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I. INTRODUCTION

Context. To characterize a (stationary) process X(t), evolving along a given dimension t, e.g., time, the precise assessment of both its static properties (marginal distribution or one-point statistics) and temporal dynamics (joint distributions or multipoint statistics) is crucial.

Correlation and spectral estimates, providing practitioners with valuable insight into temporal dynamics are key tools in statistics and data analysis and have been widely used in many different fields. In neurosciences, the analysis of correlation between neuron firings [START_REF] Moore | Statistical signs of synaptic interaction in neurons[END_REF], [START_REF] Cohen | Measuring and interpreting neuronal correlations[END_REF] or between stimulus and brain activity [START_REF] Gray | Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex[END_REF], [START_REF] Miller | Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans[END_REF] is essential. In fluid mechanics, Kolmogorov's empirical theory of turbulence [START_REF] Kolmogorov | The local structure of turbulence incompressible viscous fluid for very large reynolds number[END_REF] characterizes the multiscale distribution of energy with the power spectrum of the velocity field [START_REF] Anselmet | High-order velocity structure functions in turbulent shear flow[END_REF]. The analysis of correlations also supports useful descriptions in terms of complex networks for, e.g., ecology [START_REF] Zhang | Constructing ecological interaction networks by correlation analysis: hints from community sampling[END_REF], climatology [START_REF] Yamasaki | Climate networks around the globe are significantly affected by el niño[END_REF] or traffic [START_REF] Ou | Power-law strength-degree correlation from resource-allocation dynamics on weighted networks[END_REF].

It is however well known that, while the correlation function, or equivalently the power spectral density, exhaust the description of joint statistics and hence of temporal dynamics for jointly Gaussian processes, they provide characterizations of temporal dynamics for general processes, that are limited in at least two respects: not only they are restricted to two-point joint statistics but also to a specific measure of these two point-statistics. In general, the full analysis of temporal dynamics require the use of multi-point, or higher order, joint statistics. The goal of the present work is to address such an issue using information theoretic measures.

Related work. To assess dependencies beyond two-point correlations, multipoint correlation functions were defined. For instance, three-point correlation functions have been used in cosmology, where they were related to cosmological parameters [START_REF] Takada | The three-point correlation function in cosmology[END_REF], [START_REF] Slepian | Computing the three-point correlation function of galaxies in O(n 2 )[END_REF]. Alternatively, higher order-spectra, that combine Fourier transforms at several different frequencies and therefore takes into account higher order statistics, have also been used to generalize the power spectrum beyond second-order statistics [START_REF] Nikias | Signal processing with higher-order spectra[END_REF], [START_REF] Lacoume | Statistiques d'ordre supérieur pour le traitement du signal[END_REF]. For instance, bi-spectrum and tri-spectrum were analyzed in depth in e.g., [START_REF] Collis | Higher-order spectra: The bispectrum and trispectrum[END_REF], [START_REF] Chandran | Statistics of tricoherence[END_REF] and used in applications as different as cosmology [START_REF] Matsubara | Analytic minkowski functionals of the cosmic microwave background: Second-order non-gaussianity with bispectrum and trispectrum[END_REF], [START_REF] Trivedi | Cosmic microwave background trispectrum and primordial magnetic field limits[END_REF], or medicine [START_REF] Ning | Autoregressive and bispectral analysis techniques: EEG applications[END_REF], [START_REF] Husar | Bispectrum analysis of visually evoked potentials[END_REF] and other fields [START_REF] Astola | Application of bispectrum estimation for time-frequency analysis of ground surveillance doppler radar echo signals[END_REF], [START_REF] Courtney | Application of the bispectrum for detection of small nonlinearities excited sinusoidally[END_REF]. While of popular use in applications, higher-order correlation functions and spectra suffers from major caveats, mostly related to estimation issues. Indeed, the assessment of order m-statistics with higher-order correlation functions and spectra requires the estimation of m-time point statistics, which, for a given fixed sample size, can only yield decreasing estimation performance when order m is increased.

