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Probing high order dependencies with information
theory

C. Granero-Belinchén*, S.G. Roux*, P. Abry (IEEE Fellow)*, N.B. Garnier*
*Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

Abstract—Information theoretic measures (entropies, entropy
rates, mutual information) are nowadays commonly used in
statistical signal processing for real-world data analysis. The
present work proposes the use of Auto Mutual Information
(Mutual Information between subsets of the same signal) and
entropy rate as powerful tools to assess refined dependencies
of any order in signal temporal dynamics. Notably, it is shown
how two-point Auto Mutual Information and entropy rate unveil
information conveyed by higher order statistic and thus capture
details of temporal dynamics that are overlooked by the (two-
point) correlation function. Statistical performance of relevant
estimators for Auto Mutual Information and entropy rate are
studied numerically, by means of Monte Carlo simulations,
as functions of sample size, dependence structures and hyper
parameters that enter their definition. Further, it is shown
how Auto Mutual Information permits to discriminate between
several different non Gaussian processes, having exactly the
same marginal distribution and covariance function. Assessing
higher order statistics via multipoint Auto Mutual Information
is also shown to unveil the global dependence structure fo these
processes, indicating that one of the non Gaussian actually has
temporal dynamics that ressembles that of a Gaussian process
with same covariance while the other does not.

Index Terms—Information theory, Entropy rates, Mutual In-
formation, higher-order temporal dependencies, Non Gaussian
processes.

I. INTRODUCTION

Context. To characterize a (stationary) process X (t), evolving
along a given dimension ¢, e.g., time, the precise assessment
of both its static properties (marginal distribution or one-point
statistics) and temporal dynamics (joint distributions or multi-
point statistics) is crucial.

Correlation and spectral estimates, providing practitioners
with valuable insight into temporal dynamics are key tools
in statistics and data analysis and have been widely used
in many different fields. In neurosciences, the analysis of
correlation between neuron firings [[1], [2] or between stimulus
and brain activity [3], [4)] is essential. In fluid mechanics,
Kolmogorov’s empirical theory of turbulence [5] characterizes
the multiscale distribution of energy with the power spectrum
of the velocity field [6]. The analysis of correlations also
supports useful descriptions in terms of complex networks for,
e.g., ecology [7], climatology [8]] or traffic [9].

It is however well known that, while the correlation
function, or equivalently the power spectral density, exhaust
the description of joint statistics and hence of temporal
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dynamics for jointly Gaussian processes, they provide
characterizations of temporal dynamics for general processes,
that are limited in at least two respects: not only they are
restricted to two-point joint statistics but also to a specific
measure of these two point-statistics. In general, the full
analysis of temporal dynamics require the use of multi-point,
or higher order, joint statistics. The goal of the present work is
to address such an issue using information theoretic measures.

Related work. To assess dependencies beyond two-point
correlations, multipoint correlation functions were defined.
For instance, three-point correlation functions have been used
in cosmology, where they were related to cosmological pa-
rameters [10], [11l]. Alternatively, higher order-spectra, that
combine Fourier transforms at several different frequencies
and therefore takes into account higher order statistics, have
also been used to generalize the power spectrum beyond
second-order statistics [12], [13]. For instance, bi-spectrum
and tri-spectrum were analyzed in depth in e.g., [14], [15]]
and used in applications as different as cosmology [16], [17],
or medicine [18], [19] and other fields [20], [21]]. While of
popular use in applications, higher-order correlation functions
and spectra suffers from major caveats, mostly related to
estimation issues. Indeed, the assessment of order m-statistics
with higher-order correlation functions and spectra requires the
estimation of m-time point statistics, which, for a given fixed
sample size, can only yield decreasing estimation performance
when order m is increased.

Alternatively, Shannon’s information theory, and the corre-
sponding information theoretic measures, entropy, entropy rate
and mutual information, can be considered as an efficient way
to characterize high order statistics [22], [23], [24]. Applica-
tions of entropy rate were yet reported in a wide range of do-
mains, such as biology [25]], dynamical systems [26], fluid tur-
bulence [27]] or analysis of languages [28]. Mutual information
is also very popular, especially in computer sciences, €.g., in
machine learning [29], and other very different domains [30],
(311, 1320, [33], [34], [35)]. Auto-Mutual Information (AMI)
— sometimes called Information Storage [36] —, defined as
the mutual information between the analyzed process and a de-
layed version of itself, has been used in different domains [37],
(381, [39], [40]]. Information theory additionally provides tools
to explore causality relationships between processes [41]], [42].
However, within this paper we are mainly interested in the
characterization of their dependence structures.

Entropy rate and AMI have been envisaged as tools to
describe temporal dynamics in time series beyond second-



order statistics, or even at second-order statistics, in a richer
way than correlation or Fourier spectrum, see [43]], [37], [39],
[27]].

Goals, contributions and outline. The main goals of the
article are i) to show the ability of AMI and entropy rate
to describe high order dependences, even when considering
only two-point interactions. Even though this property of
information theory tools is well known, we are able to show it
by analyzing processes with identical correlation and marginal
distribution but different high order dependences. AMI and
entropy rate appear as straightforward generalizations of cor-
relation function and power spectrum when considering non-
Gaussian processes analysis. ii) to show the effect of analysing
interactions between more than two points, combining Takens
embedding [44]] with AMI. We characterize the complexity
of the dependence structure of a process by measuring AMI
for embedding dimension higher than 2. More precisely,
we analyze the differences between power law decay and
exponential decay dependence structures.

