates in a finite system at a value

S(ℓ) ∼ b ln ℓ , (42)

where ℓ denotes the size of a block in a bipartite system
and can be chosen to be proportional to the size of the
system L [174, 177]. Similar scaling forms have been
observed for the non-equilibrium relaxation of the full
counting statistics in a disordered free-fermion system
[175]. By the strong disorder RSRG-t method [166, 167]
of Sec.VIB, the ratio of the prefactors in (41) and (42)
is predicted as b/a = ψne, where ψne = 1/2 is a critical
exponent in the non-equilibrium process and describes
the relation between time-scale and length-scale as

ln t ∼ Lψne . (43)

Numerical estimates of b/a are somewhat larger, being in
the range 0.69−0.59. This discrepancy may be due to the
fact that for disordered systems, because of the necessity
of calculation of some extremely small eigenvalues, stan-
dard eigenvalue solvers would fail to converge for some
large-size samples, leading to significant numerical errors.
For interacting fermion models in the Many-Body-

Localized phase, the time-dependence of the dynamical
entropy is S(t) ∼ lnω t with ω ≥ 1, while the satura-
tion value follows the volume law, S(ℓ) ∼ ℓ [176]. In
this case SDRG theory and numerical results are mainly
consistent.
The time evolution of the average magnetization,m(t),

of the one-dimensional RTIM after global quenches is
studied numerically by using multiple precision arith-
metic [178]. In this way, the numerical inaccuracies ob-
served in the computation of the entanglement entropy
are circumvented. Starting from a fully ordered initial
state, the relaxation to the critical point is logarithmi-

cally slow described by m(t) ∼ lna
′

t, and in a finite sam-
ple of length L, the average magnetization saturates at a
size-dependent plateaump(L) ∼ L−b′ ; here the two expo-
nents satisfy the relation b′/a′ = ψne = 1/2. This result
is consistent with the SDRG prediction. Starting from a
fully disordered initial state, the magnetization stays at
zero for a period of time until t = td with ln td ∼ Lψne and
then starts to increase until it saturates to an asymptotic
value mp(L) ∼ L−b′′ , with b′′ ≈ 1.5. The distribution of
long-time limiting values of the magnetization shows that
the typical and the average values scale differently and
the average is governed by rare events.
For the random Heisenberg chain, the dynamical prop-

erties at finite temperature have been studied numeri-
cally and compared with SDRG predictions in [179, 180].
The non-equilibrium quench dynamics in quantum spin
chains with aperiodic interactions have been studied nu-
merically in [181–183].
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Besides the quantum quenches discussed up to now,
the opposite limit of adiabatic changes of the parameters
of the Hamiltonian has also been studied recently via
SDRG to analyze the Kibble-Zurek dynamics through
the critical point [184].

D. Comparison with other RG procedures existing
in the field of Many-Body-Localization

Since the purpose of the RSRG-X and RSRG-t proce-
dures is to produce an extensive number of Local Inte-
grals of Motion (LIOMS), it is clear that their validity
is limited to Many-Body-Localized Phases : they allow
to analyse the long-ranged order of the excited eigen-
states and to study the phase transitions between differ-
ent Many-Body-Localized phases. To analyze the MBL-
transition towards the ergodic delocalized phase, various
other RG procedures have been introduced, such as the
Aoki exact RG procedure in configuration space [185],
and real-space RG procedures based on entanglement
[186] or resonances [187, 188], while the phenomenolog-
ical RG procedure based on the the decomposition into
insulating and thermal blocks [189] is related to some
coarsening models that can be exactly solved by Strong
Disorder RG (see Appendix E of the review [3]). An
exactly-solvable generalization that takes into account
the asymmetry between insulating and thermal blocks
corresponds to some Kosterlitz-Thouless scenario [190].
Finally, the Wegner-RG flow [191] or variants thereof
have been applied recently to various MBL models [192–
196].

