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Abstract

This work is devoted to the derivation of an energy estimate to be satisfied by
numerical schemes when approximating the weak solutions of the shallow water
model. More precisely, here we adopt the well-known hydrostatic reconstruction
technique to enforce the adopted scheme to be well-balanced; namely to exactly
preserve the lake at rest stationary solution. Such a numerical approach is known to
get a semi-discrete (continuous in time) entropy inequality. However, a semi-discrete
energy estimation turns, in general, to be insufficient to claim the required stability.
In the present work, we adopt the artificial numerical viscosity technique to increase
the desired stability and then to recover a fully discrete energy estimate. Several
numerical experiments illustrate the relevance of the designed viscous hydrostatic
reconstruction scheme.

1 Introduction

The present work concerns the derivation of discrete entropy inequalities when adopting
the well-known hydrostatic reconstruction technique introduced by Audusse et al [1].
This numerical scheme was proposed to approximate the weak solutions of the shallow-
water system. The model under consideration is governed by the following set of partial
differential equations: 

∂th+ ∂xhu = 0,

∂thu+ ∂x

(
hu2 + g

h2

2

)
= −gh∂xz,

(1)

where h ≥ 0 stands for the water height and u ∈ R denotes the water velocity. Here, g
is the gravitational constant while z is a given smooth function to represent the bottom
topography. For the sake of simplicity in the forthcoming notations, we set

w =

(
h
hu

)
, f(w) =

 hu

hu2 + g
h2

2

 , and S(w, z) =

(
0

−gh∂xz

)
.

In addition, we introduce Ω ⊂ R2 the set of physical admissible states given by

Ω = {w ∈ R2; h ≥ 0, u ∈ R}.

From now on, we underline that this admissible state space contains dry areas charac-
terized by h = 0. It is well-known that the system (1) is not correctly defined for dry
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solutions. However, some numerical simulations may contain dry zones which have to
be correctly approximated. In order to deal with wet solutions, far away from dry areas,
we also introduce

Ω0 = {w ∈ R2; h ≥ h0, u ∈ R},

with h0 > 0 a given constant.
The first-order extracted system from (1) is well-known to be hyperbolic. As a

consequence, the Cauchy problem associated with (1) may develop discontinuous so-
lutions in finite time. The discontinuities, the so-called shock waves, are governed by
the Rankine-Hugoniot conditions (see [13, 18, 19, 30]) which do not ensure uniqueness
of the solution. In order to rule out unphysical solutions, the system is endowed with
entropy inequalities (see [13,29,41]). Considering the shallow-water model, the entropy
inequalities read (see [7]):

∂tη(w) + ∂xG(w) ≤ −ghu∂xz, (2)

where we have set

η(w) = h
u2

2
+ g

h2

2
and G(w) =

(
u2

2
+ gh

)
hu. (3)

It is worth noticing that η : Ω0 → R is a convex function.
In fact, since z does not depend on time, the above inequality equivalently (see [7])

recasts in an energy estimate as follows:

∂tη̃(w, z) + ∂xG̃(w, z) ≤ 0, (4)

with
η̃(w, z) = η(w) + ghz and G̃(w, z) = G(w) + ghuz. (5)

In addition, the system (1) admits solutions of particular interest; namely the steady
state solutions. Since such solutions do not depend on time, they are easily shown to
be defined by

hu = Q and B(w, z) = B, (6)

where B : Ω→ R stands for a Bernouilli-like relation given by

B(w, z) =
u2

2
+ g(h+ z). (7)

In (6), Q and B are two real constants. Among all the possible steady state solutions,
the lake at rest, defined by

u = 0 and h+ z = H, (8)

with H a given constant, turns out to be of prime importance when deriving numerical
schemes to approximate the weak solutions of (1). Indeed, after the work by Bermudez
and Vasquez [4] , Greenberg and LeRoux [24] (see also [10, 21, 25, 28]) or Goutal and
Maurel [22,23], it is well-known that a numerical scheme may produce very large errors
if it cannot accurately approximate the lake at rest. According to these pioneer works,
a scheme able to exactly capture the lake at rest is called a well-balanced scheme.

During the three last decades, numerous strategies have been introduced to correct
the failure coming from the non-well-balanced schemes as presented in Figure 1. Among
all these (well-balanced) numerical techniques, one is of strong interest, the so called
hydrostatic reconstruction procedure introduced in [1]. Indeed, this numerical method
can be understood as a very easy way to obtain a well-balanced scheme as soon as a
conservative scheme is known to approximate the homogeneous first-order system, for
flat topography with z a constant, extracted from (1). To fix the ideas, let us briefly
recall the main ingredients in the derivation of the hydrostatic reconstruction.
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Figure 1: Failure in the lake at rest in the case of an approximation obtained by a
HLL Godunov-type scheme to discretize the hyperbolic first-order terms and a centered
scheme to discretize the topography source term.

First, we consider a suitable discretization of space and time. To make simple
the presentation, the space discretization is assumed to be uniformly made of cells
(xi− 1

2
, xi+ 1

2
) with constant size ∆x, so that xi+ 1

2
= xi− 1

2
+∆x for all i in Z. Concerning

the time discretization, we set tn+1 = tn + ∆t, where ∆t > 0 stands for the time
increment which has to be restricted according to a CFL-like condition [18, 32, 45].
Next, we assume known a numerical flux function F(wL, wR) to approximate the flux
function f(w) at each interface xi+ 1

2
, which is assumed to be consistent as follows:

F(w,w) = f(w) ∀w ∈ Ω.

We here do not detail the technique to reach such a numerical flux function and the
reader is referred to [20, 27, 39, 40] to get functions F of Godunov-type, Roe-type,
relaxation-type, kinetic-type, etc. In fact, let us emphasize that one of the main as-
set in the hydrostatic reconstruction approach stays in the opportunity to select any
numerical flux function. On each cell (xi− 1

2
, xi+ 1

2
), we introduce water height recon-

structions as follows:

h+
i− 1

2

= hni + zi − z+i− 1
2

and h−
i+ 1

2

= hni + zi − z−i+ 1
2

, (9)

where zi − z+
i− 1

2

= O(∆x) and zi − z−
i+ 1

2

= O(∆x) are small perturbations. Here,

z±
i+ 1

2

approximates the topography function on each side of the interface xi+ 1
2
. Precise

definition of these quantities will be given later on.
Equipped with water height reconstructions, we define the following reconstructed

states:

w+
i− 1

2

=

(
h+
i− 1

2

h+
i− 1

2

uni

)
and w−

i+ 1
2

=

(
h−
i+ 1

2

h−
i+ 1

2

uni

)
∀i ∈ Z. (10)

Then, the hydrostatic reconstruction scheme reads

wn+1
i = wni −

∆t

∆x

(
F(w−

i+ 1
2

, w+
i+ 1

2

)−F(w−
i− 1

2

, w+
i− 1

2

)

)
− g∆t

(
0

h∂xz
n
i

)
, (11)

where the source term discretization is in the following form:

h∂xz
n
i = h∂xz

+
i− 1

2
+ h∂xz

−
i+ 1

2
, (12)
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for a suitable definition of h∂xz
±
i+ 1

2
given by

h∂xz
+
i− 1

2
=

1

2∆x

(
hni + h+

i− 1
2

)(
zi − z+i− 1

2

)
,

h∂xz
−
i+ 1

2
=

1

2∆x

(
hni + h−

i+ 1
2

)(
z−
i+ 1

2

− zi
)
.