To demonstrate the ability of information theory to describe
high order statistics, we illustrate the use of entropy rate and
auto-mutual information to characterize non Gaussian pro-
cesses across scales. As an example, we consider two synthetic
log-normal processes with different dependence structures
but with identical correlation function and identical marginal
statistics. In section [l we introduce and define the theoretical
information theory measures and our estimators. In section
we interpret the information theory tools used along the article,
we present the processes with identical correlation function
and one-point statistics but different dependence structure that
we study and finally we illustrate how AMI and entropy rate
allow to distinguish between them. In section we report
the convergence and the performance of our estimators of
AMI and entropy rate and their ability to measure high order
dependencies. We present their evolution across scales and
emphasized that, contrary to classical correlation analysis, they
allow a fine characterization of non Gaussian processes.

II. ENTROPY, ENTROPY RATE AND AUTO MUTUAL
INFORMATION

A. Definitions

To analyze the temporal dynamics of univariate stationary
processes X = {2}, . it has been proposed in [44] to rely
on the time delay-embedding procedure. It amounts to con-
structing the m-dimensional process X ("7, whose elements
are m-dimensional vectors:

Xgm,‘r) _

- ('rtv Tp—ry "y xtf(mfl)‘r) ) (1)

where the delay 7 implicitly defines an analysis scale and
where the embbeding dimension m controls the order of the
statistics of X which are analyzed. The information theoretic
measures defined below aim to characterize temporal dynamics
via the analysis of the m-time point joint statistical distribu-
tions p(x{"™™).

Within this article, we study ergodic stationary processes
and then p(x\"™)) depend on m and 7 but not on t. Conse-

quently p(x{"™") = p(X (™).

Shannon entropy, is defined as a functional of p(x\"™")

[22]:

HOT) = = [ ™) g™

H(m,-r) (X)

By nature, it depends on the full joint distribution and therefore
on statistics of any order. However, for stationary processes it
does not depend on the mean value of the marginal distribu-
tion. For m = 1, Shannon entropy does not relate to temporal
dynamics but to one-point statistics and thus obviously does
not depend on 7 and is hence denoted H(X).

Entropy rate of order m, BmT) quantify variations of
Shannon entropy between two successive time-embedded ver-
sions of a stationary process [22], [24]:

(m»T))

) (@) = H(x" ) — H(x{™
_ H(erl,‘r) (X) . H(mr)(X)
= hm(X). )

Entropy rate h(™7), like H(™7) probes joint statistics of
any order, but in addition quantifies how much information
is gained in the analysis of temporal dynamics by increasing
by one the order of the embedding.

Mutual information 7(x\""), y*"™)) quantifies the amount
of information shared by two processes X and Y, via their

embbeded versions xgm’T) and ygf’ ™) [22), [24):

I(x™ "y ™) = / P (Xﬁm’”,yi/p’ﬂ)
Rm+p

p (Xﬁm’”, yﬁf”))

p(x"™ 7 pyd ™)

When X and Y are jointly stationary processes,
1™y Py = p(x ™7 v P7) obviously depends
on t’ —t only.

Mutual information can be read as the Kullback-Leibler di-
vergence between the joint probability p(x{"™"™ yi? )Y and its
counterpart under independence hypothesis p(xﬁ’”’” )p(yﬁ? ’T)).

To analyze the higher statistical order temporal dynamics
(also referred to as nonlinear temporal dynamics) of a sin-
gle stationary process X, one can use auto-mutual informa-
tion [)24], [36], defined as the mutual information between

In

dyMax(™™  (3)

x, ") and xgﬁ’;l:
7(m.p,7) (X) = I(Xgm’T),XEIJ_’;)_) ) 4)
Because the concatenation of xgﬁg and x{"™™) corresponds

exactly to the (m + p)-dimensional time-embedded vector
(m+p),
t+pT

(m,7) (p7)) _ ((m+p,T)

(Xt ’Xt+pr) = Xitpr s
ItmP7)(X) quantifies the shared information between the
past m-point dynamics and the future p-point dynamics. Auto
mutual information quantifies the deviation from independence
between the two arguments, beyond the simpler decorrelation.

These information theoretic quantities all depend on the
chosen time lag 7. When 7 — 0, dependences between two



consecutive coordinates of the embedding vector increase,
therefore inducing an increase in 70™17)(X) and a decrease
in h("™7)(X). Conversely, when 7 — o0, dependencies
decrease to 0, therefore inducing an increase of h("™7)(X)
up to the Shannon entropy H(X) of the process, its largest
value, and a decrease of (™17 (X) — 0.

Furthermore, entropy rate can then be expressed as [27]:

h(m’T) (X) — H(X) _ I(m’l’T) (X) , (5)

which shows that there are two different contributions to the
entropy rate: First, H(X), which only depends on the one-
point distribution and hence is a static property ; second,
I0™L7)(X') which gathers all information conveyed by linear
and non linear temporal dynamics, irrespective of the variance
of the distribution [27]].

B. Gaussian process

When X is a stationary jointly Gaussian process, hence
fully defined by its variance o2 and normalized correlation
function cx (7), analytical expressions for entropy, entropy rate
and auto mutual information are available [45]:

1
H(X) =3 In(27mea?) (6)
1 |E(m)H2KPH
(m.p,T) —
1 (X)2ln< S| (7
1 1 |20
(m,T) _ - AN
h (X) =5 In(2meos) 3 In <|Z(m+1)|) (8)

with $(") the m-dimensional correlation matrix, and || denot-
ing the determinant. By definition, (1) = 1.