VII. FLOQUET DYNAMICS OF
PERIODICALLY DRIVEN CHAINS IN THEIR

LOCALIZED PHASES

The Floquet dynamics of periodically driven quantum
systems has attracted a lot of attention recently (see the
reviews [168, 197]). The stroboscopic dynamics can be
analyzed via the diagonalization of the time-evolution-
operator over one period T

U(T, 0) ≡ T
(

e−i
∫

T

0
dtH(t)

)

=

N
∑

n=1

e−iθn |un〉〈un| (44)

The phases θn ∈] − π,+π] characterize the eigenvalues
e−iθn of this unitary operator, while the |un〉 are the
corresponding eigenvectors.

To have an explicit evolution operator (instead of the
implicit time ordering of Eq 44), it is convenient to con-
sider periodic switching between two Hamiltonians H0

and H1 during T0 and T1 respectively

U(T = T1 + T0, 0) = e−iT1H1e−iT0H0 (45)

The simplest example is

H(0 ≤ t ≤ T0)= H0 ≡ −
N−1
∑

n=1

Jnσ
z
nσ

z
n+1

H(T0 ≤ t ≤ T = T0 + T1)= H1 ≡ −
N
∑

n=1

hnσ
x
n (46)

since the time-averaged Hamiltonian is the random trans-
verse field Ising chain. The RSRG-X rules for the corre-
sponding Floquet evolution operator of Eq. 45 are ana-
lyzed in [198] and can be considered as a direct general-
ization of the Fisher RG rules.
More generally, the phase-transitions between different

Floquet-Localized-phases are expected to be controlled
by Infinite-Disorder-Fixed-Points that can be sudied via
SDRG [199, 200].

VIII. OPEN DISSIPATIVE QUANTUM SPIN
CHAINS

In the field of open quantum systems, the interplay
between quantum coherence and dissipation can be ana-
lyzed within various frameworks [201, 202].

A. Quantum spin chains coupled to a bath of
quantum oscillators

The dynamics of a single two-level system coupled to
a bath of quantum oscillators is the famous ’spin-boson
model’ [203]. The generalization for the random quantum
Ising chain is described by the Hamiltonian

Hspins= −
∑

i

hiσ
x
i −

∑

<i,j>

Jijσ
z
i σ

z
j

Hbosons=
∑

i

∑

k

ωi,k

(

a†i,kai,k +
1

2

)

Hcoupling=
∑

i

σzi
∑

k

λi,k

(

a†i,k + ai,k

)

(47)

where each spin is coupled to its own local bath of oscil-
lators described by its spectral density

Ei(ω) = π
∑

k

λ2i,kδ(ω − ωi,k) ∝
ω→0

ωs (48)

The case s = 1 is called Ohmic dissipation, while s > 1
is called super-Ohmic and s < 1 is called sub-Ohmic.
To obtain the appropriate SDRG rules [204–209], the

idea is to supplement the Fisher SDRG rules of the chain
by the adiabation renormalization of the bath devel-
opped for the spin-boson model [203]. The main con-
clusion is the smearing of the quantum phase transition
by the dissipation for Ohmic and sub-Ohmic baths, with
freezing of large magnetic clusters, while super-Ohmic
is irrelevant. These predictions have been tested via
Monte-Carlo simulations [210]. Related studies based on
Landau-Ginzburg functionals can be found in [211–213].
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B. Lindblad dynamics for random quantum spin
chains

Another popular description of open quantum systems
[201, 202] is the Lindblad dynamics for the density matrix
ρ

∂ρ

∂t
= −i[H, ρ] +D[ρ] (49)

where the unitary dynamics governed by the Hamilto-
nian H is supplemented by the dissipative contribution
defined in terms of some set of operators Lα that describe
the interaction with the reservoirs

D[ρ] =
∑

α

γα

(

LαρL
†
α − 1

2
L†
αLαρ−

1

2
ρL†

αLα

)

(50)

