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Résumé: On étudie le comportement pour les grands temps des solutions
de l’équation de Navier-Stokes dans la bande R2 × (0, 1). Après reformulation
du problème à l’aide de variables auto-similaires, on calcule un développement
asymptotique en temps de la vorticité jusqu’au second ordre, en supposant que
la vorticité initiale est suffisamment petite et décrôıt de manire polynômiale
à l’infini. Dans un deuxième temps, sans cette hypothèse de petitesse sur la
donnée initiale, on prouve que, de nouveau, le comportement asymptotique
des solutions globales est régi par l’équation de Navier-Stokes bidimensionnelle.
En particulier, on montre que de telles solutions convergent vers le tourbillon
d’Oseen.

Abstract: We study the long-time behavior of solutions of the Navier-Stokes
equation in R2× (0, 1). After introducing self-similar variables, we compute the
long-time asymptotics of the vorticity up to second order, assuming that the
initial vorticity is sufficiently small and has polynomial decay at infinity. After-
wards, we relax this smallness assumption and we prove again that the long-time
behavior of global bounded solutions is governed by the two-dimensional Navier-
Stokes equation. In particular, we show that solutions converge towards Oseen
vortices.

Keywords: Navier-Stokes equation, long-time asymptotics, three dimen-
sional layer, self-similar variables.

AMS classification codes (2000): 35B40, 35Q30, 35G10, 76D05

Introduction

We consider the motion of an incompressible viscous fluid filling a three dimen-
sional layer R2 × (0, L) where L is a given length scale (for example, the depth
of ocean). We denote by x = (x1, x2) ∈ R2 the horizontal variable and by
z ∈ (0, L) the vertical coordinate. If no external force is applied, the velocity
field u = (u1, u2, u3)T of the fluid is given by the Navier-Stokes equation

∂tu+ (u · ∇)u = ν∆u− 1
ρ
∇p , div u = 0 , (1)
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where ρ is the density of the fluid, ν the kinematic viscosity and p the pressure
field. Replacing x, z, t, u, p with the dimensionless quantities

x

L
,
z

L
,
νt

L2
,
Lu

ν
,
L2p

ρν2
,

equation (1) is transformed into

∂tu+ (u · ∇)u = ∆u−∇p , div u = 0 , (2)

where u = u(x, z, t) ∈ R3, p = p(x, z, t) ∈ R, (x, z, t) ∈ R2 × (0, 1) ×R+. We
supplement (2) with the initial condition

u(x, z, 0) = u0(x, z) , (x, z) ∈ R2 × (0, 1) .

As no external force is applied, the velocity u and the pressure p are expected
to converge to an equilibrium. Studying this asymptotic behavior is the aim of
the present article.

As far as the three-dimensional Navier-Stokes equation is concerned, there
have been numerous studies in the recent past years to precise the asymptotic
decay in time of global solutions. Let us quote in particular the papers of M.E.
Schonbek [14], [15], [16], M. Wiegner [20], A. Carpio [1], [2], and more recently
of T. Miyakawa and M.E. Schonbek [10], Th. Gallay and C.E. Wayne [6]. In
the present work, we show how the methods developped in [6] can be adapted
to the case of a three-dimensional layer.

The previous works in a three-dimensional layer mostly deal with rotating
fluids, namely with equation (2) where an external Coriolis force is added. Sev-
eral articles have been written by J.Y. Chemin, B. Desjardins, I. Gallagher and
E. Grenier [3] where they show that the asymptotics (when the rotation goes
to infinity) are driven by a two-dimensional Navier-Stokes equation. As we
shall see, the long-time behavior of (2) is also governed by the two-dimensional
Navier-Stokes equation studied in [5].

We are therefore interested in the asymptotic behavior of the two dimen-
sional Navier-Stokes equation. Let us quote three important papers which show
with different methods that the first order asymptotics are driven by Oseen
vortices. We recall that Oseen Vortices are particular solutions of the two-
dimensional Navier-Stokes equation given by

uG(x, t) =
α

2π

(
e−

|x|2
4t − 1
|x|2

)
(x2,−x1)T , α ∈ R , x ∈ R2

whose associated flow goes along circles. The curl of uG denoted by G(x, t) =
α

4πte
−|x|2/4t is nothing else but the Gauss kernel or the fundamental solution of

the heat equation. We will study more precisely those fundamental solutions
later on in this paper. Y. Giga and T. Kambe [4] show the stability of the Gauss
kernel with estimates on the integral equation. Highlighting the fundamental
role of the heat equation inside the Navier-Stokes equation, they deal with the
difference u − uG so that non-linear terms can be seen as perturbation ones
provided the initial data is small. Their method also uses a decay estimate
obtained by Y. Giga, T. Miyakawa and H. Osada. A. Carpio [1] proves the
convergence to the fundamental solution of the heat equation with rescaling
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methods. Under the assumption that the fundamental solution of the two-
dimensional vorticity equation with initial data αδ is unique, she constructs a
family of initial data λu0(λx) whose vorticities converge in a weak sense to αδ
as λ goes to infinity and uses the invariance of the Navier-Stokes equation under
the scaling transformation

uλ(x, t) = λu(λx, λ2t)

to make the whole family uλ(t) converge to the Oseen Vortex. Finally, Th.
Gallay and C.E. Wayne [5] construct finite dimensional invariant manifolds and
use the idea that these manifolds control the long-time behavior of solutions to
prove the stability of Oseen vortices. Their method also allows to compute the
asymptotics of the two-dimensional Navier-Stokes equation to any order.