C. Estimation procedures

To estimate these information theoretic quantities, two main
categories of non-parametric procedures are available, based
on either kernel density estimations (KDE) or nearest neighbor
search (NNS). While the former essentially counts the number
k(e) of the observed samples in interval of a priori set size e,
the latter rather measure the size ¢(k) of box that contain an
a priori set number of k samples.

Because this second strategy has been documented as
providing low bias estimates [46], [47], we chose k-nearest
neighbors procedures to estimate the entropy H (X)) [48], [49],
[50]:

N
B = —6(0) + 0(N) + 3+ D loglea(h) O

with ¢ the Digamma function, d the dimension of X, N the
number of samples of X, and using the Chebyshev distance
(Lo metric).

To compute the mutual information, we use the k-nearest
neighbors procedure presented by Kraskov, et al. [46]:

~

I(X,Y) = (k) + 9(N) = (@(na) + ¢(ny))

The procedure chooses & for the joint distribution Z(X,Y")
and hence obtains the distance € to the kth nearest neighbour.

(10)

Then using e, it calculates the number of neighbours n, + 1
lying on a segment x = x =+ 5 of the X dimension, i.e. lying on
—00 <Y <00, z—¢€/2 <X <x+¢/2. Consequently, ¢/2
is the distance to the n, + 1st neighbour of z. The procedure
uses the same development for Y and obtains that €/2 is the
distance to the n, + 1st neighbour of y.

Because benefits against a direct use of eq.(2) were doc-
umented in [51]], A" 7)(X) is estimated plugging the above
estimates into eq.(3).

For an stationary process X, p(xgm’T)) does not depend on
t, and consequently, we can exploit this property to estimate
the information theoretic quantities of X by averaging on all
the temporal samples of the process.

To perform an analysis across scales by varying the param-
eter 7 we use an adapted Theiler prescription [52] to eliminate
the contribution of dependencies from scales smaller than 7.

III. TEMPORAL DYNAMICS AND DEPENDENCE STRUCTURE

The aim of this section is to try to characterize what part of
the statistics of a given stationary process Y contribute to the
values taken by information theoretic measures H, Rm7) and
I(m-2:7) To that end, we conduct a formal study of the specific
yet very instructive case where processes Y with correlation
function ¢y (7) and marginal distributions py are obtained as
point bijective transformation F', Y = F'(X) of an underlying
Gaussian process X with correlation function cx, designed to
reach the targeted covariance cy. Processes Y constructed in
this way depend on F and cx (7) [53], [54].

A. Analytical calculations and interpretations

Given any bijective transformation F' that maps a Gaussian
signal X into a signal Y = F(X), the information theoretic
quantities of Y can be computed as:

H(Y)=H(X)+ (InF)x

1
=3 In(2reo%) + (In F)x (11)
](m,pﬂ')(y) — J(mp,7) (X)
(m)1s2(p)
Lo EXCIEX
— Zp (=X =X 1 (12)
? ( =

KT (Y) =5 In(2meoy ) + (In F)x — ks W
X
(13)

with (In F)x = fp(xgl))lnF(x)da:, hence a constant, 0%
and X" are the variance and the m-dimensional covariance
matrix of the underlying Gaussian process X.

These analytical calculations permit to yield understanding
of general validity regarding the nature of the information con-
veyed by each of these three information theoretic quantities:
i) Entropy H is only related to the marginal distribution of the
process py, hence is quantifying static properties only.

ii) Entropy rate »(™7) mixes up marginal distribution features
(variance and pointwise transform F'), hence static properties
with dynamical properties and dependencies of any order, as
indeed Egn) depends jointly on cy and on F', hence on the



joint distribution of y{"™™. The fact that A(™7) gather both
static and dynamics aspects of time series likely explains why
it has been observed in many applications to be a often dis-
criminant feature, compared to other features [40]]. However,
the entanglement of static and dynamic properties may also be
considered a drawback for the analysis, characterization and
understanding of data properties.

iii) Interestingly, auto mutual information I(™P-7) performs
a characterization mainly related to the dependence structure
of Y, as indeed Zgzn) depends on the joint distribution of
yf"”). It therefore quantifies temporal dynamics, irrespective
of static properties. Thus, AMI is the sole measure that
focuses exclusively on higher order dynamics and on the joint
dependence structure, beyond correlation.

Often in the scientific literature, R(m:T) and 1(m:P7) are
referred to as nonlinear features, to emphasize that they
characterize temporal dynamics beyond the mere use of the
correlation functions or power spectral densities. This is indeed
correct. Even when two-point statistics are analyzed, i.e.,
m = p = 1, I&LT) reflects dependencies, including and
encompassing correlations as the whole joint two-point dis-
tribution function is involved. Nevertheless, I("P7) remains
mostly driven by the correlation function ¢y, and hence by
linear effects. This is also the case for h(™7), driven mostly
both by the static variance o3 and dynamical correlation
function cy.

B. Process definition

1) Analytical derivations: To further illustrate that indeed
I0mP7) and h(™7) may capture differences in any-order
dependencies beyond correlations, let us study the cases
where two stationary processes Y, and Y, have exact same
marginal distribution py and exact same covariance cy, but
are yet obtained from two different point transformations F}
and F, — applied to Gaussian processes X; and Xo — and
hence have different joint distributions and hence different
dependence structures.

Let denote Fy the cumulative distribution function asso-
ciated to the marginal distribution py. A natural candidate
to obtain a process with marginal py is to apply the point
transform

Fy(z) = Fy' o ®(x), (14)

to a Gaussian process X;, where F3y is the cumulative
distribution function of the marginal distribution py and ®(z)
the cumulative distribution function of a centered standard
Gaussian variable, and where X is a jointly Gaussian process
with covariance function cx, (7) to reach the targeted cy (7)
(53], [54].