Alternatively, Shannon's information theory, and the corresponding information theoretic measures, entropy, entropy rate and mutual information, can be considered as an efficient way to characterize high order statistics [START_REF] Shannon | A mathematical theory of communication[END_REF], [START_REF] Shannon | The Mathematical Theory of Information[END_REF], [START_REF] Cover | Elements of Information Theory[END_REF]. Applications of entropy rate were yet reported in a wide range of domains, such as biology [START_REF] Herzel | Entropies of biosequences: The role of repeats[END_REF], dynamical systems [START_REF] Lesne | Entropy estimation of very short symbolic sequences[END_REF], fluid turbulence [START_REF] Granero-Belinchón | Scaling of information in turbulence[END_REF] or analysis of languages [START_REF] Takahira | Entropy rate estimates for natural language -a new extrapolation of compressed large-scale corpora[END_REF]. Mutual information is also very popular, especially in computer sciences, e.g., in machine learning [START_REF] Tourassi | Application of the mutual information criterion for feature selection in computer-aided diagnosis[END_REF], and other very different domains [START_REF] Granger | Using the mutual information coefficient to identify lags in nonlinear models[END_REF], [START_REF] Michel | Application of methods based on higherorder statistics for chaotic time series analysis[END_REF], [START_REF] Darbellay | The mutual information as a measure of statistical dependence[END_REF], [START_REF] Pham | Fast algorithms for mutual information based independent component analysis[END_REF], [START_REF] Duncan | Mutual information for stochastic signals and fractional Brownian motion[END_REF], [START_REF] Malladi | Mutual information in frequency and its application to measure cross-frequency coupling epilepsy[END_REF]. Auto-Mutual Information (AMI) -sometimes called Information Storage [START_REF] Xiong | Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: Effects of artifacts, nonstationarity, and long-range correlations[END_REF] -, defined as the mutual information between the analyzed process and a delayed version of itself, has been used in different domains [START_REF] Bernhard | A tight upper bound on the gain of linear and nonlinear predictors for stationary stochastic processes[END_REF], [START_REF] Albers | Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series[END_REF], [START_REF]Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations[END_REF], [START_REF] Granero-Belinchon | Information theory to probe intrapartum fetal heart rate dynamics[END_REF]. Information theory additionally provides tools to explore causality relationships between processes [START_REF] Amblard | On directed information theory and Granger causality graphs[END_REF], [START_REF]The relation between Granger causality and directed information theory: a review[END_REF]. However, within this paper we are mainly interested in the characterization of their dependence structures.

Entropy rate and AMI have been envisaged as tools to describe temporal dynamics in time series beyond second-order statistics, or even at second-order statistics, in a richer way than correlation or Fourier spectrum, see [START_REF] Gaspard | Noise, chaos and ( , τ )-entropy per unit time[END_REF], [START_REF] Bernhard | A tight upper bound on the gain of linear and nonlinear predictors for stationary stochastic processes[END_REF], [START_REF]Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations[END_REF], [START_REF] Granero-Belinchón | Scaling of information in turbulence[END_REF]. Goals, contributions and outline. The main goals of the article are i) to show the ability of AMI and entropy rate to describe high order dependences, even when considering only two-point interactions. Even though this property of information theory tools is well known, we are able to show it by analyzing processes with identical correlation and marginal distribution but different high order dependences. AMI and entropy rate appear as straightforward generalizations of correlation function and power spectrum when considering non-Gaussian processes analysis. ii) to show the effect of analysing interactions between more than two points, combining Takens embedding [START_REF] Takens | Proceedings of a Symposium Held at the University of Warwick 1979/80[END_REF] with AMI. We characterize the complexity of the dependence structure of a process by measuring AMI for embedding dimension higher than 2. More precisely, we analyze the differences between power law decay and exponential decay dependence structures.

To demonstrate the ability of information theory to describe high order statistics, we illustrate the use of entropy rate and auto-mutual information to characterize non Gaussian processes across scales. As an example, we consider two synthetic log-normal processes with different dependence structures but with identical correlation function and identical marginal statistics. In section II, we introduce and define the theoretical information theory measures and our estimators. In section III, we interpret the information theory tools used along the article, we present the processes with identical correlation function and one-point statistics but different dependence structure that we study and finally we illustrate how AMI and entropy rate allow to distinguish between them. In section IV-A, we report the convergence and the performance of our estimators of AMI and entropy rate and their ability to measure high order dependencies. We present their evolution across scales and emphasized that, contrary to classical correlation analysis, they allow a fine characterization of non Gaussian processes.

II. ENTROPY, ENTROPY RATE AND AUTO MUTUAL INFORMATION

A. Definitions

To analyze the temporal dynamics of univariate stationary processes X = {x t } t∈R , it has been proposed in [START_REF] Takens | Proceedings of a Symposium Held at the University of Warwick 1979/80[END_REF] to rely on the time delay-embedding procedure. It amounts to constructing the m-dimensional process X (m,τ ) , whose elements are m-dimensional vectors:

x (m,τ ) t = x t , x t-τ , • • • , x t-(m-1)τ , (1) 
where the delay τ implicitly defines an analysis scale and where the embbeding dimension m controls the order of the statistics of X which are analyzed. The information theoretic measures defined below aim to characterize temporal dynamics via the analysis of the m-time point joint statistical distributions p(x

(m,τ ) t
). Within this article, we study ergodic stationary processes and then p(x (m,τ ) t

) depend on m and τ but not on t. Consequently p(x

(m,τ ) t ) = p(X (m,τ ) ).
Shannon entropy, is defined as a functional of p(x (m,τ ) t ) [START_REF] Shannon | A mathematical theory of communication[END_REF]:

H(x (m,τ ) t ) = - R m p(x (m,τ ) t ) ln p(x (m,τ ) t )dx (m,τ ) t = H (m,τ ) (X)
By nature, it depends on the full joint distribution and therefore on statistics of any order. However, for stationary processes it does not depend on the mean value of the marginal distribution. For m = 1, Shannon entropy does not relate to temporal dynamics but to one-point statistics and thus obviously does not depend on τ and is hence denoted H(X).