We supplement (2) with boundary conditions: for all (x, z, t) ∈ R3 ×R+,

u(x, z + 1, t) = u(x, z, t) . (3)

This periodic boundary conditions (3) are not physically realistic. Nevertheless,
space periodic flows are of interest in the study of homogeneous turbulence and,
from the mathematical point of view, periodic boundary conditions enable us to
solve functional analysis problems with the use of Fourier transformation (see
[18]).

Although Dirichlet boundary conditions would be more realistic, they are
of less interest in our case as the solutions converge exponentially fast to zero.
The asymptotic behavior observed in the periodic case and the formation of
Oseen vortices do not occur with the Dirichlet boundary conditions. Indeed,
as we shall see, the solutions of (2) converge exponentially fast towards the
two-dimensional Navier-Stokes equation. Asymptotically, the solution of (2) is
thus independent of z and must satisfy Dirichlet boundary conditions. This
implies that such a solution of (2) together with Dirichlet conditions converges
exponentially fast towards zero.

Alternatively, we will also consider stress-free boundary conditions. In this
case, the force applied by the boundary on the fluid is normal to the surface
and there is no shearing stress, see [19]. The mathematical translation of this
situation reads for all (x, t) ∈ R2 ×R+,

∂u1

∂z
(x, 0, t) =

∂u1

∂z
(x, 1, t) = 0

∂u2

∂z
(x, 0, t) =

∂u2

∂z
(x, 1, t) = 0 (4)

u3(x, 0, t) = u3(x, 1, t) = 0 .

In this paper, we use the vorticity formulation to study the long-time behav-
ior of solutions of the Navier-Stokes equation (2). Setting ω = rot u, equation
(2) is transformed into

∂tω + (u · ∇)ω − (ω · ∇)u = ∆ω , div ω = 0 , (5)

together with the initial condition

ω(x, z, 0) = ω0(x, z) = rot u0(x, z) .
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The velocity field u can be reconstructed from ω via the Biot-Savart law (see ap-
pendix A). Boundary conditions can also be expressed in terms of the vorticity.
Periodic conditions read for all (x, z, t) ∈ R3 ×R+,

ω(x, z + 1, t) = ω(x, z, t)

and stress-free conditions can be written for all (x, t) ∈ R2 ×R+ as

ω1(x, 0, t) = ω1(x, 1, t) = 0
ω2(x, 0, t) = ω2(x, 1, t) = 0 (6)

∂ω3

∂z
(x, 0, t) =

∂ω3

∂z
(x, 1, t) = 0 .

Although (2) and (5) are equivalent in some spaces (see [9]), we believe it is
more convenient to compute long-time asymptotics in the vorticity formulation.
Indeed, it has been shown, for instance by Wiegner in [20], that the decay rate in
time of the velocity u(t) is governed by the spacial decay rate of the initial data
u0. However, this spacial decay is not preserved under the evolution defined by
(2) and {u0 ∈ L2(R2×(0, 1))3 | (1+ |x|)u0 ∈ L1(R2×(0, 1))3} for instance is not
an invariant set of initial data. On the other hand, the evolution of the vorticity
(5) is not affected by this disadvantage. If (1 + |x|)mω0 ∈ L2(R2 × (0, 1))3

for some m ≥ 0, then the solution ω(t) of (5), whenever it exists, satisfies
(1 + |x|)mω(t) ∈ L2(R2 × (0, 1))3 for all t ≥ 0. The spatial decay rate of the
vorticity ω is preserved under the evolution defined by (5). Thus, we believe it is
more convenient to use the vorticity formulation of the Navier-Stokes equation
to compute the long-time asymptotics of the solutions.

In the first three sections of this paper, we assume ω(t) is small and decreases
sufficiently fast as |x| goes to infinity for all t ≥ 0. The first property allows to
deal with global bounded solutions of (5) and the second one is very helpful to
study long-time asymptotics.

To actually compute the asymptotics, we use methods of infinite dynamical
systems and spectral projections to reduce the study of (5) to the one of a
finite number of ODE’s. This idea has been developped by Th. Gallay and
C.E. Wayne in [5] when building invariant manifolds to derive the long-time
behavior of the vorticity. However, if we linearize equation (5) around the zero
solution, the linearised equation has continuous spectrum all the way from minus
infinity to zero and it is not clear how to build such manifolds. The usual idea
for parabolic equations is then to express the vorticity ω(x, z, t) in terms of
self-similar variables (ξ, z, τ) defined by ξ = x/

√
1 + t, τ = log(1 + t), see (7)

below. As the scaling in time has been blown up, the rescaled linearised operator
has remarkable spectral properties in weighted Lebesgue spaces that we use to
compute the asymptotics of ω. Indeed, we find as in [5] that the asymptotics are
governed by R̄w, the projection of the rescaled vorticity w onto z-independent
functions. Moreover, R̄w satisfies an evolution equation whose operator has a
countable set of real, isolated eigenvalues with finite multiplicities. The essential
spectrum can be pushed arbitrarily far away into the left-half plane by choosing
appropriate function spaces (i.e. spatial decay rate of the vorticity). Thus,
the long-time asymptotics in a neigborhood of the origin are determined, up to
second order, by a finite system of ordinary differential equations.