However, many other transforms can yield processes Y with
the exact same marginal distribution py and the exact same
covariance cy . In [54]], it was for example proposed to use

Fy(z) = Fy'o (2(®(|2]) - 1/2)) (15)

on a jointly Gaussian process Xs. This thus yields a rad-
ically different joint dependence structure for Yg,, despite
having the same prescribed correlation function as Y. As

a consequence, Y, and Yp, have different AMI functions
I T) (Y, ) # I0P7)(Yp,), and entropy rates, and hence
different joint dependence structure and thus temporal dy-
namics. Conversely, their entropies are identical H (Yp, ) =
H(YF,). This is not surprising , as the entropy is completely
defined by the one-point distribution.

2) The log-normal example: To quantify the qualitative
analysis proposed in Section , let us consider stationary
processes Yr, and Yp, having the same log-normal marginal
distribution py, chosen as an example of distributions that
may complicate estimation because of its being a frontier
between distributions with all moments finite and heavy-tail
distributions.

For process Yp, obtained with the natural transform @
Fy simplifies to F(z) = exp(x), which is a bijective trans-
formation. One can therefore use eqs.(IT)) to (I3)) above with
(InFy)x, = px,, ox, and Eg?ll) being the mean, variance
and m-dimensional covariance matrix of the Gaussian variable
X1 [43]. The entropy H (Y7F, ) can be computed using the mean
py and variance o3 of Yp,:

112 o2
px, =In | —2— | , 0x, =2In <1+§>. (16)
N My

Writing 10™P7) (Y, ) thus only requires to express the cor-
relation function of the underlying Gaussian process X; as a
function of the targeted cy (7):

ex, (1) = 0% In((e"%1 — 1)ey () + 1).
X1

a7

This permits to compute A(™7) and I("?7) analytically, using
eqs.(I2) and (I3).

For stationary log-normal process Yr,, F5 is not bijective.
The entropy H can be computed analytically, but this is not
the case for ("7 and h(™ 7).

3) Correlation structures: short-range versus long range
dependencies: To study the impact of the correlation structure,
processes with short-range dependencies are compared against
processes with long-range dependencies, the former being
well-represented by an exponentially decaying covariance,

ey(r) = ofe T fo >0, (18)
and the latter by an algebraically decaying covariance,
2
ey (1) = Iy [(T — 1)27'[ —or?M 4 (r+ 1)2H] , (19)

2
with 0.5 < H < 1.

C. Two-point dependencies: Auto mutual information versus
correlation

For both short-range and long range correlations, we com-
pare the two LN processes obtained with F; and F5, denoted
Yr,, Yr,, against a Gaussian process with same correlation
function, denoted Y, where I stands for the identity transform.
First order statistics (probability density function) and second
order statistics measured by the correlation function or the
power spectral density as well as two point statistics (i.e.,
m = p = 1) entropy, entropy rate and AMI estimates are
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Classical analysis: histogram (a), power spectrum (b) and correlation function (c). Information theory analysis for

m = 1, p = 1: entropy (d), entropy rate (¢) and auto mutual information (f). The color indicates the process: blue for standard log-normal (Y, ), red for
Y, log-normal and black for Gaussian (Y7). The continuous lines in (e,d,f) correspond to analytical expressions. We used N = 216 and k = 5.

compared on Fig. [T] for Y1, Yr, and Yy, with short-range
dependences and on Fig[2] for long-range dependences.

As expected, for each pair of short range and long range
processes, the two log-normal processes, Y, and Yp, can-
not be distinguished one from the other using either PDF,
correlation or power spectral estimation. Entropy being fully
prescribed by the sole PDF, it is further not surprising that
the two log-normal processes are also undistinguishable when
using entropy estimates H (Fig (1ld)).

However, and interestingly, the estimates (1:1'7) and h(1:7)
of two-point AMI and entropy rate show differences as func-
tions of 7 between processes Y, and YF,, both for the short-
range and long-range correlation cases. I(1:1'7) decreases and
h(L7) increases when T — o0, a predictable result as all
dependencies vanish for large 7 for stationary processes. Both
functions (AMI and entropy rate) for processes Yy, and Yp,
differ for small 7, thus quantifying the difference between
the joint distributions of these two processes, despite identical
correlation functions and marginal distributions.

Fig. [T] and Fig. 2] show that the two-point AMI estimates
I(L17) for log-normal process Yp, ressembles far more to
that of the Gaussian process Y; than to that of the companion
log-normal process YFr,, even they all three have the same
correlation function. Very interestingly, it provides a deep
insight into the temporal dynamics of the time series: processes
Yr and Yg, have same marginal distributions and same
correlations functions, but the temporal dynamics of Yp, is
close to that of the Gaussian process Y; while that of Yg,
is not. This also illustrates the benefits of AMI I(1:17) over

entropy rate h(17) that mixes the impact of both marginal

distribution and joint dynamical structure, thus making Y,
comparable to Y7 at small 7 when dependencies matter and
Yp, comparable to Y, at large 7 when only the marginal
distribution contribute to A(1:7).

Figs [Tld.e,f and Pld.e,f also report theoretical H, h and
AMI for processes Y7 and Yp,, while theoretical 2 and AMI
are not available for process Yp,. All estimates well match
the predicted theoretical behaviors (solid lines in Figs [T} 2).
The theoretical behaviors of AMI and entropy rate of process
Yp, are obtained using eqs. (I2) and (T3) with the analytical
expression (I7).