(13)

In fact, the main idea in [1] is enforcing

z−
i+ 1

2

= z+
i+ 1

2

as soon as hni + zi = hni+1 + zi+1, (14)

so that we get

h−
i+ 1

2

= h+
i+ 1

2

as soon as hni + zi = hni+1 + zi+1. (15)

Independently from the choice of the numerical flux function F , the above numerical
approach is easily seen to be well-balanced; namely if uni = 0 and hni + zi = H for all
i ∈ Z, then un+1

i = 0 and hn+1
i + zi = H for all i ∈ Z.

Now, let us suggest some definitions of the topography z±
i+ 1

2

at each interface. For

instance, in [1], the authors proposed

z−
i+ 1

2

= min (hni + zi,max(zi, zi+1)) ,

z+
i+ 1

2

= min
(
hni+1 + zi+1,max(zi, zi+1)

)
.

(16)

Next, let us emphasize that several recent works propose extensions of the original
hydrostatic reconstruction defined by (16). For instance, in the work by Chen and
Noelle [11], the authors suggest to consider

z−
i+ 1

2

= max(zi, z̄i+ 1
2
) and z+

i+ 1
2

= max(zi+1, z̄i+ 1
2
)

where we have set

z̄i+ 1
2

= min
(
max(zi, zi+1),min(hni + zi, h

n
i+1 + zi+1)

)
.

The hydrostatic reconstruction, defined by (9), (10), (11) and (13), turns out to be
very easy and fast to be implemented. This makes this procedure very attractive and
numerous works apply this technique (for instance, see [3, 6, 14,15,33,34]).

Equipped with well-balanced schemes, an other important property to be satisfied by
the scheme concerns the stability. In the present work, we focus on the entropy stability.
Indeed, in order to rule out unphysical approximate solutions, it is important that the
numerical solution satisfies, in addition, discrete entropy inequalities. We recall that
the scheme is said entropy stable if the following strong energy estimation is verified:

1

∆t

(
η̃(wn+1

i , zi)− η̃(wni , zi)
)

+
1

∆x

(
G̃(w−

i+ 1
2

, zi, w
+
i+ 1

2

, zi+1)− G̃(w−
i− 1

2

, zi−1, w
+
i− 1

2

, zi)

)
≤ 0.

(17)

where η̃ is the entropy function defined by (5), and G̃(wL, zL, wR, zR) is the associated
numerical entropy flux function consistent with the exact entropy flux, G̃, as follows:

G̃(w, z, w, z) = G̃(w, z).

In fact, the discrete entropy inequality (17), according to the famous Lax-Wendroff
Theorem [31], ensures a convergence to the entropy weak solutions of the system (1) (if
the scheme converges).
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The derivation of discrete entropy inequality is usually a very difficult task. For
instance, in [7–9], relaxation schemes are derived to get entropy stable well-balanced
schemes. But, in general, the authors do not address the delicate problem of the full
discrete energy estimate (17).

To avoid these difficulties, some works suggest to consider weaker formulations of the
entropy stability. For instance, recently in [5,36,37], extensions of the HLL scheme [27]
produce entropy consistent schemes (in the sense where entropy inequlity is reached up
to O(∆x)) able to exactly capture all the steady states (at rest or moving). In [1], the
authors establish an entropy inequality satisfied by the semi-discrete (time continuous)
scheme associated with the hydrostatic reconstruction (11). Unfortunately, it is well-
known that semi-discrete entropy inequalities are not sufficient to obtain a suitable
convergence to the entropy weak solution or to get relevant energy estimates. As a
consequence, the main question we address here is:

Is it possible to exhibit the entropy inequality (17) for the hydrostatic
reconstruction scheme (11)?

In fact, recently in [2], the authors give a negative response. As a consequence, in order
to get the expected entropy inequality, the hydrostatic reconstruction scheme (11) must
be improved. To address such an issue, the present paper is organized as follows. In
the next section, we adopt an artificial viscosity technique as proposed in [12] (see
also [42–44]). In fact, by involving additional viscosity, we may expect to increase
the stability of the scheme. Moreover, in this work, the required entropy stability is
obtained by adopting the well-known entropy criterion introduced by Harten, Lax and
van Leer (see Theorem 3.1 page 47 [27]). In order to apply this statement, we also
present a Godunov-type reformulation of the derived viscous hydrostatic reconstruction
scheme. Section 3 concerns the establishment of the discrete energy estimate (17).
To address such an issue, we exhibit the optimal artificial viscosity to minimize the
associated entropy dissipation rate. Moreover, we show that the interface topography
reconstruction z±

i+ 1
2

must be given a specific definition. Next, Section 4, we focus on the

wet and dry transitions. Clearly, the energy estimate (4) is not well-defined within such
a transition. As a consequence, in this section, we introduce an improvement of the
derived hydrostatic reconstruction scheme able to deal with wet and dry transition, and
preserving the entropy stability requirement far away from vacuum. The last section is
devoted to some numerical experiments in order to illustrate the relevance of the herein
proposed improvement of the hydrostatic reconstruction method.

2 Viscous hydrostatic reconstruction scheme and Godunov-
type reformulation

This section is devoted to an improvement of the hydrostatic reconstruction scheme (11),
in order to obtain the required discrete entropy inequality (17). After the pioneer work
by Tadmor [42–44] (see also [12,26]), we suggest to introduce artificial viscosity. Indeed,
the artificial viscosity naturally increases the scheme stability and it turns out to be a
suitable ingredient to establish the required entropy inequality (17). As a consequence,
we here modify the numerical flux function F(w+

L , w
−
R) by introducing

FγLR = F(w+
L , w

−
R) + γδLR, (18)

where δLR = t(δh, δq) ∈ R2 stands for a nonlinear viscosity to be defined according
to a correct control of the numerical entropy dissipation rate. The parameter γ ≥ 0
governs the numerical artificial viscosity according to the CFL condition. In addition,
in the above definition, w+

L and w−R stand for the reconstructed states at the interface
according to (10). Put in other words, at an interface xi+ 1

2
, we set w+

L = w−
i+ 1

2

and
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w−R = w+
i+ 1

2

. Let us underline that this new numerical flux function definition depends

on both reconstructed values and cell values; namely FγLR := FγLR(wL, wR, w
+
L , w

−
R).

Now, instead of the numerical method (11), we consider the following scheme:

wn+1
i = wni −

∆t

∆x

(
Fγ
i+ 1

2

−Fγ
i− 1

2

)
− g∆t

(
0

h∂xz
n
i

)
, (19)

which reads

wn+1
i = wni −

∆t

∆x

(
F(w−

i+ 1
2

, w+
i+ 1

2

)−F(w−
i− 1

2

, w+
i− 1

2

)

)
+ γ

∆t

∆x

(
δi− 1

2
− δi+ 1

2

)
− g∆t

(
0

h∂xz
n
i

)
.

(20)

For the sake of simplicity in the notations, adopting (13), we set

S±
i+ 1

2

=

(
0

−gh∂xz
±
i+ 1

2

)
, (21)

to write, after (12),

−g
(

0

h∂xz
n
i

)
= S+

i− 1
2

+ S−
i+ 1

2

.