In section 1, we prove the existence and uniqueness of global bounded so-
lutions of the vorticity equation (5) with periodic boundary conditions in a
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neighborhood of the origin. Section 2 is devoted to the first order asymptotics.
Under appropriate conditions, we show that

ω(x, z, t) ∼ α

1 + t
G
(

x√
1 + t

)
, G(ξ) =

1
4π

 0
0
e−|ξ|

2/4

 ,

as t goes to infinity, where α is a real coefficient which can be easily computed
from the initial data. Notice that G is independent of z and the corresponding
velocity field obtained from the Biot-Savart law is horizontal, i.e. the third
coordinate u3 is zero. This velocity field is called Oseen vortex and also governs
the long-time asymptotics of the two-dimensional Navier-Stokes equation (see
[1], [4], [5]). In section 3, we give a higher order asymptotic expansion of ω in
case α = 0. This case represents the velocity of finite energy. We prove in this
situation that the long-time behavior of the velocity field is two-dimensional
(i.e. does not depend on z) but not horizontal (i.e. u3 is not trivially equal to
zero). Actually, we show that under appropriate conditions

ω(x, z, t) ∼
3∑

i=1

βi

(1 + t)
3
2
Fi

(
x√

1 + t

)
,

when t goes to infinity, where (β)i=1,..,3 are real coefficients computed easily
from the initial data. The vectors (F1,F2,F3) made of derivatives of G are
linearly independent. The three of them are two-dimensional but only F1 and
F2 correspond to horizontal velocities. The velocity obtained from F3 has non-
trivial coordinate u3.

The methods developped in these two sections 2 and 3 are very general and
could be applied to compute the asymptotics of (5) up to any order, as soon as
the spectral properties of the rescaled linearised operator mentioned above are
well-known.

So far, our results concern small solutions only. In section 4, we show how
they can be extended to all global bounded solutions of (5). Following [7],
we relax the smallness assumption on the vorticity and compute with different
methods the asymptotics of the vorticity in the same weighted spaces. Using
the ω-limit set of a trajectory, Lyapunov function and LaSalle’s principle, we
show once more that the asymptotics are governed by the z-independent part
of the vorticity. More precisely, we prove that the velocity converges to Oseen
vortices.

In section 5, we prove analogous results in the case of stress-free bound-
ary conditions. We show that the long-time behavior of the velocity is two-
dimensional and horizontal. In particular, ω(t) behaves, when t goes to infinity,
as (0, 0, ω2D)T , where ω2D is the solution of the two-dimensional vorticity equa-
tion studied in [5].

Finally, appendix A deals with the Biot-Savart laws in a three-dimensional
layer and contains useful estimates of the velocity field in terms of the vorticity
in weighted Lebesgue spaces. Appendix B is a generalisation of the study carried
out in [5] on the spectrum of the two-dimensional operator L which governs the
asymptotics of our three-dimensional equation. Next, appendix C describes the
properties of generator S(τ, σ) of the evolution equation satisfied by the rescaled
vorticity w. We compute useful estimates on ∂αS(τ, σ) in weighted Lebesgue
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spaces. Finally, appendix D gives some technical bounds on series and integrals
used throughout this paper.

Notations: Throughout the paper, we denote by ‖.‖Z the norm in the
Banach space Z and by |.| the usual euclidean norm in Rn. For any p ∈ [1,+∞],
if f ∈ Lp(R2 × (0, 1))3, we set ‖f‖Lp(R2×(0,1)) = ‖ |f | ‖Lp(R2×(0,1)). Weighted
norms play an important role in this paper. We always denote b(ξ) = (1+|ξ|2) 1

2 ,
ξ ∈ R2, the weight function. For any m ≥ 0, we set ‖f‖m = ‖bmf‖L2(R2×(0,1)).
If f ∈ C0([0, T ];Lp(R2×(0, 1))3), we often write f(τ) to denote the map (ξ, z) 7→
f(ξ, z, τ). Finally, we denote by C a generic positive constant, which may differ
from place to place, even in the same chain of inequalities.

Acknowledgments: I would like to thank Thierry Gallay for all his help
and suggestions regarding this work. I also thank Isabelle Gallagher for stimu-
lating discussions.

1 The Cauchy problem for the vorticity equa-
tion

In this section, we describe existence and uniqueness results for solutions of
the vorticity equation (5). As stressed in the introduction, our approach is to
study the behavior of solutions of (5) and then to derive information about the
solutions of the Navier-Stokes equation as a corollary.

In R2 × (0, 1), the vorticity equation is

∂tω + (u · ∇)ω − (ω · ∇)u = ∆ω , div ω = 0

where ω = ω(x, z, t) ∈ R3 is 1-periodic in z, (x, z, t) ∈ R2× (0, 1)×R+ and the
velocity field u is defined in terms of the vorticity via the Biot-Savart law (see
appendix A).

As our analysis of the long-time asymptotics of (5) depends on rewriting the
equations in terms of scaling variables, we deal with the Cauchy problem in the
new variables

ξ =
x√

1 + t
, τ = log(1 + t) .

As no scaling of type z 7→ λz preserves the domain (0, 1), the third coordinate
z remains unchanged. If ω(x, z, t) is a solution of (5) and u the corresponding
velocity field, we introduce new functions w(ξ, z, τ) and v(ξ, z, τ) by

ω(x, z, t) =
1

1 + t
w

(
x√

1 + t
, z, log(1 + t)

)
, (7)

u(x, z, t) =
1√

1 + t
v

(
x√

1 + t
, z, log(1 + t)

)
.