These observations essentially hold both for the short-range
(Fig. [[) and long-range (Fig. [2) correlations and yield the
first key conclusion of this work: as opposed to correlation or
spectral estimation, estimates of the two-points AMI (I(11:7))
and entropy rate (h(17)) are able to quantify differences in
the temporal dynamics of processes even when they share the
exact same marginal distributions and correlation functions, as
long as they have different two-point joint statistics.

IV. ESTIMATION PERFORMANCE AND ILLUSTRATIONS

The aim of this section is to assess, by means of Monte
Carlo simulations, the performance of the estimators H s
Impm) and A(™7) for processes with different statistical
structures and to study the impacts of key parameters either
entering the definition of the estimators (number of nearest
neighbors k) or characterizing the dependence structures of
the processes (strength of the correlation cy (7)) as well as
with sample sizes N.
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A. Estimation performance

1) Monte Carlo simulations Set-up: The processes are
synthetized numerically using circulant matrix embedding
strategies, with the toolbox designed in [54], [S3] and made
available at www.hermir.org. As we have access to analytical
curves only for Y; and Y, these are the processes used to
characterize the performance of the estimators.

For short and long memory, parameters are set f, = 0.1
and H = 0.7 respectively. All variances are set to oy = 1.
For each case, 100 realizations of processes are synthesized
and performances are assessed as averages (and standard
deviations) across realizations.

To study the impact of the marginal distribution on estima-
tion performance, process Y, is compared to process Y.

2) Dependence with the sample size N: Fig. 3] reports
performances as functions of the sample size IV, for 28 < N <
216 for a fixed k = 5. It clearly shows that the three estima-
tors are asymptotically consistent (with vanishing biases and
variances) irrespective of the marginal distribution and of the
correlation being short-range or long-range. Unsurprisingly,
variances are larger for the log-normal processes than they are
for the Gaussian ones. Also, long-range dependencies imply
much larger variances compared to short-range dependencies
for a same cy(7) = 0.32 (which corresponds to 7 = 1
for the long range correlation process and 7 = 11 for the
short range one), thus clearly showing that long memory
does not induce biases but does imply larger variances. The
proposed estimators are overall robust to marginal distributions
and dependence structures [46], [47], and have satisfactory

Short range correlations Long range correlations

| @ | )

a0 %%%%%{-{_*’ﬁﬁﬁﬁﬁi%ii
—0.1
0.1

I (c) | (d)
o££££s==--ﬂﬂﬂgiiisa

Bj(l.l,l)

—

(e)

Frasane-

Bj 1)

ﬂﬂﬁ%i%gi

—0.1
§ 10 12 14 16 8 10 12 14 16
logs(NV) logy(N)

Fig. 3. Estimation performance for H (entropy), I1L7) (auto mutual

information) and h(1:7) (entropy rate), as functions of N, for log-normal
(blue) and Gaussian (black) processes, with short-range (left) and long range
(right) correlations. fo = 0.1, H = 0.7, ¢(7) = 0.32 and k = 5.

performance as soon as N > 2'0 hence N = 2'6 is used
hereafter.

3) Dependence with the number of nearest neighbors k:
Fig. [ reports estimation performance as functions of k, for
N = 216 and same correlation ¢y = 0.32 as above. Per-
formances barely depend on k, but for a mild increase of the
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biases, and this irrespective of the marginal distributions and of
short-range or long-range nature of the correlations. Because
increasing k further implies increasing the computational load,
k = 5 is used hereafter.

4) Influence of the correlation strength cy (7): Fig. I
reports estimation performance as a function of Cy( ) and
shows that all biases slightly increase when cy (7) increases.
The variance appears to increase a little faster than linearly in
cy . For both short-range and long-range correlations, the log-
normal processes show larger standard deviations compared to
the Gaussian ones, yet with similar biases. Further, for a given
correlation level cy (7) the long-range correlation structure
shows larger standard deviations compared to the short-range
correlation.

From this characterization, we can conclude that the en-
tropy, AMI and entropy rate estimators show a low bias and
standard deviation for the combination k = 5 and N = 216 of
parameters used along the article. In addition, we can conclude
that the standard deviation of all the three estimators is larger
for strong correlations and non-Gaussian distributions, but
their biases depend slightly on the marginal distribution and
the correlation strength.

B. Process discrimination with auto mutual information

In Figs [T}e,f and [2le.f, we show that both AMI and entropy
rate across scales are able to discriminate between processes
Yr, and Yp,. The discrimination is far more effective for the
smaller scales for both correlation structures (Long and short
range).

To quantify the differences between Yr, and Yp, that we
found in Figs [T] and [2] we first present the histograms of
the estimations of the entropy rate (Fig. [6) and of the AMI
(Fig.[6b) for fixed N = 2!6 and 7 = 1. We perform a statistical
ranksum test using Mann-Whitney U-test (Wilcoxon rank-sum

Short range correlations Long range correlations
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Fig. 5. Estimation performance for H (entropy), IH17) (auto mutual

information) and A(17) (entropy rate), as functions of the correlation strength
cy, for log-normal (blue) and Gaussian (black) processes, with short-range
(left) and long range (right) correlations. fo = 0.1, H = 0.7, k = 5 and
N =212,

test) and compute the p-value, for varying 7 and N. As seen
in Fig. [6d, the p-value quickly decreases with increasing NN,
as expected. Fig. [6c quantifies the distinguishability between
both log-normal processes across scales, showing that the
discrimination is far better for smaller scales. This confirms
the observations of Figs [Tle,f and Ple.f.