From now on, it is worth noticing that the adopted scheme (20) needs a specific
definition of δLR to recover the expected well-balanced property. Indeed, as soon as
the sequence (wni )i∈Z defines a lake at rest at time tn, because of the hydrostatic recon-
struction conditions (15), we immediately obtain

wn+1
i = wni + γ

∆t

∆x

(
δi− 1

2
− δi+ 1

2

)
.

As a consequence, we have to impose δLR = 0 as soon as wL and wR define a lake at
rest. Moreover, in order to preserve the consistency property of (20), we must have
δi+ 1

2
− δi− 1

2
= O(∆x2).

Now, in order to prove the energy estimation (17), we suggest to reformulate the
viscous hydrostatic reconstruction scheme (20) as a Godunov-type method. To address
such an issue, we introduce the following approximate Riemann solver:

wR
(x
t

;wL, wR, w
+
L , w

−
R

)
=



wL if
x

t
< −(λ+ γ),

w̄L if − (λ+ γ) <
x

t
< −λ,

w?L if − λ < x

t
< 0,

w?R if 0 <
x

t
< λ,

w̄R if λ <
x

t
< λ+ γ,

wR if
x

t
> λ+ γ,

(22)

where we have set
w̄L = wL − δLR and w̄R = wR + δLR (23)

and

w?L = wL −
1

λ

(
F(w+

L , w
−
R)− f(wL)

)
+

∆x

λ
S+
L ,

w?R = wR +
1

λ

(
F(w+

L , w
−
R)− f(wR)

)
+

∆x

λ
S−R .

(24)

6



In the above definition, S+
L and S−R denote the source term discretization at the interface

according to (21); namely S+
L = S−

i+ 1
2

and S−R = S+
i+ 1

2

at each side of the interface xi+ 1
2
.

Concerning the wave speeds involved in (22), λ > 0 and γ ≥ 0 will be fixed later
on according to stability conditions to be prescribed. For the sake of simplicity in the
forthcoming developments, γ is fixed to a constant value over the whole mesh while λ
is defined locally interface per interface.

Next, arguing direct computations, the updated state wn+1
i , given by (20), equiva-

lently reformulates as follows:

wn+1
i =

1

∆x

∫ ∆x
2

0
wR

(
x

∆t
;wni−1, w

n
i , w

−
i− 1

2

, w+
i− 1

2

)
dx

+
1

∆x

∫ 0

−∆x
2

wR
(
x

∆t
;wni , w

n
i+1, w

−
i+ 1

2

, w+
i+ 1

2

)
dx,

(25)

under a CFL-like condition given by

∆t

∆x
max
i∈Z

(
λi+ 1

2
+ γ
)
≤ 1

2
. (26)

We recall that this CFL restriction imposes non-interaction of successive approximate
Riemann solvers

wR
(x− xi− 1

2

∆t
;wni−1, w

n
i , w

−
i− 1

2

, w+
i− 1

2

)
and wR

(x− xi+ 1
2

∆t
;wni , w

n
i+1, w

−
i+ 1

2

, w+
i+ 1

2

)
.

To conclude this section, we underline that the initial hydrostatic reconstruction scheme
(11) is recovered as soon as γ = 0.

3 Discrete entropy inequality

Equipped with the improved hydrostatic reconstruction scheme (20) and the associ-
ated Godunov-type reformulation (25), we are now able to get the expected discrete
energy estimate (17). Indeed, involving the work by Harten, Lax and van Leer [27], the
Godunov-type scheme (25) is entropy preserving as soon as the approximate Riemann
solver (22) satisfies the following interface entropy condition:

1

∆x

∫ ∆x
2

−∆x
2

η̃
(
wR

( x

∆t
;wL, wR, w

+
L , w

−
R

)
, z
)
dx

≤ 1

2
(η̃(wL, zL) + η̃(wR, zR))− ∆t

∆x

(
G̃(wR, zR)− G̃(wL, zL)

)
,

(27)

with the entropy pair (η̃, G̃) defined by (5) and where we have set

z =

{
zL if x < 0,

zR if x > 0.

Indeed, since η, defined by (3), is a convex function, involving the well-known Jensen’s
inequality, we immediately obtain

η(wn+1
i ) ≤ 1

∆x

∫ ∆x
2

0
η

(
wR

(
x

∆t
;wni−1, w

n
i , w

−
i− 1

2

, w+
i− 1

2

))
dx

+
1

∆x

∫ 0

−∆x
2

η

(
wR

(
x

∆t
;wni , w

n
i+1, w

−
i+ 1

2

, w+
i+ 1

2

))
dx.
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Moreover, we have

hn+1
i zi =

1

∆x

∫ ∆x
2

0
hR
(
x

∆t
;wni−1, w

n
i , w

−
i− 1

2

, w+
i− 1

2

)
zi dx

+
1

∆x

∫ 0

−∆x
2

hR
(
x

∆t
;wni , w

n
i+1, w

−
i+ 1

2

, w+
i+ 1

2

)
zi dx,

so that, adding the above identities, by definition of η̃ given by (5), we get

η̃(wn+1
i , zi) ≤

1

∆x

∫ ∆x
2

0
η̃

(
wR

(
x

∆t
;wni−1, w

n
i , w

−
i− 1

2

, w+
i− 1

2

)
, zi

)
dx

+
1

∆x

∫ 0

−∆x
2

η̃

(
wR

(
x

∆t
;wni , w

n
i+1, w

−
i+ 1

2

, w+
i+ 1

2

)
, zi

)
dx.

Next, arguing the inequality (27), a straightforward computation gives the expected
entropy inequality (17) where the entropy numerical flux function is defined as follows:

G̃(wL, wR, w
+
L , w

−
R , zL, zR) =

G̃(wR, zR)− ∆x

2∆t
η̃(wR, zR) +

1

∆t

∫ ∆x
2

0
η̃
(
wR

( x

∆t
;wL, wR, w

+
L , w

−
R

)
, zR

)
dx.

As a consequence, we have now to establish the interface entropy inequality (27). To
obtain this estimation, we first introduce the following entropy dissipation rate:

E =
1

∆t

∫ ∆x
2

−∆x
2

η̃
(
wR

( x

∆t
;wL, wR, w

+
L , w

−
R

)
, z
)
dx

− ∆x

2∆t
(η̃(wL, zL) + η̃(wR, zR)) +

(
G̃(wR, zR)− G̃(wL, zL)

)
,

(28)

so that the estimation (27) immediately reformulates as E ≤ 0. Next, from (22) to
define the approximate Riemann solver, a straightforward computation gives:

E = E0 + γD,

where we have set

E0 =λ
(
η̃(w?L, zL) + η̃(w?R, zR)− η̃(wL, zL)

− η̃(wR, zR)
)

+
(
G̃(wR, zR)− G̃(wL, zL)

)
,

(29)

D = η̃(w̄L, zL) + η̃(w̄R, zR)− η̃(wL, zL)− η̃(wR, zR). (30)

We notice that E0 is nothing but the entropy dissipation rate of the initial hydrostatic
reconstruction scheme (11), obtained by imposing γ = 0 in (20). The quantity D
coincides with a viscous entropy dissipation rate associated with the artificial viscosity.