As the transformation is time-dependent for the first two coordinates ξ ∈ R2,
the divergence operator becomes a time-dependent operator. Namely,

div ω(t) = 0 for any t ≥ 0 ⇔ divτw(τ) = 0 for any τ ≥ 0 , (8)

where
divτw(τ) = ∇τ · w = ∇ξ · wξ + e

τ
2 ∂zwz ,
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and
wξ = (w1, w2)T , ∇ξ = (∂ξ1 , ∂ξ2)

T ,

w =
(
wξ

wz

)
, ∇τ =

(
∇ξ

e
τ
2 ∂z

)
.

Using the same notations, notice that the relation between w and v reads

w(τ) = rotτv(τ) = ∇τ ∧ v(τ) , τ ≥ 0 .

Then, w satisfies the evolution equation

∂τw = Λ(τ)w +N(w)(τ) , divτw(τ) = 0 , (9)

where

Λ(τ) =L+ eτ∂2
z

L =∆ξ +
1
2
ξ · ∇ξ + 1

N(w)(τ) = (w · ∇τ )v − (v · ∇τ )w

=(wξ · ∇ξ)v − (vξ · ∇ξ)w + e
τ
2 (wz∂zv − vz∂zw)

and the velocity field v is given by the Biot-Savart law described in appendix
A. Scaling variables have been previously used to study the evolution of the
vorticity in [1], [4] and [5]. In those articles, the scaling variables are very
convenient as they transformed an autonomous system into another one. Indeed,
in Rn, Navier-Stokes equation is invariant under the scaling transformation

u(x, t) → λu(λx, λ2t) , p(x, t) → λ2p(λx, λ2t) .

In the three-dimensional layer R2× (0, 1), this property is no more satisfied and
the new system (9) in scaling variables is not autonomous. However, as stressed
in the introduction, we shall prove that the asymptotics of (5) are governed by
the two-dimensional Navier-Stokes equation in R2 which is autonomous.

As in the two-dimensional case [5], we shall solve the rescaled vorticity equa-
tion in weighted L2-spaces. For any m ≥ 0, we define the Hilbert space L2(m)
by

L2(m) = {f(ξ, z) : R3 → R3 | f is 1-periodic in z, ‖f‖m <∞} (10)

where

‖f‖m =

(∫
R2×(0,1)

(1 + |ξ|2)m|f(ξ, z)|2dzdξ

) 1
2

= ‖bmf‖L2(R2×(0,1)).

On the contrary to what is usually done on Navier-Stokes equation (see R.
Temam [19]), we do not include the condition of incompressibility in the defin-
ition of function spaces we use. As shown in (8), the divergence-free condition
on ω becomes time-dependent in scaling variables and therefore cannot be taken
into account to define L2(m). However, as this assumption on incompressibility
is crucial, we always mention it in our various theorems.

In appendix C, we show that the time-dependent operator Λ(τ) is the gen-
erator of a family of evolution operators (or evolution system) S(τ, σ) in L2(m)

7



for any m ≥ 0. Since ∂iΛ(τ) = (Λ(τ) + 1
2 )∂i for i = 1 or 2 (where ∂i = ∂ξi

) and
∂zΛ(τ) = Λ(τ)∂z, it is clear that ∂iS(τ, σ) = e

τ−σ
2 S(τ, σ)∂i for all 0 < σ < τ

and i = 1 or 2. Thus, using the fact that divτw(τ) = divτv(τ) = 0, we can
rewrite (9) in integral form:

wi(τ) =S(τ, 0)wi(0) (11)

+
∫ τ

0

 2∑
j=1

e−
τ−σ

2 ∂jS(τ, σ)Mij(σ) + e
σ
2 ∂zS(τ, σ)Mi3(σ)

 dσ

where i = 1, .., 3 and
Mij = wjvi − vjwi.

The main result of this section states that, if the initial data are small, (11) has
global bounded solutions in L2(m).

Theorem 1.1 Let m > 1. There exists K0 > 0 such that, for all initial data
w0 ∈ L2(m) with div w0 = 0 and ‖w0‖m ≤ K0, equation (11) has a unique
global solution w ∈ C0([0,+∞);L2(m)) satisfying w(0) = w0 and for any τ ≥ 0,
divτw(τ) = 0. In addition, there exists K1 > 0 such that

‖w(τ)‖m ≤ K1‖w0‖m , τ ≥ 0. (12)

Proof: Given w0 ∈ L2(m) with div w0 = 0, we shall solve (11) in the Banach
space

X = {w ∈ C0([0,+∞);L2(m)) |divτw(τ) = 0, ‖w‖X = sup
τ≥0

‖w(τ)‖m <∞}.

We first note that τ 7→ S(τ, 0)w0 ∈ X as by proposition C.1.(a) with α = 0, q =
2,m > 1, there exists C1 > 0 such that for any τ ≥ 0,

‖S(τ, 0)w0‖m ≤ C1‖w0‖m. (13)

Next, given w ∈ C0([0,+∞);L2(m)), we define F (w) ∈ C0([0,+∞);L2(m))
coordinate by coordinate. For i = 1, .., 3,

Fi(w)(τ) =
∫ τ

0

 2∑
j=1

e−
τ−σ

2 ∂jS(τ, σ)Mij(σ) + e
σ
2 ∂zS(τ, σ)Mi3(σ)

 dσ, τ ≥ 0.