C. Dependence structure beyond correlations

This sections further explores the ability of AMI [("P:7),
with m > 1 and/or p > 1 to probe multiple-point dependences
and hence fine details in temporal dynamics.

Fig. reports higher-order AMI estimates I(mp7) for
several combination of m and p, as functions of the embedding
dimension p for both short-range (left) and long-range (right)
correlation functions, for processes Y1, Y, and Yr,. From top
to bottom the m value is equal to 1, 2, 3 and p. Consequently,
the first three lines study the behaviour of AMI on p for fixed
value of m, while the fourth line shows the behavior of AMI
for m = p.

While two-point AMI yielded essentially identical conclu-
sions for short-range and long-range correlation processes,
higher order AMI reveals clear differences: For short-range
correlation processes (left column), Yi, Y, and Yg,, [0mp7)
and TP 7) when it can be computed analytically, show a
very mild dependence of AMI with m and p for a fixed .
To the converse, for long-range correlation processes (right
column), Y1, Y, and Yp,, I(m:P.7) and I(™P7) when it can be
computed analytically, show constant increase of AMI when
p or m increase, for a fixed 7. This fundamental observation
clearly indicates that for short-range correlation, whatever 7,
there is little or no gain in the analysis of temporal dynamics
brought by the study of higher order AMI. Conversely, for
long-range correlation processes, I("*?:7) captures more and
more information in the temporal dynamics as the embedding
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Fig. 6. Statistical test. Histogram of the estimation of A(1:1)(1) (a) and
Ian (1) (b) for the scale invariant processes (blue for Y, and red for Y,
of size N = 216, (¢) p-value of the Wilcoxon rank-sum test between the two
log-nomal processes Yz, and Y, as fonction of the scale for the statistics
of A(1:1 (1) (dotted line) and I(11) () (full line) with N = 216 (d) same
quantities as (c) for scale 7 = 1 as functions of the process size IN. The
statistics has been done on 100 realizations of both process. In (c) and (d)
the gray curves correspond to the results obtained on the Exponential Decay
processes. Mann-Whitney U-test ranksum.

dimensions are increased thus revealing a significant difference
between short-range and long-range correlation structures.
Analytical formulae for I(™P7) when m,p > 1, are only
available for the identity I and the natural transform Fi,
namely for Y and Yp,.

In order to quantify the evolution of AMI when the em-
bedding increases, we compute the p-value of Wilcoxon test
between the statistic of (311 and I(™P:D) for the same
processes as in Fig. [7} Fig. [§] quantifies the increase of AMI
when the embedding increases. This evolution of AMI is far
more important in the long range correlations case, as expected
from Fig. [/| Further, table |I| shows that, for fixed m + p, AMI
evolves differently depending on the precise values of m and p
separately. For a fixed m +p AMI is larger when m and p are
close, which can be understood as a closer similarity between
the two embedded vectors appearing as the arguments of the
AMI in eq.(@).

Yy Yr, Y,
Short range correlations 0.34 0.96 0.72
Long range correlations || 6e~1° | 5e=20 | 273

TABLE T
Statistical test. p-VALUE OF WILCOXON TEST BETWEEN THE STATISTICS
orF [(1:3)(1) aND I(2:2)(1).
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Fig. 7. Evolution of AMI with embedding. [(™-P)(+ = 1) for processes
with exponentially decaying correlation (left column) and with power law
decay (right column). Black is for Y7, blue is for Y, and red for Y, . First
three lines are for fixed m and increasing p: m = 1 (a,b), m = 2 (c,d) and
m = 3 (e,f). Last line is for m = p. Other parameters are N = 216 |k =5,
T=1.
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Fig. 8. Statistical test. p-value of Wilcoxon rank-sum test between the statis-
tics of T(1:1) (1) and J(™+P) (1) for processes with exponentially decaying
correlation (top line) or with a power law decay (bottom line). Left column
is for Y7, middle column for Y, and right column for Yp,.

V. CONCLUSIONS AND PERSPECTIVES

We explored the evolution of AMI (I("?7)) and entropy
rate ("> 7)) on the scale parameter 7. Even when considering
only two point interactions (m = p = 1) AMI and entropy
rate probe statistics of any order, and hence non-linear depen-
dences, and as such appear as unambiguous generalizations of



the correlation function and the power spectrum.

As an illustration, we analyzed two log-normal processes
with identical 1-point distribution and identical correlation
function. AMI (I(1:1:7)) and entropy rate (h(1:7)) are able to
discriminate these two processes, which appear as identical for
classical analysis, by enlightening differences in high order
dependences. The behavior of these quantities along scales
reveal the existence of stronger high-order dependences at
smaller scale, which allows an easier separation of processes.

In addition, AMI generalizes easily to consider explicitly
interactions between more than two points. We thus probe the
complexity of the dependence structure above linear order, i.e.,
the additional information measured by AMI when considering
an extra point should indicate the existence and relevance of
next-order interactions. As an example, comparing the effect of
increasing the order of interactions for two dependence struc-
tures showed that while exponential decay — short range —
dependences do not involve next order interactions, power
law — long range — dependences do.

The same qualitative results were obtained when consid-
ering others one-point distribution, which supports the valid-
ity of the methodology for any distribution and dependence
structure. This generality should make the methodology very
interesting to perform non-Gaussian processes characterization
in several different applications.

REFERENCES

[1] G. P. Moore, J. P. Segundo, D. H. Perkel, and H. Levitan, “Statistical
signs of synaptic interaction in neurons,” Biophysical Journal, vol. 10,
no. 9, pp. 876 — 900, 1970.

