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POLYGRAPHS AND DISCRETE CONDUCHÉ
ω-FUNCTORS

LÉONARD GUETTA

Abstract. We define a class of morphisms between strict ω-categories
called discrete Conduché ω-functors that generalize discrete Conduché
functors between 1-categories and we study their properties related to
polygraphs. The main result we prove is that for every discrete Con-
duché ω-functor f : C → D, if D is a free strict ω-category on a poly-
graph then so is C.

Introduction

In [Gir64, Theorem 4.4], Giraud introduced necessary and sufficient con-
ditions for a functor f : C → D to be exponentiable in the category of
(small) categories Cat, i.e. such that the pullback functor

f∗ : Cat/D → Cat/C

induced by f admits a right adjoint. A functor satisfying these conditions
is usually called a Conduché functor or Conduché fibration (named after
Conduché who rediscovered Giraud’s theorem in [Con72]). In the present
article, we will focus on a particular case of this notion.

Definition. A functor f : C → D is a discrete Conduché functor (or discrete
Conduché fibration) if for every arrow γ : x → y in C and every factorization

f(γ) = f(x) z f(y),α β

there exists a unique factorization

γ = x z yα β

such that f(α) = α and f(β) = β.

Recall that a category C is free on a graph G if

C ≃ L(G)

where G is a graph and L is the left adjoint to the forgetful functor from
Cat to the category of graphs.

It was remarked in [Str96] that discrete Conduché functors, called ulf
functors there, have some properties related to free categories on graphs.
For example, the following theorem follows immediatly from the first section
of op. cit.
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Theorem. Let f : C → D be a discrete Conduché functor. If D is free on
a graph then C is free on a graph.

In the setting of strict ω-categories, that we shall simply call ω-categories,
the notion of free category on a graph can be generalized to the notion of free
ω-category on a polygraph in the terminology of [Bur93] (or free ω-categories
on a computad in the terminology of [Str76] or [Mak05]).

In the present paper we shall introduce a notion of discrete Conduché
functor between ω-categories and prove the following generalization of the
previous theorem.

Theorem 1. Let C and D be ω-categories and f : C → D be a discrete
Conduché ω-functor. If D is free on a polygraph then C is free on a poly-
graph.

We will even be more precise and explicitly construct the polygraph gen-
erating C from the one generating D. As a by-product we will also prove
the following theorem.

Theorem 2. Let C and D be ω-categories and f : C → D be a discrete
Conduché ω-functor. If C is free on a polygraph and fn : Cn → Dn is
surjective for every n ∈ N, then D is free on a polygraph.

Note also that, as one would expect, discrete Conduché ω-functors are
exponentiable morphisms in the category of ω-categories. However the proof
of that fact goes beyond the scope of this paper.

The original motivation for the present paper comes from a seemingly un-
related topic. Let D(Z) be the localization of the category of chain complexes
with respect to quasi-isomorphisms and Catω the category of ω-categories
and ω-functors. In [Mét03], Métayer defines a functor

Hpol(−) : Catω → D(Z)

called the polygraphic homology functor by means of a so-called polygraphic
resolution. As it turns out, free ω-categories on polygraphs are the cofibrant
objects of a “folk” model structure on Catω and the polygraphic homol-
ogy functor can be understood as the left derived functor of a well-known
abelianization functor (see [Mét03],[Mét08] and [LMW10]).

In [LM09], Lafont and Métayer prove that when we restrict this functor
to the category of monoids, considered as a subcategory of Cat and hence of
Catω, then it is isomorphic to the “classical” homology functor of monoids
(which can be defined as the singular homology of the classifying space of
the monoid).

While extending the previous result from monoids to 1-categories [Gue],
I encountered the following question:

Let f : P → C be an ω-functor with P a free ω-category on a polygraph,
C a 1-category and let c be an object of C. Consider the ω-category P/c
defined as the following fibred product in Catω:

P/c P

C/c C

y
f
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where the anonymous arrow from the slice category C/c to C is the obvious
forgetful functor.

Question: Is P/c free on a polygraph?

Now, it is straightforward to check that the arrow C/c → C is a discrete
Conduché functor. Moreover, as we shall see, discrete Conduché functors
are stable by pullback. Hence, the arrow P/c → P is a discrete Conduché
ω-functor. Then Theorem 1 provides a positive answer to the previous
question.

The same strategy also yields an alternative proof of Proposition 6 of
[LM09]. It suffices to notice that the so-called “unfolding” of an ω-functor

f : P → M,

where M is a monoid (definition 13 of op. cit.) is just the category P/⋆,
with ⋆ the only object of M when seen as a category.
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1. ω-categories

This section is mainly devoted to fixing notations. Some facts are asserted
and proofs are left to the reader.

1.1. An ω-graph consists of

- a sequence (Cn)n∈N of sets,
- maps sk

n, tk
n : Cn → Ck for all k < n ∈ N,

subject to the globular identities

sl
n = sl

k ◦ sk
n = sl

k ◦ tk
n,

tl
n = tl

k ◦ tk
n = tl

k ◦ sk
n,

whenever l < k < n ∈ N. When the context is clear, we often write sk (resp.
tk) instead of sk

n (resp. tk
n).

Elements of Cn are called n-cells. For an n-cell x and k < n, sk(x) is its
k-source and tk(x) its k-target. When n > 0, we use s(x) (resp. t(x)) as a
synonym for sn−1

n (x) (resp. tn−1
n (x)).

Two n-cells x and y are parallel if n = 0 or n > 0 and

s(x) = s(y) and t(x) = t(y).

We define the set Cn ×Ck
Cn as the following fibred product

Cn ×Ck
Cn Cn

Cn Ck.

y
tk

sk
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That is, elements of Cn×Ck
Cn are pairs (x, y) of n-cells such that sk(x) = tk(y).

We say that two n-cells x and y are k-composable if the pair (x, y) belongs
to Cn ×Ck

Cn.

1.2. Given two ω-graphs C and D, a morphism of ω-graphs

f : C → D

is a sequence of maps
(fn : Cn → Dn)n∈N

such that, for all k < n ∈ N, both diagrams

Cn Dn

Ck Dk

fn

sk sk

fk

Cn Dn

Ck Dk

fn

tk tk

fk

are commutative.

1.3. An ω-category consists of an ω-graph C together with maps

∗n
k : Cn ×Ck

Cn → Cn

1n
k : Ck → Cn

for each pair k < n subject to the following axioms.
Source and target axioms:

(1) For all l ≤ k < n ∈ N, for all k-composable n-cells x and y, we have

sl(x ∗n
k y) = sl(x),

tl(x ∗n
k y) = tl(x).

(2) For all k < l < n ∈ N, for all k-composable n-cells x and y, we have

sl(x ∗n
k y) = sl(x) ∗l

k sl(y),

tl(x ∗n
k y) = tl(x) ∗l

k tl(y).

(3) For all k < n ∈ N, for every k-cell x, we have

sk(1n
k(x)) = x = tk(1n

k (x)).

Unit axioms:

(4) For all l < k < n ∈ N,

1n
k ◦ 1k

l = 1n
l .

(5) For all k < n ∈ N, for every n-cell x, we have

x ∗n
k 1n

k (sk(x)) = x = 1n
k(tk(x)) ∗n

k x.

(6) For all k < l < n ∈ N, for all k-composable n-cells x and y, we have

1n
l (x ∗l

k y) = 1n
l (x) ∗n

k 1n
l (y).

Associativity axiom:

(7) For all k < n ∈ N, for all n-cells x, y and z such that x and y are
k-composable, and y and z are k-composable, we have

(x ∗n
k y) ∗n

k z = x ∗n
k (y ∗n

k z).

Exchange law:



POLYGRAPHS AND DISCRETE CONDUCHÉ ω-FUNCTORS 5

(8) For all k < l < n ∈ N, for all n-cells x, x′, y and y′ such that
- x and y are l-composable, x′ and y′ are l-composable,
- x and x′ are k-composable, y and y′ are k-composable,

we have

((x ∗n
k x′) ∗n

l (y ∗n
k y′)) = ((x ∗n

l y) ∗n
k (x′ ∗n

l y′)).

The same letter will refer to an ω-category and its underlying ω-graph.
We will almost always write ∗k instead of ∗n

k , and, for an n-cell x, 1x will
sometimes be used as a synonym for 1n+1

n (x). Moreover, for consistency, we
set 1n

n(x) := x for any n-cell x.