We shall prove that F maps X into X and that there exists C2 > 0 such that

‖F (w)‖X ≤ C2‖w‖2X , ‖F (w)− F (w′)‖X ≤ C2‖w − w′‖X(‖w‖X + ‖w′‖X),
(14)

for all (w,w′) ∈ X2. As is easily verified, the bounds (13) and (14) imply
that the map w 7→ S(τ, 0)w0 + F (w) has a unique fixed point in the ball {w ∈
X | ‖w‖X ≤ R} if R < (2C2)−1 and ‖w0‖m ≤ (2C1)−1R. Using Gronwall’s
lemma, it is then straightforward to show that this fixed point is actually the
unique solution of (11) in the space C0([0,+∞);L2(m)). Finally, since ‖w‖X ≤
C1‖w0‖m+C2‖w‖2X ≤ C1‖w0‖m+ 1

2‖w‖X , the bound (12) holds withK1 = 2C1.
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To prove (14), we use the bounds on S(τ, σ) proved in appendix C. First,

‖Fi(w)(τ)‖m ≤
∫ τ

0

2∑
j=1

e−
τ−σ

2 ‖∂jS(τ, σ)Mij(σ)‖mdσ

+
∫ τ

0

e
σ
2 ‖∂zS(τ, σ)Mi3(σ)‖mdσ .

The first integral is bounded by proposition C.1(a) with α = (1, 0, 0) or (0, 1, 0),
q = 3

2 and m > 1. The second one is bounded by proposition C.1(b) with
α = (0, 0, 1), q = 3

2 and m > 1. Then, for i = 1, .., 3,

‖Fi(w)(τ)‖m ≤C
∫ τ

0

2∑
j=1

e−
τ−σ

2

a(τ − σ)
2
3 a(eτ − eσ)

1
12
‖bmMij(σ)‖

L
3
2 (R2×(0,1))

dσ

+ C

∫ τ

0

e
σ
2 e−4π2(eτ−eσ)

a(τ − σ)
1
6 a(eτ − eσ)

7
12
‖bmMi3(σ)‖

L
3
2 (R2×(0,1))

dσ .

As a(τ − σ) ≤ a(eτ − eσ), it is clear that∫ τ

0

e−
τ−σ

2

a(τ − σ)
2
3 a(eτ − eσ)

1
12
dσ ≤

∫ ∞

0

e−u/2

a(u)
3
4
du < +∞ (15)

and by appendix D.2 with (α, β, γ, δ) = ( 1
2 , 0,

1
6 ,

7
12 ), we get∫ τ

0

e
σ
2 e−4π2(eτ−eσ)

a(τ − σ)
1
6 a(eτ − eσ)

7
12
dσ ≤ Ce−

τ
3 < +∞ .

Then, we just need to bound ‖bmMij‖
L

3
2 (R2×(0,1))

in terms of ‖w‖2X to get the

first inequality of (14). Using Hölder’s inequality, we get

‖bmwjvi‖
L

3
2 (R2×(0,1))

≤ ‖bmwj‖L2(R2×(0,1))‖vi‖L6(R2×(0,1)).

Dividing vi into two parts as in appendix A, vi = v̄i + ṽi, see (42) and using the
Biot-Savart laws proved in appendix A.4, we get

‖v̄i‖L6(R2) ≤ C‖w̄‖
L

3
2 (R2)

‖ṽi‖L6(R2×(0,1)) ≤ C‖w̃‖L2(R2×(0,1)) .

Finally, by Hlder’s inequality, we have L2(m) ↪→ Lq(R2×(0, 1)) for all q ∈ [1, 2],
m > 1, and the following estimates

‖w̄‖
L

3
2 (R2)

≤ C‖w‖m and ‖w̃‖L2(R2×(0,1)) ≤ C‖w‖m

lead to the conclusion ‖bmwjvi‖
L

3
2 (R2×(0,1))

≤ C‖w‖2m. Then, ‖F (w)‖X ≤
C2‖w‖2X and the second inequality in (14) can be proved along the same lines.
The proof of theorem 1.1 is now complete.

We translate theorem 1.1 in terms of the vorticity ω(x, z, t) in the original
variables:

9



Corollary 1.2 Let m > 1. There exists ε0 > 0 such that for all initial data ω0 ∈
L2(m) with div ω0 = 0 and ‖ω0‖m ≤ ε0, equation (5) has a unique global solution
ω ∈ C0([0,+∞);L2(m)) satisfying ω(0) = ω0 and div ω = 0. In addition, for
any p ∈ [1, 2], there exists ε1 > 0 such that

‖ω(t)‖Lp(R2×(0,1)) ≤
ε1

(1 + t)1−
1
p

‖ω0‖m , t ≥ 0. (16)

Proof: First take ε0 = K0. If ω0 ∈ L2(m) satisfies div ω0 = 0 and ‖ω0‖m ≤ ε0,
the function w0 defined by (7) is in L2(m) for m > 1 and ‖w0‖m ≤ K0. By
theorem 1.1, there exists a unique solution w ∈ C0([0,+∞);L2(m)) to (11) sat-
isfying w(0) = w0 and for any τ ≥ 0, divτw(τ) = 0. Let ω be the corresponding
vorticity defined by (7). Then, as ω(t) ∈ L2(m) and L2(m) ↪→ Lp(R2 × (0, 1))
for p ∈ [1, 2], m > 1,

‖ω(t)‖Lp(R2×(0,1)) = (1 + t)−1+ 1
p ‖w(τ)‖Lp(R2×(0,1))

≤ C(1 + t)−1+ 1
p ‖w(τ)‖m

≤ CK1

(1 + t)1−
1
p

‖w0‖m .