In fact, since the initial hydrostatic reconstruction scheme is not necessarily entropy
preserving, the associated entropy dissipation rate E0 may be positive. As a consequence,
we may have E0 ≥ 0. Then, in order to recover E ≤ 0, necessarily we must have D < 0
so that, with large enough value of γ ≥ 0, we may expect a negative entropy dissipation
E . In fact, choosing the artificial viscosity as follows (for instance, see [12]):

δh =
1

2
(hL − hR) and δq =

1

2
(hLuL − hRuR),

we obtain

w̄L = w̄R =
1

2
(wL + wR).

With a flat topography, zL = zR, arguing the convexity of η, we immediately obtain
D ≤ 0. Now, we have to extend such a viscosity definition in order to deal with non-flat
topography.
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Lemma 3.1. Let wL and wR be two constant states in Ω0. Assume the artificial vis-
cosity δLR be given as follows:

δh =
1

2
(hL − hR) +

1

2
(zL − zR), (31)

δq =
1

2
(hLuL − hRuR)− 1

2

hLuL + hRuR
hL + hR

(zR − zL). (32)

Then the viscous entropy dissipation rate D reads

D = −g(δh)2 − 1

2

hLhR
hL + hR

(uL − uR)2. (33)

Assume the interface topography reconstruction z−LR = z+LR = zLR be defined such that

zLR =
1

2
(zL + zR) + λKu(zR − zL), (34)

as soon as uL = uR = u and hL + zL = hR + zR = H for given constants u and H.
Moreover, in (34), λ is the wave speed involved in (22) and K is a parameter such that

0 < Ku2 < 1. (35)

In addition, assume hL and hR be large enough such that

1

2
(hL + hR)± 1

2
(zR − zL) > 0, (36)

hL + zL − zLR > 0 and hR + zR − zLR > 0. (37)

Then there exists λ > 0 and γ ≥ 0 large enough such that the interface entropy inequality
(27) is satisfied.

From now on, we underline that the condition (36) enforces the intermediate water
heights h̄L and h̄R to be positive. Indeed, by definition of δh, now given by (31), we
easily get

h̄L =
1

2
(hL + hR)− 1

2
(zL − zR) and h̄R =

1

2
(hL + hR) +

1

2
(zL − zR).

As a consequence, as long as the solution stays far away from dry areas, with hL ≥
h0 > 0 and hR ≥ h0 > 0, and with a smooth topography function, both h̄L and h̄R
remain positive for small enough ∆x. Moreover, the condition (37) imposes that the
reconstructed water heights h−L and h+R remain positive. As a consequence, at the level
of the scheme presentation, we assume to be far away from dry areas. In the next
section, extensions of the interface topography zLR are proposed in order to deal with
wet and dry transitions.

In addition, it is worth noticing that the proposed improved hydrostatic scheme is
now defined up to the parameter K, involved in (34). The behavior of the approximated
solution according to this parameter K will be numerically studied.

Moreover, at this level, we are not able to establish that λ and γ are bounded.
However, in Section 4, devoted to the numerical experiments, we will illustrate the
good behavior of these two parameters.

Proof. Arguing the definition of δh and δq, given by (31) and (32), after a laborious but
straightforward computation, D is now given by (33). As a consequence, D ≤ 0 with
equality to zero if and only if (wL, zL) and (wR, zR) belong to

Γ(H,u) = {hL + zL = hR + zR = H and uL = uR = u} .

9



Moreover, we notice that D and E0 do not depend on γ. Then, as long as D < 0, there
exists γ ≥ 0 such that E0 + γD ≤ 0.

Next, let us assume that (wL, zL) and (wR, zR) stay in Γ(H,u) so that D = 0. In
order to obtain the required inequality (27), we have now to establish that E0 ≤ 0. By
definition of the hydrostatic reconstruction (15), since hL + zL = hR + zR and uL = uR,
we have w+

L = w−R where
h+L = H − zLR = h−R.

Now, we are able to evaluate both intermediate states w?L and w?R given by (24). Con-
cerning the intermediate water heights, we have the following sequence of equalities:

h?L = hL −
1

λ

(
h+Lu− hLu

)
= hL −

u

λ
(zL − zLR)) ,

h?R = hR +
1

λ

(
h−Ru− hRu

)
= hR +

u

λ
(zR − zLR)) .

Next, concerning the intermediate discharge, we have

h?Lu
?
L = hLuL −

1

λ

(
fhu(w+

L )− fhu(wL)
)

+
g

2λ

(
(h+L )2 − h2L

)
,

h?Ru
?
R = hRuR +

1

λ

(
fhu(w−R)− fhu(wR)

)
+

g

2λ

(
h2R − (h−R)2

)
,

to get

h?Lu
?
L = hLu−

u2

λ
(zL − zLR),

h?Ru
?
R = hRu+

u2

λ
(zR − zLR).

Plugging these intermediate states within E0 and adopting an interface topography zLR
given by (34), after a huge but direct computation, we obtain

E0 = u2Kg(zR − zL)2(Ku2 − 1)λ2 + α1λ+ α0,

where α1 and α0 do not depend on λ. As a consequence, as long as u 6= 0 and zL 6= zR,
under the condition (35), E0 stands for a second-order polynomial function with respect
to λ with a negative head coefficient. Hence, there exists λ > 0 large enough such that
E0 < 0.

Finally, to conclude the proof, we underline that Γ(H,0) coincides with the lake at
rest. Then, by definition of the hydrostatic reconstruction (15), we immediately obtain
w?L = wL and w?R = wR so that E0 = 0 to get E = 0. Moreover, if we restrict Γ(H,u) to
zL = zR, then we enforce wL = wR. By definition of the entropy dissipation rate, once
again we obtain E = 0. The proof is thus completed.

We now conclude this section by stating our main result.

Theorem 3.1. Let F(wL, wR) be a consistent numerical flux function with the homoge-
neous shallow-water equations. Assume the topography function z be given by a smooth
function. Let (wni )i∈Z be a sequence in Ω0 to approximate the solution of (1) at time tn.
Consider the updated state wn+1

i given by the viscous hydrostatic reconstruction scheme
(20) and (13) where the reconstructed water heights are given by (9) but for an interface
topography defined by

z−
i+ 1

2

= z+
i+ 1

2

= zi+ 1
2
, (38)

zi+ 1
2

=
1

2
(zi + zi+1) +

λ

2
(uni + uni+1)(zi+1 − zi)Ki+ 1

2
, (39)

with Ki+ 1
2

a positive parameter such that

0 <
Ki+ 1

2

4

(
(uni )2 + (uni+1)

2
)
< 1.

10



Concerning the artificial viscosity δi+ 1
2

= t(δh
i+ 1

2

, δq
i+ 1

2

), we adopt

δh
i+ 1

2

=
1

2
(hni − hni+1) +

1

2
(zi − zi+1), (40)

δq
i+ 1

2

=
1

2
(hni u

n
i − hni+1u

n
i+1)−

1

2

hni u
n
i + hni+1u

n
i+1

hni + hni+1

(zi+1 − zi). (41)

Under the CFL-like restriction (26), there exists λi+ 1
2
> 0 and γ ≥ 0 large enough such

that the scheme is

(i) consistent,

(ii) well-balanced for the lake at rest,

(iii) entropy preserving according to the discrete energy estimate (17).