1.4. Let C and D be ω-categories. An ω-functor is a morphism of ω-graphs
f : C → D that satisfies the following axioms:

(1) For all k < n ∈ N, for all k-composable n-cells x and y, we have

fn(x ∗k y) = fn(x) ∗k fn(y).

(2) For all k < n ∈ N, for every k-cell x, we have

fn(1n
k (x)) = 1n

k(f(x)).

For an n-cell x, we will often write f(x) instead of fn(x). The category of
ω-categories and ω-functors is denoted by Catω.

1.5. Let x be a k-cell in an ω-category. We say that x is degenerate if there
exists x′ ∈ Ck′ with k′ < k such that

x = 1k
k′(x′).

Note that 0-cells are never degenerate.

1.6. For n ∈ N, an n-category is an ω-category such that every k-cell with
k > n is degenerate. An n-functor is an ω-functor between two n-categories.
The category of n-categories and n-functors is denoted by Catn.

There is an obvious inclusion functor

Catn → Catω.

This functor has a left and a right adjoint. In the sequel, we shall only use
the right adjoint, which will be denoted by

τ≤n : Catω → Catn.

For an ω-category C, the ω-category τ≤n(C) is obtained by removing all
non-degenerate k-cells of C such that k > n.

Remark 1.7. It follows from the axioms of ω-categories and ω-functors
that, for n-categories and n-functors, everything involving k-cells such that
k > n can be recovered from the rest. For example, we will often consider
that the data of an n-category C only consists of

- (Ck)0≤k≤n,
- (sk

l )0≤k<l≤n,

- (tk
l )0≤k<l≤n,

- (∗l
k)0≤k<l≤n,

- (1l
k)0≤k<l≤n.
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1.8. Let n ∈ N. It follows from the definition of ω-categories and ω-functors
that we have a functor

Celln : Catω → Set

that associates to each ω-category C, the set Cn of its n-cells and to an
ω-functor f : C → D, the map fn : Cn → Dn.

This functor is representable and we define the n-globe Dn to be the ω-
category representing this functor. (Dn is in fact an n-category.) Here are
some pictures in low dimension:

D0 = • ,

D1 = • • ,

D2 = • • ,

D3 = • •⇛ .

We will make no distinction between an n-cell x and the ω-functor

x : Dn → C

associated to it.
For k < n ∈ N, the arrows sk

n, tk
n and 1n

k induce natural tranformations

σk
n, τk

n : Celln ⇒ Cellk

and

κn
k : Cellk ⇒ Celln.

These natural transformations are in turn represented by ω-functors, that
we denote with the same letters:

σk
n, τk

n : Dk → Dn

and

κn
k : Dn → Dk.

For example, having a commutative triangle

Dn C

Dk

x

κn
k y

means exactly that we have an n-cell x of C and a k-cell y of C such that

x = 1n
k(y).

1.9. Similarly, for k < n ∈ N, we have a functor

Compn
k : Catω → Set

that associates to each ω-category C the set Cn ×Ck
Cn and to an ω-functor

f : C → D the canonically induced map

fn ×fk
fn : Cn ×Ck

Cn → Dn ×Dk
Dn.
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This functor is represented by the ω-category

Dn

∐

Dk

Dn

(which is also an n-category) defined as the following amalgamated sum

Dk Dn

Dn Dn

∐
Dk

Dn.

σk
n

τk
n

p

The arrow ∗n
k induces a natural transformation

∇n
k : Compn

k → Celln

which in turn is represented by an ω-functor

∇n
k : Dn → Dn

∐

Dk

Dn.

For example, having a commutative triangle

Dn C

Dn

∐
Dk

Dn

x

∇n
k (y,y′)

means exactly that we have n-cells x, y, y′ of C such that y and y′ are k-
composable and x = y ∗k y′.

2. Polygraphs

Definition 2.1. Let C be an ω-category and Σ ⊆ Ck with k ∈ N. We say
that Σ is a k-basis if either k = 0 and

Σ = C0

or k > 0 and the following universal property is satisfied: for every k-
category D, every (k − 1)-functor

f : τ≤k−1(C) → τ≤k−1(D)

and every map
ϕ : Σ → Dk

such that for every k-cell x of C, we have

s(ϕ(x)) = fk−1(s(x)) and t(ϕ(x)) = fk−1(t(x)),

there exists a unique k-functor f ′ : τ≤k(C) → D such that

τ≤k−1(f ′) = f

and
f ′

k(x) = ϕ(x)

for every x ∈ Σ.

Remark 2.2. Note that an n-category has a k-basis for any k > n, namely
the empty set.

Definition 2.3. An ω-category C is free if it has a k-basis for every k ∈ N.
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Definition 2.4. Let C be an ω-category and n ∈ N. An n-cell x of C is
indecomposable if:

(1) x is not degenerate,
(2) for any 0 ≤ k < n, if x = x1 ∗k x2 with x1, x2 ∈ Cn then

x1 = 1n
k(tk(x))

or

x2 = 1n
k (sk(x)).

In particular, any 0-cell is indecomposable.

Proposition 2.5. Let C be a free ω-category. For each k ∈ N, there is a
unique k-basis of C, namely the set of indecomposable k-cells.

Proof. See [Mak05, Section 4, Proposition 8.3]. �

2.6. Proposition 2.5 allows us to talk about the k-basis of a free category
C. The sequence

(Σk ⊆ Ck)k∈N

where each Σk is the k-basis of C is simply called the basis of C.

Definition 2.7. An ω-functor f : C → D between two free ω-categories is
rigid if for every k ∈ N, we have

fk(ΣC
k ) ⊆ ΣD

k

where ΣC
k (resp. ΣD

k ) is the k-basis of C (resp. D).

Free ω-categories and rigid ω-functors form a category denoted by Pol.

Remark 2.8. Objects of Pol are commonly called polygraphs and mor-
phisms of Pol are commonly called morphisms of polygraphs. Although the
terms “polygraph” and “free ω-category” are synonyms, we prefer to use the
former one when we think of them as objects of the category Pol and the
latter one when we think of them as objects of the category Catω.

3. Discrete Conduché ω-functors

3.1. Recall that given a category C and M a class of arrows of C, an
arrow f : X → Y of C is said to be right orthogonal to M if for every
m : A → B ∈ M and every commutative square

A X

B Y

m f

there exists a unique l : B → X (referred to as a lifting) such that the
diagram

A X

B Y.

m f
l

is commutative.
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Definition 3.2. Let f : C → D be an ω-functor. We say that f is a discrete
Conduché ω-functor if it is right orthogonal to the arrows

Dn

Dk

κn
k

and
Dn

Dn

∐
Dk

Dn

∇n
k

for any k, n ∈ N such that 0 ≤ k < n.

Remark 3.3. Since the class of discrete Conduché ω-functors is a right
orthogonal class, it has many good properties. One of them is that discrete
Conduché ω-functors are stable by pullback.

3.4. Unfolding the Definition 3.2, the right orthogonality to κn
k means that

for any x ∈ Cn, for any y ∈ Dk such that

f(x) = 1n
k(y)

there exists a unique1 z ∈ Ck such that

x = 1n
k (z)

and
f(z) = y.

Similarly, the right orthogonality to ∇n
k means that for any x ∈ Cn, if

f(x) = y1 ∗k y2

with y1, y2 ∈ Dn that are k-composable, then there exists a unique pair
(x1, x2) of elements of Cn such that

(1) sk(x1) = tk(x2) and x = x1 ∗k x2,
(2) f(x1) = y1 and f(x2) = y2.

As it turns out, there are redundancies in the definition of discrete Con-
duché ω-functor.

Lemma 3.5. Let k < n ∈ N and f : C → D an ω-functor. If f is right
orthogonal to

Dn

Dn

∐
Dk

Dn

∇n
k

then it is right orthogonal to

Dn

Dk.

κn
k

1Note that since the map z 7→ 1n
k (z) is injective, the uniqueness comes for free.



10 LÉONARD GUETTA

Proof. Let x ∈ Cn and suppose that f(x) = 1n
k(y) with y ∈ Dk. Notice that

f(x) = 1n
k (y) ∗k 1n

k(y)

and

x = x ∗k 1n
k (sk(x)) = 1n

k (tk(x)) ∗k x

and

f(1n
k(sk(x))) = 1n

k(sk(f(x))) = 1n
k(y) = 1n

k (tk(f(x))) = f(1n
k(tk(x))).