Taking ε1 = CK1 ends the proof of the corollary.
Remark: Due to the embedding L2(m) ↪→ Lp(R2 × (0, 1)) which is true

for p ∈ [1, 2], the proof only holds for this range of p. However, due to the
regularising effect, (16) holds for all p ∈ [1,+∞] if t ≥ 1.

In order to compare these estimates with other known results on Navier-
Stokes, it is worth stating the previous corollary in terms of the physical variables
which appear in equation (1). Define the physical vorticity Ω by

L2

ν
Ω
(
Lx,Lz,

L2

ν
t

)
= ω(x, z, t) , (x, z, t) ∈ R2 × (0, 1)×R+ .

Then, Ω satisfies the vorticity equation associated with (1) and corollary 1.2
states that if L

1
2 ‖(1 + |x|

L )mΩ0‖L2(R2×(0,1)) ≤ ε0ν, then

L2−3/p‖Ω(t)‖Lp(R2×(0,1)) ≤
ε1ν(

1 + νt
L2

)1− 1
p

.

This last inequality clearly shows the influence of the kinematic viscosity ν.
In particular, the smallness assumption of the initial data required in the first
three sections is, in fact, a comparison between the physical vorticity and the
viscosity.

2 First-Order Asymptotics

In this section, we consider the behavior of small solutions of the integral equa-
tion (11) in L2(m) for m > 1. In R̄(L2(m)) where R̄ is defined in (50), the
discrete spectrum of L contains at least a simple isolated eigenvalue λ0 = 0 (see
appendix B.1) with eigenfunction G = (0, 0, G)T where here and in the sequel,
G is the gaussian function:

G(ξ) =
1
4π

exp
(
−|ξ|

2

4

)
, ξ ∈ R2 .

10



Let vG denote the corresponding velocity field, satisfying rot vG = G. Then,

vG(ξ) =
1
2π

e−|ξ|
2/4 − 1
|ξ|2

 ξ2
−ξ1
0

 , ξ = (ξ1, ξ2) ∈ R2 ,

and (vG · ∇)G = (G · ∇)vG = 0. As a consequence, for any α ∈ R, w(ξ, z) =
αG(ξ) is a stationary solution of (9) whose velocity αvG is called Oseen Vortex.
Using these notations and appendix B.3, any solution w of (11) in L2(m) for
m > 1 can be decomposed as

w(ξ, z, τ) = P0w(ξ, z, τ) +Q0w(ξ, z, τ) + R̃w(ξ, z, τ)
≡ α(τ)G(ξ) + q0(ξ, τ) + r(ξ, z, τ) (17)

where the projections P0, Q0, R̃ and the coefficient α are defined in appendix
B by (50, 54, 56). Then, q0 belongs to the subspace W0 of R̄(L2(m)) defined
in (55) which is also the spectral subspace associated with the strictly stable
part of the spectrum of L in R̄(L2(m)). In particular,

∫
R2 q0(ξ, τ)dξ = 0 for all

τ ≥ 0. Moreover,
∫ 1

0
r(ξ, z, τ)dz = 0. Notice that the notations r and w̃ are

equivalent.
As in the two-dimensional case [5], an important property of (11) is the

conservation of mass:

Lemma 2.1 Assume m > 1 and w ∈ C0([0, T ];L2(m)) is a solution of (11).
Then, the coefficient α defined in (54) is constant in time.

Proof: As α(τ) =
∫
R2×(0,1)

w3(ξ, z, τ)dξdz, integrating by parts shows that

α̇(τ) =
∫
R2×(0,1)

(
Lw3 + eτ∂2

zw3 +N(w)3
)
dz dξ

=
∫
R2×(0,1)

(
∇ξ ·

(
∇ξw3 +

1
2
ξw3

)
− v3divτw(τ) + w3divτv(τ)

)
dz dξ

= 0

as w and v are 1-periodic in z and decreasing in ξ at infinity.
In particular, it follows from lemma 2.1 that W0 is invariant under the

evolution defined by (11). The remainder terms q0 and r defined in (17) satisfy
the equations:

∂τq0 = Lq0 +Q0(N(w)) , div q0 = 0 , ξ ∈ R2 , τ > 0 (18)

∂τr = Λ(τ)r + R̃(N(w)) , divτr(τ) = 0 , (ξ, z) ∈ R2 × (0, 1) , τ > 0 (19)

where Q0 and R̃ are the projections defined in (56) and (50). The main result
of this section states that, if the initial data are small, the solution of (11)
converges to the vorticity associated with Oseen Vortex:

Theorem 2.2 Let 0 < µ < 1
2 and m > 1 + 2µ. There exists K ′

0 > 0 such that,
for all initial data w0 ∈ L2(m) with div w0 = 0 and ‖w0‖m ≤ K ′

0, equation (11)
has a unique global solution w ∈ C0([0,+∞);L2(m)) satisfying w(0) = w0 and
for any τ ≥ 0, divτw(τ) = 0. In addition, there exists K2 > 0 such that

‖w(τ)− αG‖m ≤ K2 e
−µτ‖w0‖m , τ ≥ 0 ,

where α =
∫
R2×(0,1)

(w0)3(ξ, z) dz dξ.