It is worth noticing that no stability conditions are imposed to be satisfied by the
numerical flux function F . In fact, all the required stability is contained within the
numerical artificial viscosity.

Proof. First, let us show that the scheme is consistent. Since the topography function
is smooth, we immediately have the consistency of the interface topography zi+ 1

2
up to

O(∆x). As a consequence, the reconstruction states w±
i+ 1

2

are consistent up to O(∆x).

Then, (F(w−
i+ 1

2

, w+
i+ 1

2

)−F(w+
i− 1

2

, w+
i− 1

2

))/∆x is naturally consistent with ∂xf(w) up to

O(∆x). Next, concerning the artificial viscosity, we have

δh
i− 1

2

− δh
i+ 1

2

=
1

2
(hni+1 − 2hni + hni−1) +

1

2
(zi+1 − 2zi + zi−1),

δq
i− 1

2

− δq
i+ 1

2

=
1

2
((hu)ni+1 − 2(hu)ni + (hu)ni−1)

− 1

2

(
(hu)ni + (hu)ni+1

hni + hni+1

(zi+1 − zi)−
(hu)ni−1 + (hu)ni

hni−1 + hni
(zi − zi−1)

)
,

to immediately obtain δh
i+ 1

2

− δh
i− 1

2

= O(∆x2) and δq
i+ 1

2

− δq
i− 1

2

= O(∆x2). As a con-

sequence, the artificial viscosity is consistent with zero. Concerning the source term,
the consistency is immediately recovered because of the consistency of the interface
topography zi+ 1

2
.

Next, concerning the well-balanced property, since z−
i+ 1

2

= z+
i+ 1

2

= zi+ 1
2
, we have just

to show that the artificial viscosity vanishes as soon as a lake at rest is considered. But,
as soon as hni + zi = hni+1 + zi+1, we get δh

i+ 1
2

= 0. Moreover, with δh
i+ 1

2

= 0, we have

δq
i+ 1

2

= 0 with uni = uni+1 = 0. Then, the considered scheme is well-balanced.

Finally, the discrete entropy inequality (17) is a direct consequence of Lemma 3.1.
The proof is thus achieved.

4 Wet and dry transitions

We underline that, in the work by Audusse et al [1] (see also [11, 38]), the hydrostatic
reconstruction scheme remains relevant when considering wet and dry transitions. More
precisely, the hydrostatic reconstruction technique preserves the water height nonnega-
tive. Such a property is essential to perform numerical simulations of physical interest.
Here, we propose to modify the water height reconstructions and the artificial viscosity
in order to make relevant the derived numerical scheme within dry areas.
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Concerning the water height reconstructions, we adopt the approach introduced by
Audusse et al [1], by imposing on the cell (xi− 1

2
, xi+ 1

2
), h+

i− 1
2

≥ 0 and h−
i+ 1

2

≥ 0 but also

h+
i− 1

2

= h−
i+ 1

2

= 0 if hni = 0. To address such an issue, we suggest

h+
i− 1

2

= max

(
0, hni + α+

i− 1
2

(zi − zi− 1
2
)

)
,

h−
i+ 1

2

= max

(
0, hni + α−

i+ 1
2

(zi − zi+ 1
2
)

)
,

with zi+ 1
2

given by (39) and where we have set

α+
i− 1

2

=
hni

hni +
(
|hni + zi − hni−1 − zi−1|+ |uni − uni−1|

)
∆xk

,

α−
i+ 1

2

=
hni

hni +
(
|hni+1 + zi+1 − hni − zi|+ |uni+1 − uni |

)
∆xk

,

for a given k ≥ 1.
Adopting the notations introduced in (9), we get

h+
i− 1

2

= hni + zi − z+i− 1
2

and h−
i+ 1

2

= hni + zi − z−i+ 1
2

, (42)

where we have set

z−
i+ 1

2

= min
(
hni + zi, zi − α−i+ 1

2

(zi − zi+ 1
2
)
)
,

z+
i− 1

2

= min
(
hni + zi, zi − α+

i− 1
2

(zi − zi− 1
2
)
)
.

(43)

Next, let us focus on the artificial viscosity. We suggest to consider a similar cut-off
technique by imposing the water height artificial viscosity δh

i+ 1
2

such that hni − δhi+ 1
2

≥ 0

and hni+1 + δh
i+ 1

2

≥ 0. As a consequence, we propose

δh
i+ 1

2

= max

(
−hni+1,min

(
hni ,

1

2
(hni + zni − hni+1 − zi+1)

))
. (44)

In addition, in order to preserve the water heights nonnegative, as usual, we impose
that the adopted numerical flux function F(wL, wR) is associated with a nonnegative
preserving scheme over a flat topography (for instance, see [1,11]). Put in other words,
we impose that

Fh(w = 0, wni+1)−Fh(wni−1, w = 0) ≤ 0, (45)

for all states wni±1 in Ω.
We now show that the resulting scheme is nonnegative preserving and it preserves

the stability property established Theorem 3.1.

Theorem 4.1. Let (wni )i∈Z be given in Ω. Consider the viscous hydrostatic reconstruc-
tion scheme (20) and (13) with reconstructed water heights given by (42) and (43), and
an artificial viscosity defined by (41) and (44).

(i) The scheme is consistent.

(ii) The scheme is well-balanced; namely if hni + zi = H and uni = 0 for all i in Z,
then hn+1

i + zi = H and un+1
i = 0 for all i in Z.

(iii) Up to a more restrictive CFL-like condition, the scheme is nonnegative preserving;
namely if hni ≥ 0 for all i in Z, then hn+1

i ≥ 0 for all i in Z.
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(iv) The scheme is entropy preserving according to the discrete entropy inequality (17)
in Ω0 at least for small enough ∆x.

Proof. Concerning the consistency of the scheme, it easily comes from the consistency of
z±
i+ 1

2

with the topography function z. We notice that zi+ 1
2
, defined by (39), is consistent

with z while α±
i+ 1

2

is consistent with 1. As a consequence, z±
i+ 1

2

is consistent with

min(h+ z, z) = z and the considered scheme is proved to be consistent.
Next, in order to prove (ii), let us consider a lake at rest; namely hni + zi = H and

uni = 0 for all i in Z. Arguing (41) and (44), we immediately get

δh
i+ 1

2

= 0 and δq
i+ 1

2

= 0.

Moreover, we get α±
i+ 1

2

= 1. With the definition of the interface topography, given by

(43), we have
z±
i+ 1

2

= min(H, zi+ 1
2
),

so that h−
i+ 1

2

= h+
i+ 1

2

. Since uni = 0 for all i in Z, the numerical flux function reads for

all i in Z

F(w−
i+ 1

2

, w+
i+ 1

2

) = f

(
h−
i+ 1

2

0

)
=

 0
g

2
(h−
i+ 1

2

)2

 .