Entropy rate of order m, h (m,τ ) , quantify variations of Shannon entropy between two successive time-embedded versions of a stationary process [START_REF] Shannon | A mathematical theory of communication[END_REF], [START_REF] Cover | Elements of Information Theory[END_REF]:

h (m,τ ) (x t ) = H(x (m+1,τ ) t ) -H(x (m,τ ) t-τ ) = H (m+1,τ ) (X) -H (m,τ ) (X) = h (m,τ ) (X). (2) 
Entropy rate h (m,τ ) , like H (m,τ ) , probes joint statistics of any order, but in addition quantifies how much information is gained in the analysis of temporal dynamics by increasing by one the order of the embedding.

Mutual information I(x (m,τ ) t , y (p,τ ) t 
) quantifies the amount of information shared by two processes X and Y , via their embbeded versions x (m,τ ) t and y (p,τ ) t [START_REF] Shannon | A mathematical theory of communication[END_REF], [START_REF] Cover | Elements of Information Theory[END_REF]: 

I(x (m,τ ) t ,y (p,τ ) t ) = R m+p p x (m,

).

To analyze the higher statistical order temporal dynamics (also referred to as nonlinear temporal dynamics) of a single stationary process X, one can use auto-mutual information [START_REF] Cover | Elements of Information Theory[END_REF], [START_REF] Xiong | Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: Effects of artifacts, nonstationarity, and long-range correlations[END_REF], defined as the mutual information between x (m,τ ) t and x (p,τ ) t+pτ :

I (m,p,τ ) (X) = I(x (m,τ ) t , x (p,τ ) t+pτ ) . (4) 
Because the concatenation of x x

(m,τ ) t , x (p,τ ) t+pτ = x (m+p,τ ) t+pτ , I (m 
,p,τ ) (X) quantifies the shared information between the past m-point dynamics and the future p-point dynamics. Auto mutual information quantifies the deviation from independence between the two arguments, beyond the simpler decorrelation. These information theoretic quantities all depend on the chosen time lag τ . When τ → 0, dependences between two consecutive coordinates of the embedding vector increase, therefore inducing an increase in I (m,1,τ ) (X) and a decrease in h (m,τ ) (X). Conversely, when τ → +∞, dependencies decrease to 0, therefore inducing an increase of h (m,τ ) (X) up to the Shannon entropy H(X) of the process, its largest value, and a decrease of I (m,1,τ ) (X) → 0.

Furthermore, entropy rate can then be expressed as [START_REF] Granero-Belinchón | Scaling of information in turbulence[END_REF]:

h (m,τ ) (X) = H(X) -I (m,1,τ ) (X) , (5) 
which shows that there are two different contributions to the entropy rate: First, H(X), which only depends on the onepoint distribution and hence is a static property ; second, I (m,1,τ ) (X) which gathers all information conveyed by linear and non linear temporal dynamics, irrespective of the variance of the distribution [START_REF] Granero-Belinchón | Scaling of information in turbulence[END_REF].

B. Gaussian process

When X is a stationary jointly Gaussian process, hence fully defined by its variance σ 2

x and normalized correlation function c X (τ ), analytical expressions for entropy, entropy rate and auto mutual information are available [START_REF] Zografos | Expressions for Rényi and Shannon entropies for multivariate distributions[END_REF]:

H(X) = 1 2 ln(2πeσ 2 x ) (6) 
I (m,p,τ ) (X) = 1 2 ln |Σ (m) ||Σ (p) | |Σ (m+p) | (7) 
h (m,τ ) (X) = 1 2 ln(2πeσ 2 x ) - 1 2 ln |Σ (m) | |Σ (m+1) | (8) 
with Σ (m) the m-dimensional correlation matrix, and || denoting the determinant. By definition, Σ (1) = 1.

C. Estimation procedures

To estimate these information theoretic quantities, two main categories of non-parametric procedures are available, based on either kernel density estimations (KDE) or nearest neighbor search (NNS). While the former essentially counts the number k( ) of the observed samples in interval of a priori set size , the latter rather measure the size (k) of box that contain an a priori set number of k samples.

Because this second strategy has been documented as providing low bias estimates [START_REF] Kraskov | Estimating mutual information[END_REF], [START_REF] Gao | Demystifying fixed k-nearest neighbor information estimators[END_REF], we chose k-nearest neighbors procedures to estimate the entropy H(X) [START_REF] Kozachenko | Sample estimate of entropy of a random vector[END_REF], [START_REF] Singh | Nearest neighbor estimates of entropy[END_REF], [START_REF] Amblard | On the estimation of the entropy using k-th nearest neighbors[END_REF]:

H(X) = -ψ(k) + ψ(N ) + d N N i log( i (k)) (9) 
with ψ the Digamma function, d the dimension of X, N the number of samples of X, and using the Chebyshev distance (L ∞ metric).