In the field of quantum spin chains, it is interesting to
consider two reservoirs acting only on the two bound-
ary spins in order to impose a current-carrying Non-
Equilibrium Steady-State (NESS).
For the XX chain with random fields, a strong disorder

boundary renormalization has been introduced [214], in
order to describe the strong hierarchy of relaxation times
as a function of the distance to the boundaries, and to
compute explicitely the sample-dependent step-profile of
the magnetization. This step profile is expected in other
localized chains [215], in stark contrast with the usual
linear profile for diffusive dynamics. Note however that
the addition of dephasing acting on all spins of the bulk
destroys the phase coherence responsible for the localiza-
tion properties, and produces an effective dynamics de-
scribed by a classical exclusion process with randomness
[216]. Another study concerning the Lindblad dynamics
with a contact between random and pure quantum XX
spin chains can be found in [217].

IX. ANDERSON LOCALIZATION MODELS

In the field of Anderson localization (see the re-
view [218]), one is interested into the localiza-
tion/delocalization properties of the eigenstates of tight-
binding Hamiltonian of the form

H =
∑

i

Hii|i >< i|+
∑

i6=j
Hij(|i >< j|+ |j >< i|)(51)

that can be defined for various geometries.
The goal of the SDRG [219, 220] is to analyze the

properties at zero-energy E = 0 corresponding to the
middle of the spectrum. The iterative elimination of the
strongest on-site energy Hii or the strongest off-diagonal
hopping Hij ( in absolute value ) leads to the following
decimation rules. The decimation of the on-site energy
Ω = |Hi0i0 | yields the RG rule (even for k = p)

HR
kp= Hkj −

Hki0Hi0p

Hi0i0

(52)

while the decimation of the off-diagonal coupling Ω =
|Hi0j0 | produces the RG rule (even for k = p)

HR
kp= Hkp +

Hi0j0(Hki0Hj0p +Hkj0Hi0p)

H2
i0j0

−Hi0j0Hj0j0

−Hi0i0Hkj0Hj0p +Hj0j0Hki0Hi0p

H2
i0j0

−Hi0j0Hj0j0

(53)

These SDRG rules actually coincide with the exact Aoki
RG rules at zero-energy E = 0 [221–223]. As a conse-
quence, if one focuses on zero-energy E = 0, the SDRG
rules are exact in both phases (localized and delocal-
ized) as well as at the Anderson phase transition between
them.

The SDRG rules have been applied to analyze the lo-
calization properties in d = 1 [219] and d = 2 [223] and
to characterize the critical properties of the Anderson de-
localization transition in d = 3 [220, 223, 224], while the
application in higher dimensions d > 3 [220, 224] points
towards an infinite upper critical dimension dupper = +∞
for the Anderson transition. Note that another SDRG
rules based on the Inverse Participation Ratios of eigen-
states have been proposed in [225], while the effects of
rare resonances on various observables is discussed in
[226].

As a final remark, let us mention that several other
real-space renormalization approaches have been intro-
duced to analyze the multifractality of eigenstates at the
localization-delocalization transition in various models,
in particular the Levitov RG reviewed in [218], the block-
RG [227, 228] and the Wegner flow approach [229].

X. RANDOM CONTACT PROCESS

The contact process [230, 231] is a basic model in the
fields of epidemic spreading and population dynamics. It
is defined on a lattice, the sites of which are either active
(infected) or inactive (healthy). The time evolution is a
continuous-time Markov process with the following inde-
pendent transition rates. Site i, if it is active, becomes
spontaneously inactive with a rate µi or it activates site
j, provided the latter is inactive, with a rate λij . This
model in the simplest case with homogeneous parameters
and nearest neighbour spreading falls into the universal-
ity class of directed percolation.