[2] M. Cohen and A. Kohn, “Measuring and interpreting neuronal correla-
tions,” Nature Neuroscience, vol. 14(7), pp. 811-819, 2011.

[3] C. Gray and D. McCormick, “Chattering cells: Superficial pyramidal
neurons contributing to the generation of synchronous oscillations in
the visual cortex.” Science, vol. 274, pp. 109-113, 1996.

[4] K. J. Miller, S. Zanos, E. E. Fetz, M. den Nijs, and J. G. Ojemann,
“Decoupling the cortical power spectrum reveals real-time representation
of individual finger movements in humans,” Journal of Neuroscience,
vol. 29, no. 10, pp. 3132-3137, 2009.

[5]1 A. Kolmogorov, “The local structure of turbulence incompressible
viscous fluid for very large reynolds number.” Dokl. Akad. Nauk SSSR,
vol. 30, pp. 299-303, 1941.

[6] F. Anselmet, Y. Gagne, E. Hopfinger, and R. Antonia, “High-order
velocity structure functions in turbulent shear flow,” Journal of Fluid
Mechanics, vol. 140, pp. 63-89, 1984.

[71 W. Zhang, “Constructing ecological interaction networks by correlation
analysis: hints from community sampling,” Network Biology, vol. 1(2),
pp. 81-98, 2011.

[8] K. Yamasaki, A. Gozolchiani, and S. Havlin, “Climate networks around
the globe are significantly affected by el nifio,” Phys. Rev. Lett., vol.
100, p. 228501, Jun 2008.

[9]1 Q.Ou, Y. Jin, T. Zhou, B. Wang, and B. Yin, “Power-law strength-degree

correlation from resource-allocation dynamics on weighted networks,”

Phys. Rev. E, vol. 75, p. 021102, Feb 2007.

M. Takada and B. Jain, “The three-point correlation function in cosmol-

ogy,” Monthly Notices of the Royal Astronomical Society, vol. 340(2),

2002.

Z. Slepian and D. Eisenstein, “Computing the three-point correlation

function of galaxies in O(n?),” Monthly Notices of the Royal Astro-

nomical Society, vol. 454(4), pp. 4142-4158, 2015.

C. L. Nikias and J. M. Mendel, “Signal processing with higher-order

spectra,” IEEE signal processing magazine, vol. 10, no. 3, pp. 10-37,

1993.

J.-L. Lacoume, P.-O. Amblard, and P. Comon, “Statistiques d’ordre

supérieur pour le traitement du signal,” p. 290, 1997, iSBN = 2-225-

83118-1.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]
[23]
[24]
[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

W. Collis, P. White, and J. Hammond, “Higher-order spectra: The bis-
pectrum and trispectrum,” Mechanical Systems and Signal Processing,
vol. 12, no. 3, pp. 375 — 394, 1998.

V. Chandran, S. Elgar, and B. Vanhoff, “Statistics of tricoherence,” IEEE
Transactions on Signal Processing, vol. 42, pp. 3430-3440, 1995.

T. Matsubara, “Analytic minkowski functionals of the cosmic microwave
background: Second-order non-gaussianity with bispectrum and trispec-
trum,” Phys. Rev. D, vol. 81, p. 083505, Apr 2010.

P. Trivedi, T. R. Seshadri, and K. Subramanian, “Cosmic microwave
background trispectrum and primordial magnetic field limits,” Phys. Rev.
Lett., vol. 108, p. 231301, Jun 2012.

T. Ning and J. Bronzino, “Autoregressive and bispectral analysis tech-
niques: EEG applications,” IEEE Engineering in Medicine and Biology
Magazine, vol. 9, pp. 47-50, 1990.

P. Husar and G. Henning, “Bispectrum analysis of visually evoked po-
tentials,” IEEE Engineering in medicine and biology magazine, vol. 16,
pp. 57-63, 1997.

J. T. Astola, K. O. Egiazarian, G. I. Khlopov, S. I. Khomenko, I. V.
Kurbatov, V. Y. Morozov, and A. V. Totsky, “Application of bispectrum
estimation for time-frequency analysis of ground surveillance doppler
radar echo signals,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 57, no. 9, pp. 1949-1957, Sept 2008.

C. Courtney, S. Neild, P. Wilcox, and B. Drinkwater, “Application of
the bispectrum for detection of small nonlinearities excited sinusoidally,”
Journal of Sound and Vibration, vol. 329, no. 20, pp. 4279 — 4293, 2010.
C. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. XXVII, pp. 388-427, 1948.

C. Shannon and W. Weaver, The Mathematical Theory of Information,
Urbana, Ed. University of Illinois Press, 1949.

T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley-
Interscience, Ed. John Wiley & Sons, Inc, 2006.

H. Herzel, W. Ebeling, and A. O. Schmitt, “Entropies of biosequences:
The role of repeats,” Phys. Rev. E, vol. 50, pp. 5061-5071, Dec 1994.
A. Lesne, J. Blanc, and L. Pezard, “Entropy estimation of very short
symbolic sequences,” Phys. Rev. E, vol. 79, p. 046208, Apr 2009.

C. Granero-Belinchon, S. Roux, and N. Garnier, “Scaling of information
in turbulence,” EPL, vol. 115, p. 58003, 2016.

R. Takahira, K. Tanaka-Ishii, and L. Debowski, “Entropy rate estimates
for natural language —a new extrapolation of compressed large-scale
corpora,” Entropy, vol. 18, p. 364, 2016.

G. Tourassi, E. Frederick, M. Markey, and C. F. Jr, “Application of
the mutual information criterion for feature selection in computer-aided
diagnosis,” Medical Physics, vol. 28, pp. 2394-2402, 2001.