To compute the mutual information, we use the k-nearest neighbors procedure presented by Kraskov, et al. [START_REF] Kraskov | Estimating mutual information[END_REF]:

I(X, Y ) = ψ(k) + ψ(N ) -ψ(n x ) + ψ(n y ) (10) 
The procedure chooses k for the joint distribution Z(X, Y ) and hence obtains the distance to the kth nearest neighbour.

Then using , it calculates the number of neighbours n x + 1 lying on a segment x = x± 2 of the X dimension, i.e. lying on

-∞ ≤ Y ≤ ∞, x -/2 ≤ X ≤ x + /2. Consequently, /2
is the distance to the n x + 1st neighbour of x. The procedure uses the same development for Y and obtains that /2 is the distance to the n y + 1st neighbour of y.

Because benefits against a direct use of eq.( 2) were documented in [START_REF] Granero-Belinchón | Un estimateur du taux d'entropie basé sur l'information mutuelle[END_REF], h (m,τ ) (X) is estimated plugging the above estimates into eq.( 5).

For an stationary process X, p(x (m,τ ) t

) does not depend on t, and consequently, we can exploit this property to estimate the information theoretic quantities of X by averaging on all the temporal samples of the process.

To perform an analysis across scales by varying the parameter τ we use an adapted Theiler prescription [START_REF] Theiler | Spurious dimension from correlation algorithms applied to limited time-series data[END_REF] to eliminate the contribution of dependencies from scales smaller than τ .

III. TEMPORAL DYNAMICS AND DEPENDENCE STRUCTURE

The aim of this section is to try to characterize what part of the statistics of a given stationary process Y contribute to the values taken by information theoretic measures H, h (m,τ ) and I (m,p,τ ) . To that end, we conduct a formal study of the specific yet very instructive case where processes Y with correlation function c Y (τ ) and marginal distributions p Y are obtained as point bijective transformation F , Y = F (X) of an underlying Gaussian process X with correlation function c X , designed to reach the targeted covariance c Y . Processes Y constructed in this way depend on F and c X (τ ) [START_REF] Helgason | Fast and exact synthesis of stationary multivariate gaussian time series using circulant embedding[END_REF], [START_REF]Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding[END_REF].

A. Analytical calculations and interpretations

Given any bijective transformation F that maps a Gaussian signal X into a signal Y = F (X), the information theoretic quantities of Y can be computed as:

H(Y ) = H(X) + ln F X = 1 2 ln(2πeσ 2 X ) + ln F X (11) 
I (m,p,τ ) (Y ) = I (m,p,τ ) (X) = 1 2 ln |Σ (m) X ||Σ (p) X | |Σ (m+p) X | (12) h (m,τ ) (Y ) = 1 2 ln(2πeσ 2 X ) + ln F X - 1 2 ln |Σ (m) X | |Σ (m+1) X | (13) with ln F X = p(x (1) t ) ln F (x)dx, hence a constant, σ 2 X and Σ (m) X
are the variance and the m-dimensional covariance matrix of the underlying Gaussian process X.

These analytical calculations permit to yield understanding of general validity regarding the nature of the information conveyed by each of these three information theoretic quantities: i) Entropy H is only related to the marginal distribution of the process p Y , hence is quantifying static properties only. ii) Entropy rate h (m,τ ) mixes up marginal distribution features (variance and pointwise transform F ), hence static properties with dynamical properties and dependencies of any order, as indeed Σ (m) X depends jointly on c Y and on F , hence on the joint distribution of y (m,τ ) t

. The fact that h (m,τ ) gather both static and dynamics aspects of time series likely explains why it has been observed in many applications to be a often discriminant feature, compared to other features [START_REF] Granero-Belinchon | Information theory to probe intrapartum fetal heart rate dynamics[END_REF]. However, the entanglement of static and dynamic properties may also be considered a drawback for the analysis, characterization and understanding of data properties. iii) Interestingly, auto mutual information I (m,p,τ ) performs a characterization mainly related to the dependence structure of Y , as indeed Σ (m) X depends on the joint distribution of y (m,τ ) t . It therefore quantifies temporal dynamics, irrespective of static properties. Thus, AMI is the sole measure that focuses exclusively on higher order dynamics and on the joint dependence structure, beyond correlation.

Often in the scientific literature, h (m,τ ) and I (m,p,τ ) are referred to as nonlinear features, to emphasize that they characterize temporal dynamics beyond the mere use of the correlation functions or power spectral densities. This is indeed correct. Even when two-point statistics are analyzed, i.e., m = p = 1, I (1,1,τ ) reflects dependencies, including and encompassing correlations as the whole joint two-point distribution function is involved. Nevertheless, I (m,p,τ ) remains mostly driven by the correlation function c Y , and hence by linear effects. This is also the case for h (m,τ ) , driven mostly both by the static variance σ 2 Y and dynamical correlation function c Y .

