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ABSTRACT 
For a more cost efficient railway system, it is essential to optimize the maintenance of rails and the 
scheduling of the rail replacement operations. 
To support this process a numerical modelling tool has been developed thanks to a long-term 
collaboration between railway organizations (SNCF, RFF, RATP), rail producer (Tata Steel) and 
research institutes and universities (INRETS, LMS, MECAMIX, INSA) within the IDR2 consortium 
(Initiative for Development and for Research on Rail). This modelling starts with a dynamic simulation 
of the vehicle rolling on a track, from which the cyclic mechanical state of the rail is calculated by 
means of a 3D finite element simulation and an original and time-cost efficient direct stationary 
algorithm. Finally, a fatigue analysis of the rail is performed using the Dang Van criterion. 
The modelling tool has been recently completed with the simulation of the crack propagation in the 
rails. A two-scale frictional contact fatigue crack model developed within the X-FEM framework is 
used to solve the crack problem. Using this approach, contact and friction between the crack faces is 
taken into account in the simulation. Realistic residual stresses, using dedicated software developed 
by SNCF are introduced in the propagation simulation via projection of the asymptotic mechanical 
fields. Crack growth is performed taking into account this permanent non-uniform field.2D results and 
3D preliminary results are shown in this paper showing the high influence of the residual stresses on 
the crack growth rate. 

INTRODUCTION 
Due to the repeated passage of  wheels, rolling contact fatigue cracks can form on the surface of the 
rail. These defects, such as squats and head-checks, can propagate and lead to the rail fracture and 
potentially to a derailment. When a rail break is detected, the traffic must be stopped or a speed 
limitation is imposed until the rail is replaced or welded. To avoid such a disruption in service, detailed 
monitoring and maintenance procedures for the fatigue of rails are set up by infrastructure managers. 
This is costly and increases with increased traffic intensification and speed. In order to go towards a 
more cost efficient railway system, it is essential to optimize the maintenance of rails and particularly 
the scheduling of the rail replacement operations. One key to reach this target is to have a better 
understanding of the physical phenomena occurring during fatigue crack propagation to predict the 
residual life time of the rails (Fig. 1). 

Figure 1. Definition of the residual life time of the rails. 
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The goals of this work is to be able to predict, depending on the tonnage seen by the track and the 
traffic conditions, the growth rate and the direction of the fatigue cracks. To validate the numerical 
results, they are being compared with data collected from the railway network (Fig. 11). 

Figure 11. Interpolation of the crack growth rate measured on the railway network. 

With such a tool we can predict the evolution of the detected cracks to plan the rail replacement 
operations.  

CONCLUSION AND PROSPECTS 
This paper aims at predicting fatigue crack growth and branch conditions under RCF. A two-
dimensional linear elastic numerical model for fatigue crack growth has been presented, including 
contact with friction at crack interface. The model rests on a three weak field formulation using X-FEM 
and an iterative scheme dedicated to non-linear interface problems adapted from the LATIN method. 
Using the tools already developed by SNCF to solve the wheel-rail contact problem and to compute 
the asymptotic stresses in the rail, realistic residual stresses have been introduced in the propagation 
model assuming elastic shakedown for the rail. 2d parametric studies are easily performed using this 
strategy. The same mesh is used for all the simulations. 2d quantitative results are already available 
and emphasize the role of residual stresses in the crack growth rate.  
Some short prospects for this work are to reach quantitative results for 3d crack growth, add the 
contribution of the rail bending by coupling the model with a macro model dedicated to the simulation 
of the rail bending.  
Once the numerical tool would be definitely validated, it would be able to give quantitative results for 
the residual life time of the rails. 
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