Using the uniqueness part of the right orthogonality to ∇n
k , we deduce that

x = 1n
k(sk(x)) = 1n

k (tk(x)). Thus, if we set z = sk(x) = tk(x), we have
x = 1n

k (z) and f(z) = y, which is what we needed to prove. �

Remark 3.6. In light of the previous lemma, the reader may wonder why we
included the right orthogonality to κn

k in the definition of discrete Conduché
ω-functor. The motivation for such a choice is that it should be possible
to apply this definition mutatis mutandis for non-strict ω-categories where
Lemma 3.5 might not hold anymore.

Lemma 3.7. Let k < m < n ∈ N and f : C → D be an ω-functor. If f is
right orthogonal to ∇n

k and κn
m, then it is right orthogonal to ∇m

k .

Proof. Let x ∈ Cm and suppose that

f(x) = y1 ∗k y2

with y1, y2 ∈ Dm that are k-composable. Then 1n
m(x) ∈ Cn and

f(1n
m(x)) = 1n

m(y1) ∗k 1n
m(y2).

From the right orthogonality to ∇n
k , we know that there exist z1, z2 ∈ Cn

that are k-composable such that f(z1) = 1n
m(y1), f(z2) = 1n

m(y2) and

1n
m(x) = z1 ∗k z2.

From the right orthogonality to κn
m, we know that there exist x1, x2 ∈ Cm

such that z1 = 1n
m(x1), z2 = 1n

m(x2), f(x1) = y1 and f(x2) = y2. It follows
that sk(x1) = tk(x2) and

1n
m(x) = 1n

m(x1) ∗k 1n
m(x2) = 1n

m(x1 ∗k x2),

hence x = x1 ∗k x2. This proves the existence part of the right orthogonality
to ∇m

k .
Now suppose that there are two pairs (x1, x2) and (x′

1, x′
2) of m-cells of C

that lift the pair (y1, y2) in the usual way. It follows that (1n
m(x1), 1n

m(x2))
and (1n

m(x′
1), 1n

m(x′
2)) lift the pair (1n

m(y1), 1n
m(y2)) in the usual way.

From the uniqueness part of the right orthogonality to ∇n
k , we deduce that

1n
m(x1) = 1n

m(x′
1) and 1n

m(x2) = 1n
m(x′

2), hence x1 = x′
1 and x2 = x′

2. �

3.8. Recall that with the definition we chose (paragraph 1.6), an n-functor
is a particular type of ω-functor. Hence, it makes sense to call an n-functor
a discrete Conduché n-functor when it is a discrete Conduché ω-functor.

Proposition 3.9. Let f : C → D be an n-functor. It is a discrete Conduché
n-functor if and only if it is right orthogonal to ∇n

k for any k ∈ N such that
k < n.
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Proof. From Lemma 3.5, we know that we only need to show that f is right
orthogonal to ∇m

k for all k < m ∈ N. When m ≤ n, this follows from Lemma
3.5 and Lemma 3.7. As for the case m > n, this follows from the fact that
for any m-cell x in an n-category with m > n, there exists a unique n-cell
x′ such that x = 1m

n (x′). Details are left to the reader. �

Corollary 3.10. Let f : C → D be an ω-functor and n ∈ N. The n-functor
τ≤n(f) : τ≤n(C) → τ≤n(D) is a discrete Conduché n-functor if and only if
f is right orthogonal to ∇n

k for any k ∈ N such that k < n.

Lemma 3.11. Let f : C → D be a discrete Conduché ω-functor and x
a cell of C. Then x is an indecomposable cell if and only if f(x) is an
indecomposable cell.

Proof. If x is a 0-cell, there is nothing to show since every 0-cell is indecom-
posable. We suppose now that x is an n-cell with n > 0.

Suppose that x is indecomposable. The right orthogonality to κn
k for any

0 ≤ k < n implies that f(x) is non-degenerate since, if it were degenerate,
x would be too. Suppose that

f(x) = y1 ∗k y2

with y1, y2 ∈ Dn that are k-composable. The right orthogonality to ∇n
k

implies that
x = x1 ∗k x2

with f(x1) = y1 and f(x2) = y2. Since x is indecomposable, x1 or x2 has
to be of the form 1n

k(z) with z ∈ Ck. Thus, y1 or y2 has to be of the form
1n

k(z′) with z′ ∈ Dk. This proves that f(x) is indecomposable.
Suppose that f(x) is indecomposable. Then x is non-degenerate because

otherwise f(x) would be degenerate. Suppose that

x = x1 ∗k x2

with x1, x2 ∈ Cn that are k-composable. Thus,

f(x) = f(x1) ∗k f(x2).

Since f(x) is indecomposable, either f(x1) or f(x2) has to be of the form
1n

k(z) with z ∈ Dk. From the right orthogonality to κn
k , it follows that either

x1 or x2 has to be of the form 1n
k(z′) with z′ ∈ Ck. This proves that x is

indecomposable. �

From the previous lemma and Proposition 2.5, we deduce the following
proposition.

Proposition 3.12. Let f : C → D be an ω-functor with C and D free
ω-categories. If f is a discrete Conduché ω-functor then f is rigid.

4. Cellular extensions and technicalities on words

Definition 4.1. A cellular extension of an n-category C is a quadruple
(C, Σ, σ, τ) where:

- C is an n-category,
- Σ is a set,
- σ and τ are maps Σ → Cn such that for every element x of Σ, the

n-cells σ(x) and τ(x) are parallel.
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When the natural number n is understood, a cellular extension means a
cellular extension of some n-category.

Definition 4.2. Let E = (C, Σ, σ, τ) and E′ = (C ′, Σ′, σ′, τ ′) be two cellular
extensions of n-categories. A morphism of cellular extensions from E to E′

is a pair (f, ϕ) where:

- f is n-functor from C to C ′,
- ϕ is a map Σ → Σ′,
- the following squares are commutative

Σ Σ′

Cn C ′
n

ϕ

σ σ′

fn

Σ Σ′

Cn C ′
n.

ϕ

τ τ ′

fn

Cellular extensions of n-categories and morphisms between them form a
category Cat+

n . There is an obvious functor Un : Catn+1 → Cat+
n that

sends an (n + 1)-category C to the cellular extension (τ≤n(C), Cn+1, s, t).
We shall see later that this functor has a left adjoint.

4.3. Let E = (C, Σ, σ, τ) be a cellular extension of an n-category. We
consider the alphabet that has:

- a symbol cα for each α ∈ Σ,
- a symbol ix for each x ∈ Cn,
- a symbol ∗k for each 0 ≤ k ≤ n,
- a symbol of opening parenthesis (,
- a symbol of closing parenthesis ).

We write W[E] for the set of finite words on this alphabet. If w and w′ are
elements of W[E], we write ww′ for their concatenation.

The length of a word w, denoted by L(w), is the number of symbols that
appear in w.

4.4. We now recursively define the set T [E] ⊆ W[E] of well formed words
(or terms) on this alphabet together with maps s, t : T [E] → Cn that satisfy
the globular conditions:

- (cα) ∈ T [E] with s((cα)) = σ(α) and t((cα)) = τ(α) for each α ∈ Σ,
- (ix) ∈ T [E] with s((ix)) = t((ix)) = x for each x ∈ Cn,
- (v ∗n w) ∈ T [E] with s((v ∗n w)) = s(w) and t((v ∗n w)) = t(v) for

v, w ∈ T [E] such that s(v) = t(w),
- (v ∗k w) ∈ T [E] with

s((v ∗k w)) = s(v) ∗k s(w)

and

t((v ∗k w)) = t(v) ∗k t(w)

for v, w ∈ T [E] and 0 ≤ k < n, such that sk(s(v)) = tk(t(w)).

We define sk, tk : T [E] → Ck as iterated source and target (with sn = s and
tn = t for consistency). We say that two well formed words v and w are
parallel if

s(v) = s(w) and t(v) = t(w)
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and we say that they are k-composable for a k ≤ n if

sk(v) = tk(w).

For the rest of the section, we fix some cellular extension of an n-category
E = (C, Σ, σ, τ). All the words considered are elements of W[E].

Definition 4.5. The size of a well formed word w, denoted by |w|, is the
number of symbols ∗k for any 0 ≤ k ≤ n that appear in the well formed
word w.

Definition 4.6. A word v is a subword of a word w if there exist words a
and b such that w can be written as

w = avb.

Remark 4.7. Beware that in the previous definition, none of the words
were supposed to be well formed. In particular, a subword of a well formed
word is not necessarily well formed.