B. Process definition 1) Analytical derivations:

To further illustrate that indeed I (m,p,τ ) and h (m,τ ) may capture differences in any-order dependencies beyond correlations, let us study the cases where two stationary processes Y F1 and Y F2 have exact same marginal distribution p Y and exact same covariance c Y , but are yet obtained from two different point transformations F 1 and F 2 -applied to Gaussian processes X 1 and X 2 -and hence have different joint distributions and hence different dependence structures.

Let denote F Y the cumulative distribution function associated to the marginal distribution p Y . A natural candidate to obtain a process with marginal p Y is to apply the point transform

F 1 (x) = F -1 Y • Φ(x), (14) 
to a Gaussian process X 1 , where F Y is the cumulative distribution function of the marginal distribution p Y and Φ(x) the cumulative distribution function of a centered standard Gaussian variable, and where X 1 is a jointly Gaussian process with covariance function c X1 (τ ) to reach the targeted c Y (τ ) [START_REF] Helgason | Fast and exact synthesis of stationary multivariate gaussian time series using circulant embedding[END_REF], [START_REF]Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding[END_REF]. However, many other transforms can yield processes Y with the exact same marginal distribution p Y and the exact same covariance c Y . In [START_REF]Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding[END_REF], it was for example proposed to use

F 2 (x) = F -1 Y • (2(Φ(|x|) -1/2)) , (15) 
on a jointly Gaussian process X 2 . This thus yields a radically different joint dependence structure for Y F2 , despite having the same prescribed correlation function as Y F1 . As a consequence, Y F1 and Y F2 have different AMI functions I (m,p,τ ) (Y F1 ) = I (m,p,τ ) (Y F2 ), and entropy rates, and hence different joint dependence structure and thus temporal dynamics. Conversely, their entropies are identical H(Y F1 ) = H(Y F2 ). This is not surprising , as the entropy is completely defined by the one-point distribution.

2) The log-normal example: To quantify the qualitative analysis proposed in Section III-A , let us consider stationary processes Y F1 and Y F2 having the same log-normal marginal distribution p Y , chosen as an example of distributions that may complicate estimation because of its being a frontier between distributions with all moments finite and heavy-tail distributions.

For process Y F1 obtained with the natural transform ( 14), F 1 simplifies to F 1 (x) = exp(x), which is a bijective transformation. One can therefore use eqs. [START_REF] Slepian | Computing the three-point correlation function of galaxies in O(n 2 )[END_REF] to [START_REF] Lacoume | Statistiques d'ordre supérieur pour le traitement du signal[END_REF] above with ln

F 1 X1 = µ X1 , σ X1 and Σ (m)
X1 being the mean, variance and m-dimensional covariance matrix of the Gaussian variable X 1 [START_REF] Zografos | Expressions for Rényi and Shannon entropies for multivariate distributions[END_REF]. The entropy H(Y F1 ) can be computed using the mean µ Y and variance σ 2 Y of Y F1 :

µ X1 = ln µ 2 Y σ 2 Y + µ 2 Y , σ X1 = 2 ln 1 + σ 2 Y µ 2 Y . (16) 
Writing I (m,p,τ ) (Y F1 ) thus only requires to express the correlation function of the underlying Gaussian process X 1 as a function of the targeted c Y (τ ):

c X1 (τ ) = 1 σ 2 X1 ln((e σ 2 X 1 -1)c Y (τ ) + 1). (17) 
This permits to compute h (m,τ ) and I (m,p,τ ) analytically, using eqs.( 12) and ( 13).

For stationary log-normal process Y F2 , F 2 is not bijective. The entropy H can be computed analytically, but this is not the case for I (m,p,τ ) and h (m,τ ) .

3) Correlation structures: short-range versus long range dependencies: To study the impact of the correlation structure, processes with short-range dependencies are compared against processes with long-range dependencies, the former being well-represented by an exponentially decaying covariance,

c Y (τ ) = σ 2 Y e -fc|τ | , f c > 0, (18) 
and the latter by an algebraically decaying covariance,

c Y (τ ) = σ 2 Y 2 (τ -1) 2H -2τ 2H + (τ + 1) 2H , (19) 
with 0.5 < H < 1.

C. Two-point dependencies: Auto mutual information versus correlation

For both short-range and long range correlations, we compare the two LN processes obtained with F 1 and F 2 , denoted Y F1 , Y F2 , against a Gaussian process with same correlation function, denoted Y I , where I stands for the identity transform. First order statistics (probability density function) and second order statistics measured by the correlation function or the power spectral density as well as two point statistics (i.e., m = p = 1) entropy, entropy rate and AMI estimates are As expected, for each pair of short range and long range processes, the two log-normal processes, Y F1 and Y F2 cannot be distinguished one from the other using either PDF, correlation or power spectral estimation. Entropy being fully prescribed by the sole PDF, it is further not surprising that the two log-normal processes are also undistinguishable when using entropy estimates H (Fig ( 1,d)).