After a direct computation, the scheme (20) now gives wn+1
i = wni and the well-balanced

property is stated.
Next, we turn establishing (iii). To address such an issue, we introduce the following

two partial updated water heights:

hn+1,1
i = hni −

∆t

∆x/2

(
Fh(w−

i+ 1
2

, w+
i+ 1

2

)−Fh(w−
i− 1

2

, w+
i− 1

2

)

)
,

hn+1,2
i = hni + γ

∆t

∆x/2

(
δh
i− 1

2

− δh
i+ 1

2

)
,

such that the updated water height defined by (20) now reformulates as follows:

hn+1
i =

1

2

(
hn+1,1
i + hn+1,2

i

)
. (46)

We recognize hn+1,1
i as the updated state given by a hydrostatic reconstruction scheme

according to the work by Audusse et al [1]. Since h+
i− 1

2

= h−
i+ 1

2

= 0 as soon as hni = 0,

the nonnegative condition (45) to be satisfied by the numerical flux function implies
hn+1
i ≥ 0 (see [1, 11] for more detail), under the CFL-like condition

∆t

∆x/2
max
i∈Z

λi+ 1
2
≤ 1

2
.

Next, concerning hn+1,2
i , after a straightforward computation we get

hn+1,2
i =

(
1− 4

∆t

∆x

)
hni + 2

∆t

∆x
(hni + δh

i− 1
2

) + 2
∆t

∆x
(hni − δhi+ 1

2

).

According to the definition of δh
i+ 1

2

, given by (44), we have hni −δhi− 1
2

≥ 0 and hni +δh
i+ 1

2

≥
0. As a consequence, under the CFL-like condition

∆t

∆x
≤ 1

4
,

we get hn+1,2
i ≥ 0, to immediately obtain hn+1

i ≥ 0 according to (46).
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To conclude the proof, we have to establish the discrete entropy inequality (17). In
fact, it suffices to apply Lemma 3.1 for the new definition of the interface topography
given by (43) and the new artificial viscosity (44). Since this stability property is consid-
ered in Ω0, with ∆x small enough, the viscosity δh

i+ 1
2

recovers the expected formulation

given by (40). Next, we notice that α±
i+ 1

2

= 1 as soon as hni + zni = hni+1 + zi+1 = H and

uni = uni+1. As a consequence, with ∆x small enough, in Ω0 we get

z±
i+ 1

2

= min(H, zi+ 1
2
) = zi+ 1

2
,

and thus the condition (34) is satisfied and Lemma 3.1 can be applied. The proof is
thus achieved.

5 Numerical experiments

In this section, we display several numerical experiments to illustrate the relevance of
the derived viscous hydrostatic reconstruction scheme (20) and (13) with the water
height reconstruction given by (42) and (43), and the artificial viscosity given by (41)
and (44).

The numerical simulations are performed involving two distinct numerical flux func-
tions. First, we adopt the numerical flux function for the Suliciu relaxation scheme [7]
or equivalently the HLLC scheme [46]. From now on, we emphasize that this scheme
is entropy preserving for flat topography. Next, the second numerical flux function we
adopt is associated with the VF-Roe scheme [16,17,35]. This second considered scheme
is well-known to be entropy violating. As a consequence, wrong shock discontinuities
may appear in the approximated solutions. Such a failure is very interesting to be tested
within our stabilisation technique.

To implement the scheme, we have to specify the parameters. Concerning λi+ 1
2
, in

order to be consistent with the entropy inequality satisfied by the Suliciu relaxation
scheme, we adopt

λi+ 1
2

=

(
1 +

1

10

)
max
i∈Z

(
|uni |+

√
ghni

)
. (47)

Concerning Ki+ 1
2
, involved in zi+ 1

2
, and k, involved in α±

i+ 1
2

, we fix this parameters as

follows:

Ki+ 1
2

= min

(
∆x2,

(
2

(uni )2 + (uni+1)
2

))
and k = 2. (48)

The influence of these parameters is tested later on.
Now, the main difficulty comes from the evaluation of γ to govern the artificial

viscosity. In the simulations, we have decided to select one value of γ per time iteration.
At time tn, at each interface xi+ 1

2
, we evaluate (E0)ni+ 1

2

and Dn
i+ 1

2

, given by (29) and

(30). Then, we fix γn such that (E0)ni+ 1
2

+ γnDn
i+ 1

2

≤ 0.

Equipped with the values of λi+ 1
2

and γn, the time increment ∆tn is evaluated at

each time iteration according to the CFL-like restriction (26) as follows:

∆tn =
∆x

2 max
i∈Z

(
λi+ 1

2
+ γ
) . (49)

In the sequel, we present three sequences of numerical experiments respectively
devoted to dam-breaks over a flat topography, stationary flows over a bump and wet/dry
transitions.
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5.1 Dam-breaks over a flat topography

Here, the simulation domain is made of the interval [0, 25] where the topography function
is fixed to z(x) = 0. The initial data for the first dam-break is given by

h(x, 0) =

{
1.5 if x < 12.5,

0.5 if x > 12.5,
and u(x, 0) = 0. (50)

The exact solution is made of a rarefaction wave and a shock wave. Since the Suliciu
relaxation scheme is entropy preserving over a flat topography, the evaluation of the
viscosity parameter imposes γn = 0 for all n > 0 in this simulation. Concerning the
approximation given by the VF-Roe scheme, we also obtain γn = 0 for all n > 0. In
fact, for such a Riemann problem, the VF-Roe scheme does not involve entropy fix
and we obtain the expected approximate solution. The numerical results for this first
dam-break are displayed Figure 2.

Figure 2: Numerical simulation obtained for the first dam-break given for the initial
data (50) at time t = 1.5 with 200 cells.

The second simulated dam-break is obtained by considering the following initial
data:

h(x, 0) =

{
2.0 if x < 12.5,

0.1 if x > 12.5,
and u(x, 0) = 0. (51)

Once again, the Suliciu relaxation scheme is entropy preserving and we obtain a good
approximation of the solution made of a rarefaction wave and a shock wave. Now, the
situation turns out to be drastically different concerning the VF-Roe scheme. Indeed,
the VF-Roe scheme produces a strong entropy violating shock wave as displayed Figure
3.

Figure 3: Numerical simulation obtained for the second dam-break given for the initial
data (51) at time t = 1.5 with 200 cells.

Nevertheless, as soon as the artificial viscosity is activated, the entropy stability is
recovered and the approximated solution becomes in a good agreement when compared
to the exact solution.
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Figure 4: Second dam-break given for the initial data (51) at time t = 1.5 with 200
cells, evolution of the viscous parameter γn versus time.

Cells L2 water height error L2 discharge error

200 1.6197E-2 4.8550E-2

400 9.1830E-3 2.7253E-2

800 5.4305E-3 1.6455E-2

1600 3.0831E-3 8.8137E-3

Table 1: Errors evaluation of viscous VF-Roe scheme for the second dam-break with
initial data (51).

In Figure 4, we present the evolution of γn versus time obtained during the simu-
lation. It is clear that the values of γn do not restrict the CFL condition and do not
perturb the order of accuracy as presented Table 1.

5.2 Stationary solutions

Now, we focus on simulations of stationary solutions. Here, the domain of simulation is
given by [0, 25] while the topography contains a bump as follows:

z(x) = max(0, 0.2− 0.05(x− 10)2). (52)

First, we simulate the well-known lake at rest. Then, the initial data is given by

h(x, 0) = max(0, 0.5− z(x)) and u(x, 0) = 0. (53)

Figure 5: Numerical simulation obtained for the lake at rest given for the initial data
(53) at time t = 100 with 200 cells.