In experimental realizations of directed percolation,
quenched disorder is observed to play an inevitable role,
therefore different variants of randomness in the contact
process have been studied theoretically. According to
the Harris criterion, quenched disorder (both spatial and
temporal) is a relevant perturbation, therefore new type
of critical bahaviour is expected to be present in these
systems.
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A. Strong disorder RG rules

The contact process with random short range interac-
tions (both the λij and the µi are i.i.d. random variables)
has been studied by the SDRG method, the basic results
can be found in Review [3]. The elementary decimation
steps are the following. Having a very strong activation
rate λij = Ω, the two connected sites form a cluster in
the presence of an effective recovery rate µ̃ = 2µiµj/λij .
On the contrary, for a strong recovery rate µi = Ω, this
site is almost always inactive, and there are effective
branching rates between all sites j, k, which are near-
est neighbours to i, as λ̃jk = λjiλik/µi. Supplementing
this relation with the maximum rule we arrive to the ele-
mentary decimation rules which are very similar to that
of the RTIM. Indeed, for nearest neighbour interactions
and for strong enough initial disorder, the extra prefactor
is unimportant, and the critical behaviour is controlled
by the IDFP of the RTIM. The infinite-randomness sce-
nario has been checked by large scale Monte-Carlo sim-
ulations in d = 2 [232, 233] and in d = 3 [234]. For
weaker disorder, the cross-over between the weak- and
the strong disorder scaling regions is analyzed in [235].
Detailed results on the distribution of dynamical observ-
ables can be found in [236]. The contact process with
asymmetric spreading has also been studied by SDRG
[237]. In dimension d = 5, the Griffiths singularities are
analyzed in [238], as an example where they can co-exist
with a clean critical behavior predicted by the Harris
criterion [239]. The effects of long-ranged correlated dis-
order is studied in [240]. The contact process on aperi-
odic chains (instead of random chains) has been found to
display double-logarithmic periodic oscillations via real-
space renormalization [241]. The numerical study of the
contact process on complex networks has revealed the im-
portance of Griffiths phases and other rare region effects
as a consequence of topological heterogeneity of the net-
work [242]. Finally, the effect on random-field disorder
on the Generalized contact process has been studied in
[243].

B. Long range spreading

Spreading of epidemics with long range infections -
which has a power-law distribution - can happen in dif-
ferent situations. This type of process can be modelled
by the contact process in which the activation rates are
parametrised as:

λij = Λijr
−(d+σ)
ij , (54)

where rij is the Euclidean distance between site i and j,
and Λij are O(1) i.i.d. quenched random variables, while
the recovery rates µi are also i.i.d. quenched random
variables as before.
The SDRG trajectories have been analysed [244] in

the same way as that of the RTIM with LR interaction

of Sec.III. Analytical solution of the primary model in
1D, as well as numerical implementation of the renor-
malization with the maximum rule in 1D and 2D lead to
identical critical scaling behavior as illustrated in Fig.2.
In the language of the contact process, the following con-
sequences have been obtained. Starting from a single
infected site, the average survival probability is found to
decay as P (t) ∼ t−d/z up to multiplicative logarithmic
corrections. Below the epidemic threshold, a Griffiths
phase emerges, where the dynamical exponent z varies
continuously with the control parameter and tends to
zc = d+σ as the threshold is approached. At the thresh-
old, the spatial extension of the infected cluster (in sur-
viving trials) is found to grow as R(t) ∼ t1/zc with a mul-
tiplicative logarithmic correction, and the average num-
ber of infected sites in surviving trials is found to increase
as Ns(t) ∼ (ln t)χ with χ = 2 in one dimension. These
results have been confirmed by numerical Monte Carlo
simulations [244]. We note that on a long-range con-
nected network, the contact process has infinite disorder
criticality [245].