However, and interestingly, the estimates I (1,1,τ ) and h (1,τ ) of two-point AMI and entropy rate show differences as functions of τ between processes Y F1 and Y F2 , both for the shortrange and long-range correlation cases. I (1,1,τ ) decreases and h (1,τ ) increases when τ → ∞, a predictable result as all dependencies vanish for large τ for stationary processes. Both functions (AMI and entropy rate) for processes Y F1 and Y F2 differ for small τ , thus quantifying the difference between the joint distributions of these two processes, despite identical correlation functions and marginal distributions. Fig. 1 and Fig. 2 show that the two-point AMI estimates Î(1,1,τ) for log-normal process Y F1 ressembles far more to that of the Gaussian process Y I than to that of the companion log-normal process Y F2 , even they all three have the same correlation function. Very interestingly, it provides a deep insight into the temporal dynamics of the time series: processes Y F1 and Y F2 have same marginal distributions and same correlations functions, but the temporal dynamics of Y F1 is close to that of the Gaussian process Y I while that of Y F2 is not. This also illustrates the benefits of AMI I (1,1,τ ) over entropy rate h (1,τ ) that mixes the impact of both marginal distribution and joint dynamical structure, thus making Y F2 comparable to Y I at small τ when dependencies matter and Y F2 comparable to Y F1 at large τ when only the marginal distribution contribute to h (1,τ ) .

Figs 1,d,e,f and 2,d,e,f also report theoretical H, h and AMI for processes Y I and Y F1 , while theoretical h and AMI are not available for process Y F2 . All estimates well match the predicted theoretical behaviors (solid lines in Figs 1,2). The theoretical behaviors of AMI and entropy rate of process Y F1 are obtained using eqs. ( 12) and ( 13) with the analytical expression [START_REF] Trivedi | Cosmic microwave background trispectrum and primordial magnetic field limits[END_REF].

These observations essentially hold both for the short-range (Fig. 1) and long-range (Fig. 2) correlations and yield the first key conclusion of this work: as opposed to correlation or spectral estimation, estimates of the two-points AMI (I (1,1,τ ) ) and entropy rate (h (1,τ ) ) are able to quantify differences in the temporal dynamics of processes even when they share the exact same marginal distributions and correlation functions, as long as they have different two-point joint statistics.

IV. ESTIMATION PERFORMANCE AND ILLUSTRATIONS

The aim of this section is to assess, by means of Monte Carlo simulations, the performance of the estimators Ĥ, Î(m,p,τ) and ĥ(m,τ) for processes with different statistical structures and to study the impacts of key parameters either entering the definition of the estimators (number of nearest neighbors k) or characterizing the dependence structures of the processes (strength of the correlation c Y (τ )) as well as with sample sizes N . A. Estimation performance 1) Monte Carlo simulations Set-up: The processes are synthetized numerically using circulant matrix embedding strategies, with the toolbox designed in [START_REF]Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding[END_REF], [START_REF] Helgason | Fast and exact synthesis of stationary multivariate gaussian time series using circulant embedding[END_REF] and made available at www.hermir.org. As we have access to analytical curves only for Y I and Y F1 , these are the processes used to characterize the performance of the estimators.

For short and long memory, parameters are set f c = 0.1 and H = 0.7 respectively. All variances are set to σ Y ≡ 1. For each case, 100 realizations of processes are synthesized and performances are assessed as averages (and standard deviations) across realizations.

To study the impact of the marginal distribution on estimation performance, process Y F1 is compared to process Y I .

2) Dependence with the sample size N : Fig. 3 reports performances as functions of the sample size N , for 2 8 ≤ N ≤ 2 16 , for a fixed k = 5. It clearly shows that the three estimators are asymptotically consistent (with vanishing biases and variances) irrespective of the marginal distribution and of the correlation being short-range or long-range. Unsurprisingly, variances are larger for the log-normal processes than they are for the Gaussian ones. Also, long-range dependencies imply much larger variances compared to short-range dependencies for a same c Y (τ ) = 0.32 (which corresponds to τ = 1 for the long range correlation process and τ = 11 for the short range one), thus clearly showing that long memory does not induce biases but does imply larger variances. The proposed estimators are overall robust to marginal distributions and dependence structures [START_REF] Kraskov | Estimating mutual information[END_REF], [START_REF] Gao | Demystifying fixed k-nearest neighbor information estimators[END_REF], and have satisfactory performance as soon as N ≥ 2 10 , hence N = 2 16 is used hereafter.