11



Remark: In fact, one can show that theorem 2.2 remains true for µ = 1
2 , but

the proof below is limited to µ < 1
2 for technical reasons.

Proof: If w ∈ C0([0,∞);L2(m)) is the solution of (11) given by theorem 1.1
for K ′

0 ≤ K0 and v the corresponding velocity field, we define α, q0 and r as in
(17). By lemma 2.1, α(τ) = α(0) = α for all τ ≥ 0. To bound the remainder q0
and r, we use the integral equations

q0(τ) = eτLq0(0) +
∫ τ

0

e(τ−σ)LQ0(N(w)(σ))dσ , τ ≥ 0, (20)

r(τ) = S(τ, 0)r(0) +
∫ τ

0

S(τ, σ)R̃(N(w)(σ))dσ , τ ≥ 0. (21)

We first easily prove that

‖eτLq0(0)‖m ≤ Ce−µτ‖w0‖m . (22)

Indeed, (22) follows from proposition B.1 with n = 0, α = 0, q = 2 and
ε ∈ (0,m− 1− 2µ).

In the same way, by proposition C.1(b) with α = 0 and q = 2, there exists
C > 0 such that

‖S(τ, 0)r(0)‖m ≤ Ce−4π2eτ

‖w0‖m .

To estimate integrals in (20, 21), we proceed as in the proof of inequalities (14)
in theorem 1.1. However, ‖w(τ)‖m does not converge (in general) to zero and
since we want to prove that w(τ) converges to αG, the above method is not
sufficient to conclude. The right procedure is to bound the integrals in (20, 21)
by ‖q0‖m + ‖r‖m which will converge to zero. Therefore, we first notice that
the non-linearity N = (w · ∇τ )v − (v · ∇τ )w does not contain any terms in α2.
If we decompose w as αG + q0 + r and v as αvG + vq + vr where vq and vr

are the velocities associated via the Biot-Savart law to the vorticities q0 and r
respectively, N can be written as:

N =α2
(
(G · ∇τ )vG − (vG · ∇τ )G

)
+ α ((G · ∇τ )(vq + vr)− ((vq + vr) · ∇τ )G)

+ α
(
((q0 + r) · ∇τ )vG − (vG · ∇τ )(q0 + r)

)
+ ((q0 + r) · ∇τ )(vq + vr)− ((vq + vr) · ∇τ )(q0 + r) .

Since (G · ∇τ )vG = (vG · ∇τ )G = 0, N depends linearly on α. Then, for
i = 1, .., 3,

Ni =
2∑

j=1

∂jM̂ij + e
τ
2 ∂zM̂i3

where for (i, j) ∈ {1, .., 3}2,

M̂ij =α(Gj(v
q
i + vr

i )−Gi(v
q
j + vr

j) + vG
i (q0j + rj)− vG

j (q0i + ri))

+ (q0j + rj)(v
q
i + vr

i )− (q0i + ri)(v
q
j + vr

j) .
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As
∫
R2 q0(ξ, τ)dξ =

∫ 1

0
r(ξ, z, τ)dz = 0,

Q0(N(w)(σ)) =
∫ 1

0

N(w)dz =

 2∑
j=1

∂j

∫ 1

0

M̂ij dz


i=1,..,3

R̃(N(w)(σ)) =

 2∑
j=1

(
∂jM̂ij − ∂j

∫ 1

0

M̂ij dz

)
+ e

σ
2 ∂zM̂i3


i=1,..,3

Easily, we find for i = 1, .., 3,

e(τ−σ)LQ0(N(w))i =
2∑

j=1

e−
τ−σ

2 e(τ−σ)L
∫ 1

0

M̂ijdz ,

S(τ, σ)R̃(N(w))i =
2∑

j=1

e−
τ−σ

2 ∂jS(τ, σ)R̃(M̂ij) + e
σ
2 ∂zS(τ, σ)M̂i3 .

Noticing that by Jensen’s inequality,

‖bm
∫ 1

0

M̂ijdz‖
L

3
2 (R2)

≤ ‖bmM̂ij‖
L

3
2 (R2×(0,1))

,

we obtain as in theorem 1.1:

‖e(τ−σ)LQ0(N)‖m ≤ C
∑

(i,j)∈I

e−
τ−σ

2

a(τ − σ)
2
3 a(eτ − eσ)

1
12
‖bmM̂ij‖

L
3
2 (R2×(0,1))

‖S(τ, σ)R̃(N)‖m ≤ C
∑

(i,j)∈I

e−
τ−σ

2 e−4π2(eτ−eσ)

a(τ − σ)
2
3 a(eτ − eσ)

1
12
‖bmM̂ij‖

L
3
2 (R2×(0,1))

+ C
3∑

i=1

e
σ
2 e−4π2(eτ−eσ)

a(τ − σ)
1
6 a(eτ − eσ)

7
12
‖bmM̂i3‖

L
3
2 (R2×(0,1))

where I = {1, 2, 3} × {1, 2}. Next, proceeding as in theorem 1.1, by Hölder’s
inequality and Biot-Savart law,

‖bmM̂ij‖
L

3
2
≤α

(
‖bmGj(v

q
i + vr

i )‖L
3
2

+ ‖bmGi(v
q
j + vr

j)‖L
3
2

)
+ α

(
‖bmvG

j (q0i + ri)‖
L

3
2

+ ‖bmvG
i (q0j + rj)‖

L
3
2

)
+ ‖bm(q0j + rj)(v

q
i + vr

i )‖L
3
2

+ ‖bm(q0i + ri)(v
q
j + vr

j)‖L
3
2

≤C(w)(‖q0‖m + ‖r‖m)

where C(w) = 2C(2α‖G‖m + ‖q0 + r‖m). Then, by theorem 1.1, |C(w)| ≤
C0‖w‖m ≤ C0K1‖w0‖m and |C(w)| can be taken as small as we want by choice
of appropriate initial data w0.