C. Temporal disorder

The contact process in time-varying environmental
noise, i.e. temporal disorder, has been considered in
Refs. [246–248]. The system is spatially homogeneous,
but the (nearest neighbour) activation and recovery rates
are time dependent:

λ(t) = λn, µ(t) = µn (tn < t < tn+1) . (55)

In the mean-field approximation the time evolution
of the density ρ of the active sites follows the differential
equation:

ρ̇(t) = [λ(t) − µ(t)] ρ(t)− λ(t)ρ2(t) , (56)

the solution of which in the interval tn < t < tn+1 for a
given disorder realization is given by:

ρ−1
n+1 = anρ

−1
n + cn . (57)

Here ρn = ρ(tn), an = exp[(µn−λn)∆t] and the constant
cn = (an − 1)λn/(µn − λn).
The strong disorder (or strong noise) RG consists of

iteratively decimating the weakest spreading and recov-

ery segments, characterised by a↑i > 1 and a↓i < 1, re-

spectively and Ω = min(a↑i , 1/a
↓
i ). The decimation equa-

tions are given by: ã↑ = a↑i+1a
↑
i /Ω (for Ω = 1/a↓i ) and

1/ã↓ = (1/a↓i )(1/a
↓
i−1)/Ω (for Ω = a↑i ), which are equiv-

alent to those of the RTIM in one dimension. Thus the
critical behavior in the mean-field approximation is con-
trolled by the IDFP of this model.
In finite dimensions the decimation equations are

ã↑ = a↑i+1a
↑
i /Ω (for Ω = 1/a↓i ) and (1/ã↓)1/D =

(1/a↓i )
1/D + (1/a↓i−1)

1/D − Ω1/D (for Ω = a↑i ). Here in
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the second equation, one takes into account that in fi-

nite dimensions by decimating Ω = a↑i the radii of the
combined active clusters grows linearly in time. The el-
ementary RG steps in this case are equivalent to that of
the RTIM in one dimension with long-range interactions,
see in Sec.III A and the RG trajectories are illustrated in
Fig.2. The singular properties of the observables in the
contact process can be found in [246, 248] and numerical
calculations are performed in Ref. [248].
Temporal disorder at first-order non-equilibrium phase

transitions has been studied in [249]. More generally, the
effect of spatio-temporal disorder on various equilibrium
and nonequilibrium critical points is discussed in [250].

XI. CLASSICAL MASTER EQUATIONS

The stochastic dynamics in random classical mod-
els usually displays a broad continuum of relevant time
scales. The scaling between the characteristic time t and
the linear length L can be either activated with some
exponent ψ characterizing some Infinite Disorder Fixed
Point

ln t = Lψ (58)

or power-law with some dynamical exponent z that may
vary continuously as a function of the model parameters

t = Lz (59)

The limit z → ∞ corresponds to the activated scaling (Eq
58) of the Infinite Disorder Fixed Point, but the whole
region

1 < z < +∞ (60)

can usually be well described by the Strong Disorder ap-
proximation.

A. Real-space renormalization for random walks
in random media

As reviewed in [3], Strong Disorder RG procedures
have been applied to various models of random walks
in random media. The main principle is the iterative
elimination of the fastest degree of freedom to obtain the
effective dynamics for the slowest ones. In this field, new
developments since 2005 include one-dimensional random
walks with dilute absorbers [251] or with long-range con-
nections [252], random walks on strips [253, 254] and
on arbitrary networks [255], and in two-dimensional self-
affine random potentials [256].

B. RG in configuration-space for the dynamics of
classical many-body models

The real-space SDRG for random walks in random
media has been generalized into the configuration-space

SDRG [257] for any classical master equation governing
the dynamics of the probability Pt(C) to be in configura-
tion C at time t

dPt (C)
dt

=
∑

C′

Pt (C′)W (C′ → C)− Pt (C)Wout (C)(61)

where W (C′ → C) represents the transition rate per unit
time from configuration C′ to C while

Wout (C) ≡
∑

C′

W (C → C′) (62)

denotes the total exit rate out of configuration C. The
SDRG rule consists in the elimination of the configura-
tion C∗ with the highest total exit rateWout(C∗) to obtain
the new renormalized transition rates between surviving
configuration

Wnew(Ci→ Cj) =W old(Ci → Cj)

+W old(Ci → C∗)
W old(C∗ → Cj)
Wout(C∗)

(63)

and the new exit rates

Wnew
out (Ci)=W old

out(Ci)