(e) B Î(1,1,1) (c) (f) log 2 (N) B ĥ(1,1)

Short range correlations

3) Dependence with the number of nearest neighbors k: Fig. 4 reports estimation performance as functions of k, for N = 2 16 and same correlation c Y = 0.32 as above. Performances barely depend on k, but for a mild increase of the Estimation performance for Ĥ (entropy), Î(1,1,τ) (auto mutual information) and ĥ(1,τ) (entropy rate), as functions of k, for log-normal (blue) and Gaussian (black) processes, with short-range (left) and long range (right) correlations. fc = 0.1, H = 0.7, c(τ ) = 0.32 and N = 2 16 . biases, and this irrespective of the marginal distributions and of short-range or long-range nature of the correlations. Because increasing k further implies increasing the computational load, k = 5 is used hereafter.

4) Influence of the correlation strength c Y (τ ): Fig. 5 reports estimation performance as a function of c Y (τ ) and shows that all biases slightly increase when c Y (τ ) increases. The variance appears to increase a little faster than linearly in c Y . For both short-range and long-range correlations, the lognormal processes show larger standard deviations compared to the Gaussian ones, yet with similar biases. Further, for a given correlation level c Y (τ ) the long-range correlation structure shows larger standard deviations compared to the short-range correlation.

From this characterization, we can conclude that the entropy, AMI and entropy rate estimators show a low bias and standard deviation for the combination k = 5 and N = 2 16 of parameters used along the article. In addition, we can conclude that the standard deviation of all the three estimators is larger for strong correlations and non-Gaussian distributions, but their biases depend slightly on the marginal distribution and the correlation strength.

B. Process discrimination with auto mutual information

In Figs 1,e,f and 2,e,f, we show that both AMI and entropy rate across scales are able to discriminate between processes Y F1 and Y F2 . The discrimination is far more effective for the smaller scales for both correlation structures (Long and short range).

To quantify the differences between Y F1 and Y F2 that we found in Figs 1 and2, we first present the histograms of the estimations of the entropy rate (Fig. 6a) and of the AMI (Fig. 6b) for fixed N = 2 16 and τ = 1. We perform a statistical ranksum test using Mann-Whitney U-test (Wilcoxon rank-sum Estimation performance for Ĥ (entropy), Î(1,1,τ) (auto mutual information) and ĥ(1,τ) (entropy rate), as functions of the correlation strength c Y , for log-normal (blue) and Gaussian (black) processes, with short-range (left) and long range (right) correlations. fc = 0.1, H = 0.7, k = 5 and N = 2 12 . test) and compute the p-value, for varying τ and N . As seen in Fig. 6d, the p-value quickly decreases with increasing N , as expected. Fig. 6c quantifies the distinguishability between both log-normal processes across scales, showing that the discrimination is far better for smaller scales. This confirms the observations of Figs 1,e,f and 2,e,f.

C. Dependence structure beyond correlations

This sections further explores the ability of AMI I (m,p,τ ) , with m ≥ 1 and/or p ≥ 1 to probe multiple-point dependences and hence fine details in temporal dynamics. Fig. 7 reports higher-order AMI estimates Î(m,p,τ) for several combination of m and p, as functions of the embedding dimension p for both short-range (left) and long-range (right) correlation functions, for processes Y I , Y F1 and Y F2 . From top to bottom the m value is equal to 1, 2, 3 and p. Consequently, the first three lines study the behaviour of AMI on p for fixed value of m, while the fourth line shows the behavior of AMI for m = p.

While two-point AMI yielded essentially identical conclusions for short-range and long-range correlation processes, higher order AMI reveals clear differences: For short-range correlation processes (left column), Y I , Y F1 and Y F2 , Î(m,p,τ) and I (m,p,τ ) when it can be computed analytically, show a very mild dependence of AMI with m and p for a fixed τ . To the converse, for long-range correlation processes (right column), Y I , Y F1 and Y F2 , Î(m,p,τ) and I (m,p,τ ) when it can be computed analytically, show constant increase of AMI when p or m increase, for a fixed τ . This fundamental observation clearly indicates that for short-range correlation, whatever τ , there is little or no gain in the analysis of temporal dynamics brought by the study of higher order AMI. Conversely, for long-range correlation processes, I (m,p,τ ) captures more and more information in the temporal dynamics as the embedding ĥ P ( ĥ) dimensions are increased thus revealing a significant difference between short-range and long-range correlation structures. Analytical formulae for I (m,p,τ ) when m, p > 1, are only available for the identity I and the natural transform F 1 , namely for Y I and Y F1 .

In order to quantify the evolution of AMI when the embedding increases, we compute the p-value of Wilcoxon test between the statistic of Î(1,1,1) and Î(m,p,1) for the same processes as in Fig. 7. Fig. 8 quantifies the increase of AMI when the embedding increases. This evolution of AMI is far more important in the long range correlations case, as expected from Fig. 7. Further, table I shows that, for fixed m + p, AMI evolves differently depending on the precise values of m and p separately. For a fixed m + p AMI is larger when m and p are close, which can be understood as a closer similarity between the two embedded vectors appearing as the arguments of the AMI in eq.( 4). 