4.8. Since a word w is a finite sequence of symbols, it makes sense to write
w(i) for the symbol at position i of w, with 0 ≤ i ≤ L(w) − 1.

For any 0 ≤ i ≤ L(w) − 1, define Pw(i) to be the number of opening
parenthesis in w with position ≤ i minus the number of closing parenthesis
in w with position ≤ i. This defines a function

Pw : {0, . . . , L(w) − 1} → Z.

Remark 4.9. Such a counting function is standard in the literature about
formal languages. For example see [HU79, chapter 1, exercice 1.4].

Definition 4.10. A word w is well parenthesized if:

(1) it is not empty,
(2) Pw(i) ≥ 0 for any 0 ≤ i ≤ L(w) − 1,
(3) Pw(i) = 0 if and only if i = L(w) − 1.

4.11. It follows from the previous definition that the first letter of a well
parenthesized word is necessarily an opening parenthesis and that the last
letter is necessarily a closing parenthesis. Thus, the length of a well paren-
thesized word is not less than 2.

Moreover, it is immediate that if w1 and w2 are well parenthesized words
then, for any 0 ≤ k ≤ n,

(w1 ∗k w2)

is well parenthesized.

Lemma 4.12. A well formed word is well parenthesized.

Proof. Let w be a well formed word. We proceed by induction on |w|. If
|w| = 0, then w is either of the form

(cα)

or of the form
(ix).

In either case, the assertion is trivial. Now suppose that |w| > 0, we know
by definition that

w = (w1 ∗k w2)
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with w1, w2 well formed words such that |w1|, |w2| < |w|. The desired prop-
erties follow easily from the induction hypothesis. Details are left to the
reader. �

The converse of the previous lemma is obviously not true. However,
Corollary 4.14 below is a partial converse.

Lemma 4.13. Let w be a well parenthesized word of the form

w = (w1 ∗k w2)

with w1 and w2 well parenthesized words, and 0 ≤ k ≤ n and let v be a
subword of w. If v is well parenthesized then one the following holds:

(1) v = w,
(2) v is a subword of w1,
(3) v is a subword of w2.

Proof. Let a and b be words such that

avb = w = (w1 ∗k w2).

Let l1, l2, l, la, lb, lv respectively be the length of w1, w2, w, a, b, v. Notice that

la + lv + lb = l = l1 + l2 + 3.

Notice that since v is well parenthesized, the following cases are forbidden:

(1) l1 ≤ la ≤ l1 + 1,
(2) l2 ≤ lb ≤ l2 + 1,
(3) la ≥ l − 1,
(4) lb ≥ l − 1.

Indeed, the first case would imply that the first letter of v is a closing
parenthesis or the symbol ∗k. Similarly, the second case would imply that
the last letter of v is an opening parenthesis or the symbol ∗k. The third
and fourth cased would imply that lv < 2 which is also impossible.

That leaves us with the following cases:

(1) la = 0,
(2) lb = 0,
(3) 0 < la < l1 and 0 < lb < l2,
(4) 0 < la < l1 and lb > l2 + 1,
(5) l1 + 1 < la and 0 < lb < l2.

If we are in the first case, then

Pw(j) = Pv(j)

for 0 ≤ j ≤ lv − 1. That implies that Pw(lv − 1) = 0 which means that
l = lv, hence w = v.

By a similar argument that we leave to the reader, we can show that the
second case implies that w = v.

If we are in the fourth (resp. fifth) case, then it is clear that v is a subword
of w1 (resp. w2).

Suppose now that we are in the third case. Intuitively, it means that the
first letter of v is inside w1 and the last letter of v is inside w2. Notice first
that

(⋆) la < l1 < la + lv − 3,



POLYGRAPHS AND DISCRETE CONDUCHÉ ω-FUNCTORS 15

where the inequality on the right comes from the fact that lv ≥ 2 because v
is well formed.

Besides, by definition of Pw,

Pw(j) = Pv(j − la) + Pw(la)

for la ≤ j < lv + la. In particular, we have

1 = Pw1
(l1 − 1) + 1 = Pw(l1 − 1) = Pv(l1 − 1) + Pw(la).

From (⋆) and since v is well parenthesized, we deduce that

Pv(l1 − 1) > 0.

Hence, Pw(la) ≤ 0 which is impossible because w is well formed and la < l − 1.
�

Corollary 4.14. Let w be a well parenthesized word. If w is a subword of
a well formed word, then it is also well formed.

Proof. Let u be a well formed word such that w is a subword of u. We
proceed by induction on |u|. If |u| = 0, then u is either of the form

(cα)

or of the form
(ix).

In both cases, w = u since the only well parenthesized subword of u is u
itself.

Suppose now that |u| > 0. By definition,

u = (u1 ∗k u2)

with |u1|, |u2| < |u|. By Lemmas 4.12 and 4.13, we have that either:

- w = u in which case w is well formed by hypothesis,
- w is a subword of u1 and from the induction hypothesis we deduce

that w is well formed,
- w is a subword of u2 which is similar to previous case. �

Lemma 4.15. Let w be a well formed word of the form

w = (w1 ∗k w2)

with w1 and w2 well formed words, and 0 ≤ k ≤ n, and let v be a subword
of w. If v is well formed, then we are in one of the following cases:

(1) v = w,
(2) v is a subword of w1,
(3) v is a subword of w2.

Proof. This follows immediately from Lemma 4.12 and Lemma 4.13. �

Corollary 4.16. Let u be a well formed word of the form

vew

with v, w and e words and such that e is well formed. If e′ is a well formed
word that is parallel to e, then the word

ve′w

is also well formed.
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Proof. We proceed by induction on |u|.

Base case: If |u| = 0, then necessarily v and w are both the empty word
and the assertion is trivial.

Inductive step: If |u| ≥ 1, then

u = (u1 ∗k u2)

with u1 and u2 well formed words such that |u1|, |u2| < |u|. By
hypothesis, e is a subword of u and from Lemma 4.15, we are in one
of the following cases.

- u = e in which case the assertion is trivial.
- e is a subword of u1, which means that there exist words ṽ, w̃

such that
u1 = ṽew̃.

Moreover, we have

v = (ṽ

and
w = w̃ ∗k u2).

By induction hypothesis, the word

ṽe′w̃

is well formed and thus

(ṽe′w̃ ∗k u2) = vew

is well formed.
- e is a subword of u2, which is symmetric to the previous case.

�

Lemma 4.17. Let w1, w2, w′
1, w′

2 be well parenthesized words, and 0 ≤ k ≤ n
and 0 ≤ k′ ≤ n be such that

(w1 ∗k w2) = (w′
1 ∗k′ w′

2).

Then w1 = w′
1, w2 = w′

2 and k = k′.

Proof. Let us define l := min(L(w1), L(w′
1)). Notice that

Pw(j) = Pw1
(j − 1) + 1 = Pw′

1

(j − 1) + 1

for 0 < j ≤ l hence
Pw1

(l − 1) = Pw′
1
(l − 1).

Since w1 and w′
1 are well parenthesized, one of the members of the last

equality (and thus both) is equal to 0. That implies that L(w1) = L(w′
1)

and the desired properties follow immediately from that. �

Lemma 4.18. Let w1, w′
1, w2, w′

2 be well formed words, and 0 ≤ k ≤ n and
0 ≤ k′ ≤ n be such that (w1 ∗k w2) and (w′

1 ∗k′ w′
2) are well formed. If

(w1 ∗k w2) = (w′
1 ∗k′ w′

2),

then
w1 = w′

1, w2 = w′
2 and k = k′.

Proof. This follows from Lemma 4.12 and Lemma 4.17. �
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Corollary 4.19. Let w be a well formed word and suppose that it can be
written as

w = (w1 ∗k w2)

with w1 and w2 well formed words and 0 ≤ k ≤ n. Then sk(w1) = tk(w2).

Proof. By hypothesis, |w| ≥ 1. From the definition of well formed words,
we know that w is of the form

(w′
1 ∗k′ w′

2)

with w′
1 and w′

2 well formed words and 0 ≤ k′ ≤ n such that

sk′

(w′
1) = tk′

(w′
2).