As presented Figure 5, since the scheme is well-balanced, the initial data is preserved
by both Suliciu scheme and VF-Roe scheme with errors equal to O(10−15). Of course,
since the steady solution is exactly captured, the artificial viscosity remains equal to
zero during the simulation.
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Next, the second simulation is devoted to a subcritical flow with an initial data given
by

h(x, 0) = 2− z(x) and u(x, 0) = 0. (54)

In this simulation, the boundary conditions are imposed as follows:

h(0, t)u(0, t) = h(25, t)u(25, t) = 4.42 and h(25, t) = 2

while h(0, t) is given by an usual Newman condition.

Figure 6: Numerical simulation obtained for the subcritical flow at time t = 100 with
200 cells.

The obtained numerical results are displayed Figure 6. Here, we present the results
obtained by adopting the original version of the Suliciu relaxation scheme and the
VF-Roe scheme as well as the viscous extension according to the introduced artificial
viscosity technique. The discharge error evaluations, given Table 2 and Table 3, are
clearly convincing. Because of the non vanishing topography function, the artificial
viscosity is here active.

Figure 7: Evolution of γn versus time (left) and a zoom (right) obtained for the sub-
critical flow at time t = 100 with 200 cells.

In Figure 7, we display the obtained values of γn versus time. We notice that some
values of γn are very large. However, these large values are only for some time iterations
and not during all the simulation. As a consequence, it seems more relevant to introduce
the time average of γn as follows:

γ̄ =
1

T

N∑
n=0

γn∆tn, (55)

where N is the total number of time iteration performed by the simulation and T is the
final time of the simulation.

In fact, once again, the artificial viscosity does not seem to impose a restrictive CFL
condition. Such an assertion is confirmed in both Table 2 and Table 3 when exhibiting
how much the artificial viscosity increases the number of time iterations. In addition, we

17



Cells Non viscous relaxation Viscous relaxation

L2-error max(E0) N L2-error maxn>0 γ
n γ̄ N (increase)

200 7.0821E-4 5.6105 11899 7.0822E-4 761.51 0.1055 12057 ( 1%)

400 3.0611E-4 5.6105 23883 3.0611E-4 839.24 0.1606 24377 ( 2%)

800 1.4219E-4 5.6105 47863 1.4218E-4 2089.60 0.3018 49745 ( 3%)

1600 6.8524E-5 5.6105 95843 6.8517E-5 197463.81 0.4054 100921 ( 5%)

Table 2: Subcritical flow at time t = 100 with the relaxation scheme. Evolution with
respect to the cell number of the discharge L2-error, the dissipation rate E0, the number
of time iterations N and the percent increasing, the maximum value of γn and the
average in time of γn.

Cells Non viscous VF-Roe Viscous VF-Roe

L2-error max(E0) N L2-error maxn>0 γ
n γ̄ N (increase)

200 2.8502E-4 1.9294 11880 2.8502E-4 825.92 0.2213 12231 ( 3%)

400 7.3086E-5 1.9294 23826 7.3086E-5 526.77 0.6017 25744 ( 8%)

800 1.8496E-5 1.9294 47718 1.8496E-5 2809.42 0.1962 48970 ( 2%)

1600 4.6518E-6 1.9294 95504 4.6518E-6 23790.89 0.2119 98214 ( 3%)

Table 3: Subcritical flow at time t = 100 with the VF-Roe scheme. Evolution with
respect to the cell number of the discharge L2-error, the dissipation rate E0, the number
of time iterations N and the percent increasing, the maximum value of γn and the
average in time of γn.

notice that the artificial viscosity does not modify the numerical error. Moreover, let us
emphasize that the non viscous schemes violate the entropy condition since the entropy
dissipation rate E0 may be positive. In this simulation, we notice that the maximum
value of E0 is independent of the mesh refinement.

The third stationary solution concerns the transcritical flow without shock. This
simulation is obtained by adopting the following initial data:

h(x, 0) = 0.66− z(x) and u(x, 0) = 0. (56)

The boundary conditions are given by:

h(0, t)u(0, t) = h(25, t)u(25, t) = 1.53 and h(25, t) = 0.66

while h(0, t) is given by an usual Newman condition.

Figure 8: Numerical simulation obtained for the transcritical flow without shock at time
t = 200 with 200 cells.

The obtained numerical results are displayed Figure 8. We notice that the numerical
solution, obtained by the original (non viscous) VF-Roe scheme, contains a strong shock
discontinuity violating the entropy stability.
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Cells Non viscous relaxation Viscous relaxation

L2-error max(E0) N L2-error maxn>0 γ
n γ̄ N (increase)

200 2.4698E-3 1.5090E-3 20276 2.4698E-3 33732.41 0.4498 21655 ( 6%)

400 1.2152E-3 4.3561E-4 40816 1.2152E-3 58.95 0.1016 41429 ( 1%)

800 6.0196E-4 1.2171E-4 81893 6.0196E-4 123.75 6.3029E-2 82654 ( 0.9%)

1600 2.9948E-4 3.2614E-5 164047 2.9948E-4 3924.33 4.5342E-2 165154 ( 0.6%)

Table 4: Transcritical flow without shock at time t = 200 with the relaxation scheme.
Evolution with respect to the cell number of the discharge L2-error, the dissipation rate
E0, the number of time iterations N and the percent increasing, the maximum value of
γn and the average in time of γn.

Cells L2-error maxn>0 γ
n γ̄ N

200 1.8791E-3 1473.34 0.2038 21018

400 8.8806E-4 793.23 0.1330 41778

800 4.3061E-4 334.02 8.5518E-2 83156

1600 2.1189E-4 13041.94 5.7416E-2 165818

Table 5: Transcritical flow without shock at time t = 200 with the viscous VF-Roe
scheme. Evolution with respect to the cell number of the discharge L2-error, the maxi-
mum value of γn and the average in time of γn.

We remark that the artificial viscosity technique clearly increases the stability of
the scheme, in particular the VF-Roe scheme which now gives a correct approximate
solution (see Table 5). Moreover, the expected entropy stability is reached with a
neglecting amount of supplementary time iterations. Indeed, after Table 4 the entropy
stability is get by adding a few percent of supplementary time iterations. Concerning
the VF-Roe scheme, since it does not give a correct approximation with a vanishing
viscosity, the comparison between viscous and non viscous approach is not relevant.
However, we notice that the number of time iterations for the viscous VF-Roe scheme is
very similar to the number of time iterations for the viscous Suliciu relaxation scheme.
Once again, all these comments make the artificial viscosity technique very attractive.

The last stationary solution we simulate is the transcritical flow with shock. This
numerical experiment is obtained by adopting the following initial data:

h(x, 0) = 0.33− z(x) and u(x, 0) = 0. (57)

The boundary conditions are given by

h(0, t)u(0, t) = h(25, t)u(25, t) = 0.18 and h(25, t) = 0.33

while h(0, t) is given by an usual Newman condition.
The obtained numerical results are displayed Figure 9. Once again, we notice that

the artificial viscosity increases the stability of the scheme, in particular the VF-Roe
scheme which now gives a correct approximate solution (see Table 5). Moreover, the
expected entropy stability is reached with a neglecting amount of supplementary time
iterations as shown Table 6 and Table 7. Once again, this makes the artificial viscosity
technique very attractive.