−W old(Ci → C∗)
W old(C∗ → Ci)
Wout(C∗)

(64)

The physical interpretation of this procedure is as fol-
lows : the time spent in the decimated configuration C∗

is neglected with respects to the other time scales re-
maining in the system; the remaining configurations rep-
resents some ’valleys’ in configuration space that takes
into account all the previously decimated configurations.
As a consequence of the multiplicative structure of the
renormalization rule of Eq 63, the renormalized rates
W (C → C′) can rapidly become very small and the ap-
propriate variables are the logarithms of the transition
rates, called ’barriers’

B(C → C′) ≡ − lnW (C → C′) (65)

This SDRG procedure has been applied numerically
to interfaces in two-dimensional random media [257–259]
with possibly driving [260]. Note that the idea to elim-
inate fast degrees of freedom in classical master equa-
tions is very natural and has been thus developed inde-
pendently in many other contexts (see the recent review
[261] and references therein). The SDRG rules above are
actually similar to the exact RG rules concerning first-
passage times [262] where the application to spin-glasses
is discussed.
As a final remark, it is important to stress that for

many-body classical models, the fact that the above RG
rules are defined in configuration space clearly limits the
numerical implementation to small sizes. As a conse-
quence, various other types of real-space RG procedures
have been developed for the dynamics of classical spin
models, in particular boundary-RG for the dynamics in
d = 1 [263] and on the Cayley tree [264] or block-RG for
for the dynamics of Long-Ranged ferromagnetic [265] or
Spin-Glass models [266, 267].
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XII. RANDOM CLASSICAL OSCILLATORS

A. Random elastic networks

The model of random masses mi connected by random
springs Kij is one of the oldest problem in the field of
localization of classical disordered models [268]. One is
interested into the Newton equations of motions for the
displacements ui(t)

mi
d2ui
dt2

=
∑

j

Kij(uj − ui) (66)

for various geometries. The issue of the localization prop-
erties of the eigenmodes (phonon localization) is related
to the Anderson localization properties of tight-binding
models discussed in Section IX even if they are some dif-
ferences (see for instance [269] and references therein).
Various slightly different SDRG rules have been pro-

posed : the idea is to eliminate iteratively either only the
masses [270], or only the couplings [271], or both [272]
as we now describe. One first needs to identify the local
degree of freedom oscillating with the highest frequency.
The frequency Ωi,j associated to the spring Ki,j be-

tween two masses mi and mj is defined by [272]

Ω2
i,j ≡ Ki,j

(

1

mi
+

1

mj

)

(67)

while the frequency Ωi associated to the mass mi con-
nected to the springs Kij is given by [272]

Ω2
i ≡

1

mi

∑

j

Ki,j (68)

The renormalization scale Ω is defined as the highest
local frequency remaining in the system among all the
frequencies associated with masses or spring constants.

Ω ≡ max{Ωi,Ωi,j} (69)

If the highest frequency Ω = Ωi0,j0 is associated with
the spring constant Ki0,j0 , the two masses mi0 and mj0

are replaced by their center of mass G(i0, j0) of mass

mG(i0,j0) = mi0 +mj0 (70)

and the spring constants are replaced by spring constants
linked to their center of mass

Kj,G(i0,j0) = Kj,i0 +Kj,j0 (71)

This renormalization step thus constructs a cluster of
strongly-coupled masses oscillating together.
If the highest frequency Ω = Ωi0 is associated with

the mass i0, the mass mi0 is eliminated, and the spring
constants are renormalized according to

Knew
i,j = Ki,j +

Ki,i0Ki0,j
∑

nKi0,n
(72)

This renormalization step thus constructs an isolated lo-
calized oscillating mode.

These SDRG rules coincide with the exact Aoki RG
rules at zero frequency ω = 0 [272], so they are expected
to remain a good approximation at low frequency.

The SDRG approach has been applied to complex net-
works to analyze their localization properties [270] as well
as to some matrix model in relation with slow relaxation
in glasses [271].