From Lemma 4.18, we have that w′
1 = w1, w′

2 = w2 and k = k′. �

5. From cellular extensions to free ω-categories

Definition 5.1. Let E = (C, Σ, σ, τ) be a cellular extension of an n-category
and let u, u′ ∈ T [E]. An elementary move from u to u′ is a quadruple
µ = (v, w, e, e′) with v, w ∈ W[E] and e, e′ ∈ T [E] such that

u = vew,

u′ = ve′w,

and one of the following holds:

(1) e is of the form

((x ∗k y) ∗k z)

and e′ is of the form

(x ∗k (y ∗k z))

with x, y, z ∈ T [E] and 0 ≤ k ≤ n,
(2) e is of the form

((ic) ∗k x)

and e′ is of the form

x

with x ∈ T [E], 0 ≤ k ≤ n and c = 1n
k(tk(x)),

(3) e is of the form

(x ∗k (ic))

and e′ is of the form

x

with x ∈ T [E], 0 ≤ k ≤ n and c = 1n
k(sk(x)),

(4) e is of the form

((ic) ∗k (id))

and e′ is of the form

(ic∗kd)

with c, d ∈ Cn and 0 ≤ k < n,
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(5) e is of the form
((x ∗k y) ∗l (z ∗k t))

and e′ is of the form

((x ∗l z) ∗k (y ∗l t))

with x, y, z, t ∈ T [E], 0 ≤ l < k ≤ n.

5.2. We will use the notation

µ : u → u′

to say that µ is an elementary move from u to u′.
We now define an oriented graph2 G[E] with:

- T [E] as its set of objects,
- for all u, u′ in T [E], the set of elementary moves from u to u′ as its

set of arrows from u to u′.

We will use the categorical notation

G[E](u, u′)

to denote the set of arrows from u to u′.
We will also sometimes write

u ↔ u′

to say that there exists an elementary move from u to u′ or from u′ to u.

Definition 5.3. Let E = (C, Σ, σ, τ) be a cellular extension of an n-category
and u, u′ ∈ T [E]. We say that the well formed words u and u′ are equivalent
and write

u ∼ u′

if they are in the same connected component of G[E]. More precisely, this
means that there exists a finite sequence (uj)0≤j≤N of well formed words
with u0 = u, uN = u′ and uj ↔ uj+1 for 0 ≤ j < N . The equivalence class
of a well formed word u will be denoted by [u].

Lemma 5.4. Let u, u′ ∈ T [E]. If u ∼ u′ then u and u′ are parallel.

Proof. Let
µ = (v, w, e, e′) : u → u′

be an elementary move from w to w′. We are going to prove that s(u) = s(u′)
and t(u) = t(u′) with an induction on L(v)+L(w)(cf. 4.3). Notice first that,
by definition of elementary moves, |u| ≥ 1 and thus

u = (u1 ∗k u2)

with u1, u2 ∈ T [E].

Base case: If L(v) + L(w) = 0, it means that both v and w are both the
empty word. It is then straightforward to check the desired property
using Definition 5.1.

Inductive step: Suppose now that L(v) + L(w) ≥ 0. Since e is a subword
of u that is well formed, from Lemma 4.15 we are in one of the
following cases:

2Here, oriented graph is to be understood in the same way as the underlying (oriented)
graph of a category.
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- e = u, which is exactly the base case.
- e is a subword of u1, which means that there exist ṽ, w̃ ∈ T [E]

such that
u1 = ṽew̃.

Moreover, we have

v = (ṽ

and
w = w̃ ∗k u2).

From Corollary 4.16, the word

u′
1 := ṽe′w̃

is well formed. Therefore we can use the induction hypothesis
on

µ̃ := (ṽ, w̃, e, e′) : u1 → u′
1.

This shows that s(u1) = s(u′
1) and t(u1) = t(u′

1) and since

u = (u1 ∗k u2) and u′ = (u′
1 ∗k u2)

it follows easily that s(u) = s(u′) and t(u) = t(u′).
- e is a subword of u2, which is symmetric to the previous case.

By definition of ∼, this suffices to show the desired properties. �

Lemma 5.5. Let v1, v2, v′
1, v′

2 ∈ T [E] and 0 ≤ k ≤ n such that v1 and v2
are k-composable, and v′

1 and v′
2 are k-composable. If v1 ∼ v2 and v′

1 ∼ v′
2

then
(v1 ∗k v2) ∼ (v′

1 ∗k v′
2).

Proof. Let
µ = (v, w, e, e′) : v1 → v′

1

be an elementary move. Set
ṽ := (v

and
w̃ := w ∗k v2).

Then, by definition, (ṽ, w̃, e, e′) is an elementary move from (v1 ∗k v2) to
(v′

1 ∗k v2). Similarly, if we have an elementary move from v2 to v′
2, we obtain

an elementary move from (v1 ∗k v2) to (v1 ∗k v′
2).

By definition of ∼, this suffices to show the desired property. �

5.6. Let E = (C, Σ, σ, τ) be a cellular extension of an n-category, D an
(n + 1)-category and

(ϕ, f) : E −→ Un(D) = (τ≤n(D), Dn+1, s, t)

a morphism of cellular extensions. We recursively define a map

ϕ̂ : T [E] → Dn+1

by

- ϕ̂((cα)) = ϕ(α) for α ∈ Σ,
- ϕ̂((ix)) = 1f(x) for x ∈ Cn,
- ϕ̂((v ∗k w)) = ϕ̂(v) ∗k ϕ̂(w) for 0 ≤ k ≤ n, v and w two well formed

words that are k-composable.
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Lemma 5.7. The map ϕ̂ commutes with source and target, i.e. for a well
formed word w, we have

s(ϕ̂(w)) = f(s(w)) and t(ϕ̂(w)) = f(t(w)).

Proof. The lemma is proven with an induction left to the reader. �

Lemma 5.8. Let v and w be two well formed words. If v ∼ w then

ϕ̂(v) = ϕ̂(w).

Proof. It suffices to prove that for any elementary move µ : v → w, we
have ϕ̂(v) = ϕ̂(w), which is immediate from the axioms for ω-category (see
paragraph 1.3). �

5.9. Let E = (C, Σ, σ, τ) be a cellular extension of an n-category.
From Lemma 5.4, we deduce that s, t : T [E] → Cn induce maps

s, t : T [E]/∼ → Cn.

Let [v] and [w] be two elements of T [E]/∼ such that sk([v]) = tk([w]) for
some 0 ≤ k ≤ n. From Lemma 5.5, we can define without ambiguity:

[v] ∗k [w] := [v ∗k w].

We leave it to the reader to show that these data add up to an (n + 1)-
category E∗ with τ≤n(E∗) = C and E∗

n+1 = T [E]/∼.
Note that we have a canonical map

jE : Σ → E∗
n+1

α 7→ [(cα)]

and the following two triangles are commutative

Σ E∗
n+1

En

jE

σ sn

Σ E∗
n+1

En.

jE

τ tn

Lemma 5.10. The map jE : Σ → E∗
n+1 is injective.

Proof. For any α ∈ Σ, it is straightforward to check that the number of
occurences of cα in a well formed word w depends only on its equivalence
class [w]. In particular, for α 6= β in Σ, [(cα)] 6= [(cβ)]. �

As a consequence of the previous lemma, we will always consider Σ as a
subset of E∗

n+1 and jE as the canonical inclusion.

Proposition 5.11. Let E = (C, Σ, σ, τ) be a cellular extension of an n-
category. Then Σ is an (n + 1)-basis of the (n + 1)-category E∗.

Proof. Let D be an (n + 1)-category, f : C → τ≤n(D) an n-functor and a
map ϕ : Σ → Dn+1 compatible with source and target. In other words, we
have a morphism of cellular extension (ϕ, f) : E → Un(D). From paragraph
5.6, we have a map

ϕ̂ : T [E] → Dn+1,

whose restriction to Σ is ϕ. From all the results from 5.4 to 5.8, ϕ̂ induces
a map

T [E]/∼ → Dn+1,
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which is compatible with source, target, units, and composition. This proves
the existence of an (n + 1)-functor

f ′ : E∗ → D

such that τ≤n(f ′) = f and the restriction of f ′
n+1 to Σ is ϕ.

Let f ′′ : E∗ → D be another (n+1)-functor with the same properties and
let x be an (n + 1)-cell of E∗. By definition, there exists a well formed word
w such that

x = [w].

By a quick induction on |w| that we leave to the reader, we easily prove that
f ′′

n+1 = f ′
n+1. Since by definition τ≤n(f ′′) = f , we have f ′ = f ′′. �

We leave it to the reader to extend the correspondance

E = (C, Σ, σ, τ) 7→ E∗

to a functor Cat+
n → Catn+1.