V. CONCLUSIONS AND PERSPECTIVES

We explored the evolution of AMI (I (m,p,τ ) ) and entropy rate (h (m,τ ) ) on the scale parameter τ . Even when considering only two point interactions (m = p = 1) AMI and entropy rate probe statistics of any order, and hence non-linear dependences, and as such appear as unambiguous generalizations of the correlation function and the power spectrum.

As an illustration, we analyzed two log-normal processes with identical 1-point distribution and identical correlation function. AMI (I (1,1,τ ) ) and entropy rate (h (1,τ ) ) are able to discriminate these two processes, which appear as identical for classical analysis, by enlightening differences in high order dependences. The behavior of these quantities along scales reveal the existence of stronger high-order dependences at smaller scale, which allows an easier separation of processes.

In addition, AMI generalizes easily to consider explicitly interactions between more than two points. We thus probe the complexity of the dependence structure above linear order, i.e., the additional information measured by AMI when considering an extra point should indicate the existence and relevance of next-order interactions. As an example, comparing the effect of increasing the order of interactions for two dependence structures showed that while exponential decay -short rangedependences do not involve next order interactions, power law -long range -dependences do.

The same qualitative results were obtained when considering others one-point distribution, which supports the validity of the methodology for any distribution and dependence structure. This generality should make the methodology very interesting to perform non-Gaussian processes characterization in several different applications.
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Fig. 1 .

 1 Fig. 1. Short-range dependencies. Classical analysis: histogram (a), power spectrum (b) and correlation function (c). Information theory analysis for m = 1, p = 1: entropy (d), entropy rate (e) and auto mutual information (f). The color indicates the process: blue for standard log-normal (Y F 1 ), red for Y F 2 log-normal and black for Gaussian (Y I ). The continuous lines in (e,d,f) correspond to analytical expressions. We used N = 2 16 and k = 5.

Fig. 2 .

 2 Fig. 2. Long-range dependencies. Classical analysis: histogram (a), power spectrum (b) and correlation function (c). Information theory analysis for m = 1, p = 1: entropy (d), entropy rate (e) and auto mutual information (f). The color indicates the process: blue for standard log-normal (Y F 1 ), red for Y F 2 log-normal and black for Gaussian (Y I ). The continuous lines in (e,d,f) correspond to analytical expressions. We used N = 2 16 and k = 5.

Fig. 3 .

 3 Fig.3. Estimation performance for Ĥ (entropy), Î(1,1,τ) (auto mutual information) and ĥ(1,τ) (entropy rate), as functions of N , for log-normal (blue) and Gaussian (black) processes, with short-range (left) and long range (right) correlations. fc = 0.1, H = 0.7, c(τ ) = 0.32 and k = 5.

  Fig. 4.Estimation performance for Ĥ (entropy), Î(1,1,τ) (auto mutual information) and ĥ(1,τ) (entropy rate), as functions of k, for log-normal (blue) and Gaussian (black) processes, with short-range (left) and long range (right) correlations. fc = 0.1, H = 0.7, c(τ ) = 0.32 and N = 216 .

Fig. 5 .

 5 Fig. 5.Estimation performance for Ĥ (entropy), Î(1,1,τ) (auto mutual information) and ĥ(1,τ) (entropy rate), as functions of the correlation strength c Y , for log-normal (blue) and Gaussian (black) processes, with short-range (left) and long range (right) correlations. fc = 0.1, H = 0.7, k = 5 and N = 212 .

Fig. 6 .

 6 Fig. 6. Statistical test. Histogram of the estimation of ĥ(1,1) (1) (a) and Î(1,1) (1) (b) for the scale invariant processes (blue for Y F 1 and red for Y F 2 of size N = 2 16 . (c) p-value of the Wilcoxon rank-sum test between the two log-nomal processes Y F 1 and Y F 2 as fonction of the scale for the statistics of ĥ(1,1) (τ ) (dotted line) and Î(1,1) (τ ) (full line) with N = 2 16 . (d) same quantities as (c) for scale τ = 1 as functions of the process size N . The statistics has been done on 100 realizations of both process. In (c) and (d) the gray curves correspond to the results obtained on the Exponential Decay processes. Mann-Whitney U-test ranksum.

Fig. 7 .Fig. 8 .

 78 Fig. 7. Evolution of AMI with embedding. Î(m,p) (τ = 1) for processes with exponentially decaying correlation (left column) and with power law decay (right column). Black is for Y I , blue is for Y F 1 and red for Y F 2 . First three lines are for fixed m and increasing p: m = 1 (a,b), m = 2 (c,d) and m = 3 (e,f). Last line is for m = p. Other parameters are N = 2 16 , k = 5, τ = 1.

TABLE I

 I Statistical test. p-VALUE OF WILCOXON TEST BETWEEN THE STATISTICS

OF Î(1,3) (1) AND Î(2,2) (1).
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