C. Granger and J. Lin, “Using the mutual information coefficient to
identify lags in nonlinear models,” Journal of time series analysis,
vol. 15, pp. 371-384, 1994.

O. Michel and P. Flandrin, “Application of methods based on higher-
order statistics for chaotic time series analysis,” Signal Processing,
vol. 53, pp. 133-148, 1996.

G. A. Darbellay, “The mutual information as a measure of statistical
dependence,” in IEEE International Symposium on Information theory,
1997.

D. T. Pham, “Fast algorithms for mutual information based independent
component analysis,” IEEE Transactions on Signal Processing, vol. 52,
no. 10, pp. 2690-2700, 2004.

T. E. Duncan, “Mutual information for stochastic signals and fractional
Brownian motion,” IEEE Transactions on information theory, vol. 54,
no. 10, pp. 4432-4438, 2008.

R. Malladi, D. H. Johnson, G. P. Kalamangalam, N. Tandon, and
B. Aazhang, “Mutual information in frequency and its application
to measure cross-frequency coupling epilepsy,” IEEE Transactions on
signal processing, vol. 66, no. 11, pp. 3008-3023, 2018.

W. Xiong, L. Faes, and P. C. Ivanov, “Entropy measures, entropy
estimators, and their performance in quantifying complex dynamics:
Effects of artifacts, nonstationarity, and long-range correlations,” Phys.
Rev. E, vol. 95, p. 062114, Jun 2017.

H. P. Bernhard, “A tight upper bound on the gain of linear and nonlinear
predictors for stationary stochastic processes,” IEEE Transactions on
signal processing, vol. 46, no. 11, Nov. 1998.

D. Albers and G. Hripcsak, “Estimation of time-delayed mutual informa-
tion and bias for irregularly and sparsely sampled time-series,” Chaos,
Solitons & Fractals, vol. 45, no. 6, pp. 853 — 860, 2012.

——, “Using time-delayed mutual information to discover and interpret
temporal correlation structure in complex populations,” Chaos, vol. 22,
p. 013111, 2012.



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

C. Granero-Belinchon, S. Roux, P. Abry, M. Doret, and N. Garnier,
“Information theory to probe intrapartum fetal heart rate dynamics,”
Entropy, vol. 19, no. 12, p. 640, 2017.

P. O. Amblard and O. J. J. Michel, “On directed information theory
and Granger causality graphs,” Journal of computational neuroscience,
vol. 30, pp. 7-16, 2011.

——, “The relation between Granger causality and directed information
theory: a review,” Entropy, vol. 15, no. 1, pp. 113-143, 2013.

P. Gaspard and X. J. Wang, “Noise, chaos and (e, 7)-entropy per unit
time,” Physics reports, vol. 235, no. 6, pp. 291-343, 1993.

F. Takens, Dynamical Systems and Turbulence, Warwick 1980: Proceed-
ings of a Symposium Held at the University of Warwick 1979/80. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1981, ch. Detecting strange
attractors in turbulence, pp. 366-381.

K. Zografos and S. Nadarajah, “Expressions for Rényi and Shannon en-
tropies for multivariate distributions,” Statistics and probability Letters,
vol. 71, pp. 71-84, 2005.

A. Kraskov, H. Stogbauer, and P. Grassberger, “Estimating mutual
information,” Physical Review E, vol. 69, pp. 066 138—1/066 138-16,
June 2004.

W. Gao, S. Oh, and P. Viswanath, “Demystifying fixed k-nearest
neighbor information estimators,” CoRR, vol. abs/1604.03006, 2016.
L. Kozachenko and N. Leonenko, “Sample estimate of entropy of a
random vector,” Problems of Information Transmission, vol. 23, pp. 95—
100, 1987.

H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, and E. Demchuk, “Near-
est neighbor estimates of entropy,” American Journal of Mathematical
and Management Sciences, vol. 23, no. 3 and 4, pp. 301-321, 2003.

P. O. Amblard, S. Zozor, O. J. J. Michel, and A. M. Cuculescu, “On
the estimation of the entropy using k-th nearest neighbors,” in IMA conf
Maths and signals Processing, 2008.

C. Granero-Belinchén, S. Roux, and N. Garnier, “Un estimateur du taux
d’entropie basé sur I’information mutuelle,” in Colloque Gretsi, 2017.
J. Theiler, “Spurious dimension from correlation algorithms applied to
limited time-series data,” Physical Review A, vol. 34, pp. 2427-2432,
1986.

H. Helgason, V. Pipiras, and P. Abry, “Fast and exact synthesis of
stationary multivariate gaussian time series using circulant embedding,”
Signal Process., vol. 91, no. 5, pp. 1123-1133, May 2011.

, “Synthesis of multivariate stationary series with prescribed
marginal distributions and covariance using circulant matrix embedding,”
Signal Processing, vol. 91, pp. 1741-1758, August 2011.




	Introduction
	Entropy, entropy rate and auto mutual information
	Definitions
	Gaussian process
	Estimation procedures

	Temporal dynamics and dependence structure
	Analytical calculations and interpretations
	Process definition
	Analytical derivations
	The log-normal example
	Correlation structures: short-range versus long range dependencies

	Two-point dependencies: Auto mutual information versus correlation

	Estimation performance and illustrations
	Estimation performance
	Monte Carlo simulations Set-up
	Dependence with the sample size N
	Dependence with the number of nearest neighbors k
	Influence of the correlation strength cY()

	Process discrimination with auto mutual information
	Dependence structure beyond correlations

	Conclusions and perspectives
	References