Corollary 5.12. Let n ∈ N. The functor

Cat+
n → Catn+1

E 7→ E∗

is left adjoint to the functor

Un : Catn+1 → Cat+
n .

Proof. This is a reformulation of the universal property from Definition 2.1.
�

Remark 5.13. Note that this left adjoint has already been explicitly con-
structed in the literature, for example in [Mak05] or in [Mét08]. Our con-
struction is greatly inspired from the latter reference but it differs in one
subtle point. Métayer defines an elementary relation on parallel well formed
words and then takes the congruence generated by it, whereas we directly
defined an explicit equivalence relation (Definition 5.3) and then showed
that that two equivalent well formed words are necessarily parallel (Lemma
5.4) and that it is in fact a congruence (Lemma 5.5).

5.14. Let C be an ω-category and Σ a subset of Cn+1. We define the cellular
extension

EΣ = (τ≤n(C), Σ, s, t)

where s and t mean the restrictions of s, t : Cn+1 → Cn to Σ ⊆ Cn+1.
In order to simplify the notations, we will allow ourselves to write T [Σ]

instead of T [EΣ] when there is no ambiguity on the rest of the data.
The canonical inclusion ι : Σ →֒ Cn+1 induces a canonical morphism

(ι, idτ≤n(C)) : EΣ → Un(C) = (τ≤n(C), Cn+1, sn, tn).

From paragraph 5.6, we obtain a map, that we denote ρΣ instead of ι̂,

ρΣ : T [Σ] → Cn+1

such that

- ρΣ((cα)) = α for α ∈ Σ,
- ρΣ((ix)) = 1x for x ∈ Cn,
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- ρΣ((v ∗k w)) = ρΣ(v) ∗k ρΣ(w) for 0 ≤ k ≤ n, v and w two well
formed words that are k-composable.

5.15. Let a be an element of Cn+1, we define T [Σ]a to be

T [Σ]a = {w ∈ T [Σ] | ρΣ(w) = a}.

Lemma 5.8 implies that if v ∈ T [Σ]a and v ∼ w, then w ∈ T [Σ]a.
We define G[Σ]a to be the full subgraph of G[Σ] whose set of objects is

T [Σ]a.

Proposition 5.16. Let C be an ω-category and Σ ⊆ Cn+1. Then Σ is an
(n + 1)-basis of C if and only if for every a ∈ Cn+1, the graph G[Σ]a is
0-connected (i.e. non-empty and connected).

More precisely this means that for every a ∈ Cn+1:

- there exists w ∈ T [Σ] such that ρΣ(w) = a,
- for every v, w ∈ T [Σ], if ρΣ(v) = a = ρΣ(w) then v ∼ w.

Proof. From Proposition 5.11, we know that E∗
Σ has Σ as an (n + 1)-basis.

Hence, the canonical morphism

EΣ → Un(C)

from paragraph 5.14 induces a map

T [Σ]/∼ → Cn+1,

which is nothing but the map obtained from ρΣ by applying Lemma 5.8.
This maps sends Σ (as a subset of T [Σ]/∼) to Σ (as a subset of Cn+1).
Since Σ is an (n + 1)-basis of E∗

Σ, we easily deduce that Σ is an (n + 1)-basis
of C if and only if the previous map is an isomorphism, which is exactly
what we wanted to prove. Details are left to the reader. �

6. Discrete Conduché ω-functors and polygraphs

6.1. Let f : C → D be an ω-functor, n > 0, ΣC ⊆ Cn and ΣD ⊆ Dn such
that fn(ΣC) ⊆ ΣD. We recursively define a map

f̃ : W[ΣC ] → W[ΣD]

with

- f̃(cα) = cf(α) for α ∈ ΣC ,

- f̃(ix) = if(x) for x ∈ Cn,

- f̃(∗k) = ∗k for 0 ≤ k < n,

- f̃( ( ) = (,

- f̃( ) ) =).

Notice that for any word w ∈ W[ΣC ], |f̃(w)| = |w| and L(f̃(w)) = L(w).

Lemma 6.2. Let f : C → D be an ω-functor, ΣC ⊆ Cn and ΣD ⊆ Dn such
that fn(ΣC) ⊆ ΣD. For every u ∈ W[ΣC ]:

(1) if u is well formed then f̃(u) is well formed,

(2) if f̃(u) is well formed and if u is a subword (4.6) of a well formed
word then it is also well formed.
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Proof. The first part of the previous lemma is proved with a short induction
left to the reader. For the second part, first notice that the map

f̃ : W[ΣC ] → W[ΣD]

satisfies the following property:

For any w ∈ W[ΣC ], w is well parenthesized if and only if f̃(w) is well
parenthesized.

It suffices then to apply Lemma 4.12 and then Corollary 4.14. �

6.3. The first part of Lemma 6.2 shows that f̃ induces a map

f̃ : T [ΣC ] → T [ΣD].

Moreover, we have a commutative square

T [ΣC ] Cn

T [ΣD] Dn

ρC

f̃ fn

ρD

where ρC and ρD respectively stand for ρΣC and ρΣD .
Thus, for every a ∈ Cn we can define a map:

f̃a : T [ΣC ]a → T [ΣD]f(a)

w 7→ f̃(w).

Recall from Corollary 3.10 that for an ω-functor f : C → D and n > 0,
τ≤n(f) is a discrete Conduché n-functor if and only if f is right orthogonal
to ∇n

k for any k ∈ N such that k < n.

Proposition 6.4. Let f : C → D be an ω-functor and n > 0. Then the
following conditions are equivalent:

(1) τ≤n(f) : τ≤n(C) → τ≤n(D) is a discrete Conduché n-functor,
(2) for every ΣD ⊆ Dn and ΣC := f−1(ΣD) and for every a ∈ Cn the

map

f̃a : T [ΣC ]a → T [ΣD]f(a)

defined above is bijective.

Proof. We begin with 1 ⇒ 2.

Surjectivity: We are going to prove the following assertion:

∀l ∈ N, ∀a ∈ Cn,∀w ∈ T [ΣD]f(a) such that |w| ≤ l

∃v ∈ T [ΣC ]a such that f̃a(v) = w.

We proceed by induction on l.
Suppose first that l = 0. We are necessarily in one of the two

cases:
(1) w = (cβ) with β ∈ ΣD. By hypothesis, ρD(w) = f(a) and by

definition of ρD, ρD(w) = β thus f(a) = β. By definition of
ΣC , a ∈ ΣC and we can choose v = (ca).
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(2) w = (iy) with y ∈ Dn−1. By hypothesis, ρD(w) = f(a) and by
definition of ρD, ρD(w) = 1y thus f(a) = 1y. Since τ≤n(f) is
a discrete Conduché n-functor, f is right orthogonal to κn

n−1.
Hence, there exists x ∈ Cn−1 such that a = 1x and f(x) = y.
We can then choose v = (ix) ∈ T [ΣC ]a.

Now suppose that the assertion is true for a fixed l ∈ N and let
w ∈ T [ΣD]f(a) be such that |w| = l + 1.

By definition of well formed words, we have

w = (w1 ∗k w2)

with 0 ≤ k < n and w1, w2 ∈ T [ΣD] such that |w1| ≤ l and |w2| ≤ l.
By hypothesis, ρD(w) = f(a) and by definition of ρD,

ρD(w) = ρD(w1) ∗k ρD(w2)

thus,

ρD(w1) ∗k ρD(w2) = f(a).

Since by hypothesis f is right orthogonal to ∇n
k , we know that there

exist a1 ∈ Cn and a2 ∈ Cn that are k-composable and such that
a = a1 ∗k a2, f(a1) = ρD(w1) and f(a2) = ρD(w2).

Since |w1| ≤ l and |w2| ≤ l, we can apply the induction hypoth-
esis. Hence, there exist v1 ∈ T [ΣC ]a1

and v2 ∈ T [ΣC ]a2
such that

f̃a1
(v1) = f̃(v1) = w1 and f̃a2

(v2) = f̃(v2) = w2. Since ρC commutes
with source and target by Lemma 5.7, v1 and v2 are k-composable
and the word (v1 ∗k v2) is a well formed. By definition of ρC , we have

ρC((v1 ∗k v2)) = ρC(v1) ∗k ρC(v2) = a1 ∗k a2 = a.