B. Synchronisation of interacting non-linear
dissipative classical oscillators

In the field of emergent collective structures in
nonequilibrium systems, the spontaneous synchroniza-
tion of interacting nonlinear oscillators is one of the most
studied phenomenon [273–275]. Each oscillator is char-
acterized by its mass mi and its own frequency ωi, while
the interactions between oscillators are described by cou-
plings Kij that define the geometry of the network of os-
cillators. The dynamical equations for the phases θi(t)
of the oscillators are written in the dissipative limit (first
order in time)

mi
dθi
dt

= miωi +
∑

j

Kij sin(θj − θi) (73)

The aim of the SDRG procedure [276, 277] is to con-
struct clusters of frequency-synchronized-oscillators. The
two decimation possibilities are as follows. The decima-
tion of a coupling Kij corresponds to the synchronization
of the two corresponding oscillators and its replacement
by a single renormalized oscillator. The decimation of
a frequency ωi means that the corresponding oscillator
rotates freely and does not contribute to the global syn-
chronization. The details of the SDRG rules and the
numerical results are described in [276, 277].

XIII. OTHER CLASSICAL MODELS

A. Equilibrium properties of random systems

SDRG has been also used to analyze the equilibrium
phase transitions of various classical systems, as reviewed
in [3], while more recent applications include the ran-
domly layered Heisenberg magnet [278], the wetting tran-
sition on the Cayley tree [279], the DNA denaturation
transition [280]. In the field of classical spin-glasses, some
SDRG procedure have been also introduced to study the
spin-glass phase of the Long-Ranged Spin-Glass chain
[281] or the fractal dimension of interfaces in Short-
Ranged Spin-Glasses as a function of the dimension d
[282–284].
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B. Extremes of stochastic processes

As explained in detail in the Review [3], SDRG pro-
cedures are closely related to the statistics of extrema of
some random processes associated to the disorder vari-
ables : for instance, the Fisher solution is directly related
to the statistics of extrema of the Brownian motion[18].
Reciprocally, the Extreme Value Statistics of various
stochastic processes can be analyzed via SDRG [285]
(while the Extreme Value Statistics of independent vari-
ables is analyzed via RG in the series of works [286]).
Some coagulation model with extremal dynamics has
been also studied [287], in relation with previous works
reviewed in Appendix E of [3]).

XIV. CONCLUSION

In summary, we have reviewed the new developments
of Strong Disorder RG methods since 2005. For the
quantum phase transitions of ground states, the critical
properties have been described for short-ranged models
in higher dimensions d > 1 and for long-ranged mod-
els. The scaling of the entanglement entropy has been
discussed both for critical ground-states and after quan-
tum quenches. In Many-Body-Localized phases, we have
explained how the SDRG procedure has been extended
into RSRG-X procedure to construct the whole set ex-
cited stated and into the RSRG-t procedure for the uni-
tary dynamics. Other generalizations of the SDRG ap-
proach concern non-isolated quantummodels, namely pe-
riodically driven models (Floquet dynamics) or dissipa-

tive models (coupling to external baths). We have then
focused on the recent progress for classical disordered
models, with the contact process for epidemic spreading,
the strong disorder renormalization procedure for general
master equations, the localization properties of random
elastic networks and the synchronization of interacting
non-linear dissipative oscillators.
In conclusion, SDRG methods have flourished over the

years well beyond their initial scopes, and we thus expect
that they will continue to be developed even further in
the future.

ACKNOWLEDGMENTS

It is a pleasure to thank collaborations and discussions
with several colleagues: F. Alet, E. Altman, G. Biroli,
P. Calabrese, J. Cardy, C. Chatelain, L. Cugliandolo, U.
Divakaran, D. Fisher, T. Garel, J.A. Hoyos, D. Huse,
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[29] L. B. Ioffe and M. Mézard, Disorder-Driven Quantum
Phase Transitions in Superconductors and Magnets,
Phys. Rev. Lett. 105, 037001 (2010); M.V. Feigel’man,
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