To conclude the steady state simulations, we adopt this last numerical experiment
devoted to the transcritical flow with shock, to evaluate the behavior of the scheme
with respect to the definition of the parameters Ki+ 1

2
and k, currently fixed by (48).

In Table 8 and Table 9 we present the discharge L2-error for several values of these
parameters. We immediately notice that the approximate solution depends very weakly
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Cells Non viscous relaxation Viscous relaxation

L2-error max(E0) N L2-error maxn>0 γ
n γ̄ N (increase)

200 8.7526E-4 9.2310E-3 10304 8.7526E-4 2307.32 5.3771E-3 10320 ( 0.1%)

400 4.9291E-4 9.2310E-3 21526 4.9291E-4 135.05 3.8418E-3 21550 ( 0.1%)

800 2.6938E-4 9.2310E-3 44271 2.6938E-4 37.66 1.9463E-3 44295 ( 0.05%)

1600 1.3965E-4 9.2310E-3 89571 1.3965E-4 37.61 1.9499E-3 89619 ( 0.05%)

Table 6: Transcritical flow with shock at time t = 200 with the relaxation scheme.
Evolution with respect of the cell number of the discharge L2-error, the dissipation rate
E0, the number of time iterations N and the percent increasing, the maximum value of
γn and the average in time of γn.

Cells L2-error maxn>0 γ
n γ̄ N

200 8.4623E-4 80.86 6.7037E-2 10804

400 4.0205E-4 75.24 3.4464E-2 22114

800 2.1277E-4 106.62 1.7206E-2 44722

1600 1.080E-4 528.53 9.4965E-3 90001

Table 7: Transcritical flow with shock at time t = 200 with the viscous VF-Roe scheme.
Evolution with respect to the cell number of the discharge L2-error, the maximum value
of γn and the average in time of γn.

Ki+ 1
2

Discharge L2-error

Viscous relaxation Viscous VF-Roe

min

(
1,
(

2
uni +u

n
i+1

)2)
2.2790E-3 2.2574E-3

min

(
10,
(

2
uni +u

n
i+1

)2)
3.1749E-3 3.1874E-3

min

(
∆x2,

(
2

uni +u
n
i+1

)2)
4.9291E-4 4.0205E-4

min

(
∆x4,

(
2

uni +u
n
i+1

)2)
4.9291E-4 4.0205E-4

Table 8: Transcritical flow with shock at time t = 200 with 400 cells. Discharge L2-error
versus the definition of Ki+ 1

2
.

k Discharge L2-error

Viscous relaxation Viscous VF-Roe

1 4.8110E-4 3.6097E-4

2 4.9291E-4 4.0205E-4

3 4.9367E-4 4.0431E-4

4 4.9371E-4 4.0445E-4

Table 9: Transcritical flow with shock at time t = 200 with 400 cells. Discharge L2-error
versus the definition of k involved in αi+ 1

2
.
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Figure 9: Numerical simulation obtained for the transcritical flow with shock disconti-
nuity at time t = 200 with 200 cells.

Figure 10: Numerical simulation of the hydraulic jump (zoom of the transcritical flow
with shock discontinuity) at time t = 200 with 200 cells for the viscous VF-Roe scheme.

on the parameter k. Similarly, the dependence on the definition of Ki+ 1
2

is not crucial.

However, we have a better approximation with a minimum value near zero. Moreover,
here, we want to emphasize the very good approximation we obtain within the hydraulic
jump as presented Figure 10. Indeed, it is worth noticing that the hydraulic jump is
approximated with only one point for a nonpositive entropy dissipation rate E .

5.3 Wet and dry transitions

In the two last simulations, we test the relevance of the viscosity technique when ap-
proximating wet and dry transitions. In the first simulation, we consider a dam-break
over a flat topography. Then, we have fixed z(x) = 0. Here, the domain of computation
is [−10, 20]. The numerical results are displayed Figure 11.

Figure 11: Numerical simulation obtained for dam-break over a dry area at time t = 1.5
with 200 cells.

Since the Suliciu relaxation scheme is entropy stable over a flat topography, the
artificial viscosity stays inactive during the simulation and we get γn = 0. In Table
10, we exhibit the evolution of the L2-error versus the number of cells. Concerning the
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Cells water height L2-error discharge L2-error N

200 1.3978E-2 4.0196E-2 132

400 8.5398E-3 2.5132E-2 278

800 5.0803E-3 1.5307E-2 581

1600 2.9665E-3 9.1340E-3 1204

Table 10: Dam-break over a dry area at time t = 1.5 with the relaxation scheme.
Evolution with respect to the cell number of both water height and discharge L2-error
and the number of time iterations N .

Cells L2-error maxn>0 γ
n γ̄ N

200 3.9049E-2 17.1792 0.1670 138

400 2.5349E-2 17.1792 0.1214 287

800 1.5729E-2 17.1792 8.1975E-2 592

1600 9.4474E-3 17.1792 5.2373E-2 1218

Table 11: Dam-break over a dry area at time t = 1.5 with the viscous VF-Roe scheme.
Evolution with respect to the cell number of the discharge L2-error, the maximum value
of γn, the average in time of γn and the number of time iterations N .

non viscous VF-Roe scheme, once again, it is entropy violating and generates a wrong
shock discontinuity. In Table 11, we give the evolution of the L2-error, of the maximum
value of γn and the average γ̄n. We notice that the needed number of time iterations if
similar for both viscous schemes which indicates that the the artificial viscosity does not
increase the time iterations. It is worth noticing that the suggested artificial viscosity
approach is relevant to deal with dry areas over a flat topography to make it very
attractive.

Figure 12: Numerical simulation obtained for dam-break over a bump at time t = 1.5
with 200 cells.

The last simulation we propose concerns a dam-break over a topography containing
a bump as displayed Figure 12. Here the considered domain is [−10, 20] while the
topography function z is defined by (52). Because of the bump in the dry area, the
viscosity parameter γn cannot be evaluated relevantly. Indeed, in the wet and dry
transition, it is not possible to evaluate γn ≥ 0 bounded such that the entropy dissipation
rate E , defined by (28), stays nonpositive. However, in order to perform this numerical
experiment, we impose γn = 0 as soon as D = 0. As a consequence, in this simulation,
we are not able to enforce the required entropy inequality. However, as presented Table
12, the violation of the entropy dissipation rate remains very small and we may expect
a correct convergence.
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Cells Viscous relaxation Viscous VF-Roe

max(E0 + γnD) γ̄ N max(E0 + γnD) γ̄ N

200 0. 9.3316 360 8.2667E-9 10.0568 323

400 3.8231E-8 4.9594 1228 7.2315E-9 12.5455 1021

800 1.7686E-5 6.0375 2094 1.4186E-6 24.9256 3279

1600 2.0661E-5 9.6409 5691 1.0098E-6 22.9878 7619

Table 12: Dam-break with dry area over a bump at time t = 1.5 with both viscous
relaxation and VF-Roe schemes. Evolution of the entropy dissipation rate and the
number of iteration versus the number of cells.
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