Thus, (v1 ∗k v2) ∈ T [ΣC ]a and

f̃a((v1 ∗k v2) = f̃((v1 ∗k v2)) = (f̃(v1) ∗k f̃(v2)) = (w1 ∗k w2) = w.

Injectivity: We are going to prove the following assertion:

∀l ∈ N, ∀v ∈ T [ΣC ]a, w ∈ T [ΣC ]a such that |v| = |w| ≤ l

f̃a(v) = f̃a(w) ⇒ v = w

We proceed by induction on l.
Suppose first that l = 0. We are necessarily in one of the four

cases:
(1) v = (cα) and w = (cβ) with α and β in ΣC . By definition of

ρC , α = ρC(v) = a = ρC(w) = β. Hence, v = w.
(2) v = (ix) and w = (iy) with x and y in Cn−1. By hypothesis

ρC(v) = a = ρC(w) and by definition of ρC , 1x = ρC(v) = a =
ρC(w) = 1y, thus x = y and v = w.

(3) v = (cα) and w = (ix) with α ∈ ΣC and x ∈ Cn−1. By hypoth-

esis, (cf(α)) = f̃(v) = f̃(w) = (if(x)) which is impossible.

(4) v = (ix) and w = (cα) with α ∈ ΣC and x ∈ Cn−1, which is
symmetric to the previous case.
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Now suppose that the assertion is true for a fixed l ∈ N and let
v, w ∈ T [ΣC ] such that |v| = |w| = l + 1 and f̃(v) = f̃(w). By
definition of well formed words, we have

v = (v1 ∗k v2)

and

w = (w1 ∗k′ w2)

with |v1|, |v2|, |w1|, |w2| ≤ l.
By hypothesis, we have

(f̃(v1) ∗k f̃(v2)) = f̃(v) = f̃(w) = (f̃(w1) ∗k′ f̃(w2)).

From Lemma 4.18, we deduce that ∗k = ∗k′ and f̃(vj) = f̃(wj) for
j ∈ {1, 2}.

In order to apply the induction hypothesis, we need to show that
ρC(vj) = ρC(wj) for j ∈ {1, 2}.

By hypothesis,

ρC(v1) ∗k ρC(v2) = ρC(v) = a = ρC(w) = ρC(w1) ∗k ρC(w2).

Hence,

f(ρC(v1)) ∗k f(ρC(v2)) = f(a) = f(ρC(w1)) ∗k f(ρC(w2)).

Besides, f(ρC(vj)) = ρD(f̃(vj)) = ρD(f̃(wj)) = f(ρC(wj)). We
deduce from the fact that f is right orthogonal to ∇n

k that

ρC(vj) = ρC(wj)

for j ∈ {1, 2}.
From the induction hypothesis we have vj = wj for j ∈ {1, 2},

hence v = w.

Now we prove 2 ⇒ 1.
Let a ∈ Cn and suppose that f(a) = b1 ∗k b2. We set ΣD = {b1, b2}.

By definition, ((cb1
) ∗k (cb2

)) ∈ T [ΣD]f(a) and by hypothesis there exists a

unique v ∈ T [ΣC ]a such that f̃a(v) = ((cb1
)∗k (cb2

)). Since |f̃a(v)| = |v| = 1,
we have

v = (v1 ∗k′ v2)

with |v1| = |v2| = 0, sk′
(v1) = tk′

(v2) and 0 ≤ k′ < n. Thus,

(f̃(v1) ∗k′ f̃(v2)) = f̃(v) = ((cb1
) ∗k (cb2

)).

Using Lemma 4.18, we deduce that k = k′ and f̃(vj) = (cbj
) for j ∈ {1, 2}.

We set a1 = ρC(v1), a2 = ρC(v2) and we have sk(a1) = tk(a2),

a = ρC(v) = ρC(v1) ∗k ρC(v2) = a1 ∗k a2

and

f(aj) = f(ρC(vj)) = ρD(f̃(vj)) = ρD(cbj
) = bj

for j ∈ {1, 2}, which proves the existence part of the right orthogonality to
∇n

k .

Now suppose that we have a1, a′
1, a2, a′

2 ∈ Cn with sk(a1) = tk(a2),
sk(a′

1) = tk(a′
2), a1 ∗k a2 = a′

1 ∗k a′
2 = a, f(a1) = f(a′

1) = b1 and f(a2) =
f(a′

2) = b2.



26 LÉONARD GUETTA

By definition of ΣC = f−1(ΣD), we have a1, a′
1, a2, a′

2 ∈ ΣC . We set
w = ((ca1

) ∗k (ca2
)) and w′ = ((ca′

1
) ∗k (ca′

2
)). We have ρC(w) = ρC(w′) = a

and f̃(w) = ((cb1
) ∗k (cb2

)) = f̃(w′). The injectivity of f̃a implies that
w = w′, hence a1 = a′

1 and a2 = a′
2 which proves the uniqueness part of the

right orthogonality to ∇n
k . �

6.5. Let f : C → D be an ω-functor, n > 0, ΣC ⊆ Cn and ΣD ⊆ Dn such
that f(ΣC) ⊆ ΣD. It follows from the definition of f̃ : T [ΣC ] → T [ΣD] and
the definition of elementary move (5.1) that for an elementary move

µ = (v, w, e, e′) : u → u′

with u, u′ ∈ T [ΣC ], the quadruple

(f̃(v), f̃(w), f̃(e), f̃(e′))

is an elementary move from f̃(u) to f̃(u′). Thus, we have defined a map

G[ΣC ](u, u′) → G[ΣD](f̃(u), f̃(u′)).

Together with the map f̃ : T [ΣC ] → T [ΣD], this defines a morphism of
graphs

f̃ : G[ΣC ] → G[ΣD]

and, by restriction, a morphism of graphs

f̃a : G[ΣC ]a → G[ΣD]f(a)

for any a ∈ Cn.

Lemma 6.6. With the notations of the above paragraph, the map

G[ΣC ](u, u′) → G[ΣD](f̃(u), f̃(u′))

is injective.

Proof. Let (v1, w1, e1, e′
1) and (v2, w2, e2, e′

2) be two elementary moves from
u to u′ such that

(f̃(v1), f̃(w1), f̃(e1), f̃(e′
1)) = (f̃(v2), f̃(w2), f̃(e2), f̃(e′

2)).

In particular, we have

L(v1) = L(v2) , L(w1) = L(w2) , L(e1) = L(e2) , L(e′
1) = L(e′

2).

Since
v1e1w1 = u = v2e2w2 and v1e′

1w1 = u′ = v2e′
2w2,

we have
v1 = v2 , w1 = w2 , e1 = e2 , e′

1 = e′
2. �

Lemma 6.7. With the notations of paragraph 6.5, suppose that τ≤n−1(f)
is a discrete Conduché (n − 1)-functor. Let

µ : v → v′

be an elementary move in T [ΣD]. If there exists u ∈ T [ΣC ] such that

f̃(u) = v

then there exists u′ ∈ T [ΣC ] and an elementary move

λ : u → u′
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such that
f̃(u′) = v′ and f̃(λ) = µ.

Proof. The proof is long and tedious as we have to check all the different
cases of elementary moves. For the sake of clarity, we first outline a sketch
of the proof that is common to all the cases of elementary moves and then
we proceed to fill in the blanks successively for each case.

Let
µ = (v1, v2, e, e′) : v → v′

be an elementary move. Since, by definition,

f̃(u) = v = v1ev2

u is necessarily of the form
u = u1eu2

with e, u1, u2 ∈ W[E] such that

f̃(e) = e

and
f̃(uj) = vj

for j ∈ {1, 2}. From the second part of Lemma 6.2, we deduce that e is well
formed. In each different case, we will prove the existence of a well formed
word e′ parallel to e and such that

f̃(e′) = e′.

From Corollary 4.16, we deduce that the word

u′ := u1e′u2

is well formed. By definition, we have

f̃(u′) = v′.

Moreover, in each case, it will be immediate that the pair (e, e′) is such that
the quadruple

λ := (u1, u2, e, e′)

is an elementary move and that

f̃(λ) = µ.

All that is left now is to prove the existence of e′ with the desired prop-
erties.

First case: e is of the form

((x ∗k y) ∗k z)

and e′ is of the form

(x ∗k (y ∗k z))

with x, y, z ∈ T [ΣD]. The word e is then necessarily of the form

((x ∗k y) ∗k z).

Since f̃(e) = e, we deduce from Lemma 6.2 that x, y, z and (x ∗k y)
are well formed. From Corollary 4.19, we deduce that

sk(x) = tk(y)
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and
sk(y) = tk(z).

Thus, the word
e′ := (x ∗k (y ∗k z))

is well formed and it satisfies the desired properties.
Second case: e is of the form

(x ∗k (i1n−1

k
(z)))

and e′ is of the form

x

with x ∈ T [ΣC ], 0 ≤ k < n and z ∈ Dk.3

Necessarily e is of the form

(x ∗k (iy))

with x ∈ T [E] (from Lemma 6.2 again) and y ∈ Cn−1 such that

f̃(x) = x

and

f̃(y) = 1n−1
k (z).

Then we set

e′ := x.

The only thing left to show is that y = 1n−1
k (sk(x)). If k = n − 1,

this follows from Corollary 4.19 and the fact that e is well formed.
If k < n − 1, we need first to use the fact that f is right orthogonal
to κn−1

k to deduce that

y = 1n−1
k (z)

for some z ∈ Ck such that f(z) = z and then use Corollary 4.19 and
the fact that e is well formed.

Third case: Similar to the second one with unit on the left.
Fourth case: e is of the form

((ix) ∗k (iy))

and e′ is of the form
(ix∗ky)

with x, y ∈ Dn−1 such that sk(x) = tk(y). Necessarily, e is of the
form

((ix) ∗k (iy))

with x, y ∈ Cn such that

f(x) = x and f(y) = y.

Using Corollary 4.19 and the fact that e is well formed, we deduce
that sk(x) = tk(y). Thus, the word

e′ := (ix∗ky)

is well formed. It satisfies all the desired properties.

3Notice that since e is well formed, we deduce from Corollary 4.19 that z = sk(x).
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Fifth case: e is of the form

((x ∗k y) ∗l (z ∗k t))

and e′ is of the form

((x ∗l z) ∗k (y ∗l t))

with x, y, z, t ∈ T [ΣD] and 0 ≤ l < k < n such that all the compati-
bilities of sources and targets needed are satisfied.

Necessarily, e is of the form

((x ∗k y) ∗l (z ∗k t))

with x, y, z, t ∈ W[ΣC ] such that

f̃(x) = x,

f̃(y) = y,

f̃(z) = z,

f̃(t) = t.

From Lemma 6.2 and the fact that e is well formed, we deduce that
x, y, z, t, (x ∗k y), (z ∗k t) are well formed and from Corollary 4.19, we
deduce that

sk(x) = tk(y),

sk(z) = tk(t)

and
sl((x ∗k y)) = tl((z ∗k t)).

Since l < k, we deduce from this last equality that

sl(x) = sl(y) = tl(z) = tl(t).

Thus, the word

e′ := ((x ∗l z) ∗k (y ∗l t))

is well formed. It satisfies all the desired properties. �

Remark 6.8. In the proof of the previous theorem, we only used the hy-
pothesis that f is right orthogonal to κn

k for any k such that 0 ≤ k < n − 1.

Corollary 6.9. Let f : C → D be an ω-functor, n > 0, ΣD ⊆ Dn and
ΣC = f−1(ΣD). If τ≤n(f) is a discrete Conduché n-functor, then for every
a ∈ Cn

f̃a : G[ΣC ]a → G[ΣD]f(a)

is an isomorphism of graphs.

Proof. Proposition 6.4 exactly says that the map

f̃a : G[ΣC ]a → G[ΣD]f(a)

is an isomorphism on objects and we know from Lemma 6.6 that it is a
faithful morphism of graphs (same definition as for functors). All that is
left to show is that it is also full.

In other words, we have to show that for any u, u′ ∈ T [ΣC ]a the map

G[ΣC ](u, u′) → G[ΣD](f̃(u), f̃(u′))
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is surjective.
Let µ : f̃(u) → f̃(u′) be an element of the codomain. From Lemma 6.7

we know that there exists

λ : u → v

in G[ΣC ] such that

f̃(λ) = µ.

In particular, we have

f̃(v) = f̃(u′).

Since we have an elementary move from u to v and by hypothesis u ∈ T [ΣC ]a,
we also have v ∈ T [ΣC ]a (see 5.15). Using the injectivity of the map

f̃a : T [ΣC ]a → T [ΣD]f(a)

we conclude that v = u′. �

Proposition 6.10. Let f : C → D be an ω-functor, n ∈ N, ΣD ⊆ Dn and
ΣC = f−1(ΣD). If τ≤n(f) is a discrete Conduché n-functor, then:

(1) if ΣD is an n-basis then so is ΣC ,
(2) if fn : Cn → Dn is surjective and ΣC is an n-basis then so is ΣD.

Proof. The case n = 0 is trivial. We know suppose that n > 0. From
Corollary 6.9 we have that for every a ∈ Cn, the map

f̃a : G[ΣC ]a → G[ΣD]f(a)

is an isomorphism of graphs. In particular, G[ΣC ]a is 0-connected if and
only if G[ΣD]f(a) is 0-connected. We conclude with Proposition 5.16. �

Theorem 6.11. Let f : C → D be a discrete Conduché ω-functor.

(1) If D is a free ω-category with basis (ΣD
n )n∈N, then C is a free ω-

category with basis (f−1(ΣD
n ))n∈N .

(2) If for every n ∈ N, fn : Cn → Dn is surjective and if C is a free
ω-category with basis (ΣC

n )n∈N, then D is a free ω-category with basis
(f(ΣC

n ))n∈N.

Proof. The first property follow directly from the previous proposition. For
the second property, it follows from Lemma 3.11 and Proposition 2.5 that

ΣC
n = f−1(f(ΣC

n ))

and then we can use the previous proposition. �

Appendix A. Complements: rigid functors and discrete
Conduché ω-functors

A.1. We know from Proposition 3.12 that if

f : C → D

is a discrete Conduché ω-functor and if C and D are free ω-categories then
f is rigid. However, the converse does not hold. This phenomenon was
already noticed for 2-categories in [Str96, section 5]. We shall now give a
simple counter-example.
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Counter-Example A.2. Let e be the terminal 1-category and let ⋆ be its
unique object. Let E = (e, Σ, σ, τ) be the cellular extension of e such that
Σ has two elements a, b : ⋆ → ⋆ and let C := E∗. By the Eckmann-Hilton
argument, we have that

a ∗0 b = a ∗1 b = b ∗0 a,

and C is (isomorphic to) the free commutative monoid generated by a and
b, seen as a 2-category.

Let E′ = (e, Σ′, σ, τ) be the cellular extension of e such that Σ′ has one
element c : ⋆ → ⋆ and let C ′ := E′∗. Then C ′ is (isomorphic to) the free
commutative monoid generated by c, seen as a 2-category. Let f : C → C ′

be the unique rigid functor such that f(a) = f(b) = c. Now set x := a ∗0 b
and consider the decomposition

f(x) = c ∗0 c.

The fact that a ∗0 b = b ∗0 a but that a 6= b shows that the uniqueness of the
lifting of the previous decomposition of f(x) fails.

Remark A.3. While, in the previous counter-example, the uniqueness part
of the definition of discrete Conduché 2-functor fails, the existence still holds.
I believe that there should be examples where the existence part fails as well.

A.4. The category Pol admits a terminal object ⊤. Hence, a rigid ω-functor
f : C → D between two free ω-categories always fits in a commutative
triangle

C D

⊤

f

where the anonymous arrows are the canonical rigid functors to the termi-
nal polygraph. Since the class of discrete Conduché ω-functors is a right
orthogonal class, it has the following cancellation property: for f : C → D
and g : D → E two ω-functors, if g and g ◦ f are Conduché ω-functors then
so is f .

Following the terminology of [Str96, section 5], we say that a free ω-
category C is tight if the canonical rigid functor C → ⊤ is a Conduché
ω-functor. Putting all the pieces together, we obtain the following partial
converse of Proposition 3.12.

Proposition A.5. Let C and D be two free ω-categories and f : C → D
a rigid ω-functor. If C and D are tight then f is a discrete Conduché ω-
functor.

A.6. The terminal object of Pol is a rather complicated object (see [Str96,
section 4] for an explicit description of the 2-cells of that polygraph) and
the previous criterion seems hard to use in practise.

However, it can be checked that every free 1-category is tight and the
previous proposition implies that a 1-functor f : C → D between free 1-
categories is rigid if and only if it is a Conduché functor. This fact can also
be directly proved “by hand”. We leave the details to the reader.
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