Finally, denoting f(τ) = eµτ (‖q0(τ)‖m + ‖r(τ)‖m), we get

f(τ) ≤ C‖w0‖m

+ CC(w)
∫ τ

0

(
e(µ−

1
2 )(τ−σ)

a(τ − σ)
2
3 a(eτ − eσ)

1
12

+
e

σ
2 eµ(τ−σ)e−4π2(eτ−eσ)

a(τ − σ)
1
6 a(eτ − eσ)

7
12

)
f(σ)dσ.
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As 0 < µ < 1/2 and m > 1 + 2µ, the first part of the integral is bounded as in
(15) and the second one by appendix D.2 with (α, β, γ, δ) = (1

2 , µ,
1
6 ,

7
12 ) there

exist positive constants C1, C2 such that for any T > 0,

‖f‖L∞(0,T ) ≤ C1‖w0‖m + C2C(w)‖f‖L∞(0,T ).

Taking K ′
0 > 0 such that |C2C(w)| ≤ C0C2K1K

′
0 ≤ 1/2, we get

‖f‖L∞(0,T ) ≤ 2C1‖w0‖m.

Then, for any τ ≥ 0,

‖w(τ)− αG‖m ≤ 2C1‖w0‖me
−µτ .

Then K2 = 2C1 and the proof of theorem 2.2 is complete.
Finally, we translate theorem 2.2 in terms of the vorticity ω(x, z, t) in the

original variables:

Corollary 2.3 Let 0 < µ < 1/2 and m > 1+2µ. There exists ε′0 > 0 such that
for all initial data ω0 ∈ L2(m) with div ω0 = 0 and ‖ω0‖m ≤ ε′0, equation (5)
has a unique global solution ω ∈ C0([0,+∞);L2(m)) satisfying ω(0) = ω0 and
div ω = 0. In addition, for any p ∈ [1, 2], there exists ε2 > 0 such that

‖ω(t)− ωapp(t)‖Lp(R2×(0,1)) ≤
ε2

(1 + t)1−
1
p +µ

‖ω0‖m , t ≥ 0 ,

where ωapp(x, z, t) = α
(1+t)G

(
x√
1+t

)
and α =

∫
R2×(0,1)

(ω0)3dzdx.

3 Second-Order Asymptotics

We now turn our attention to solutions of the integral equation (11) of finite
energy, namely when v(τ) is in L2(R2 × (0, 1)) for any τ ≥ 0. This case can be
also characterized by the vorticity since v(τ) ∈ L2(R2 × (0, 1)) is equivalent to
α =

∫
R2×(0,1)

w3(ξ, z, τ)dξdz = 0 . We showed in section 2 that small solutions
of (11) converge to αG when τ goes to infinity and we want to precise this
behavior when α = 0. We study the asymptotics in L2(m) for m > 2. In
appendix B.1, we prove that, in R̄(L2(m)), the discrete spectrum of L contains
at least a simple isolated eigenvalue λ0 = 0 with eigenfunction G and another
isolated eigenvalue λ1 = − 1

2 of multiplicity 3 with eigenfunctions defined in
appendix B.1:

F1 =

 0
0
F1

 ; F2 =

 0
0
F2

 ; F3 =

 −F2

F1

0

 .

Using these notations and appendix B.3, any solution w of (11) in L2(m) can
be decomposed as

w(ξ, z, τ) = P1w(ξ, z, τ) +Q1w(ξ, z, τ) + R̃w(ξ, z, τ) (23)

≡ α(τ)G(ξ) +
3∑

i=1

βi(τ)Fi(ξ) + q1(ξ, τ) + r(ξ, z, τ)
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where the projections P1, Q1, R̃ and the coefficients α, βi are defined in B by
(50, 54, 56). We recall that

α(τ) =
∫
R2×(0,1)

w3(ξ, z, τ)dξdz

β1(τ) =
∫
R2×(0,1)

ξ1w3(ξ, z, τ)dξdz

β2(τ) =
∫
R2×(0,1)

ξ2w3(ξ, z, τ)dξdz

β3(τ) =
∫
R2×(0,1)

1
2

(ξ1w2(ξ, z, τ)− ξ2w1(ξ, z, τ)) dξdz .

Then, q1 belongs to the subspace W1 of R̄(L2(m)) defined in (55) which is also
the spectral subspace associated with the remainder part of the spectrum σ(L)
in R̄(L2(m)). In particular,∫

R2
q1(ξ, τ)dξ = 0 ,

∫
R2
ξ1q1(ξ, τ)dξ = 0 ,

∫
R2
ξ2q1(ξ, τ)dξ = 0 .

Moreover,
∫ 1

0
r(ξ, z, τ) dz = 0 for all τ ≥ 0.

The coefficients (βi)i=1,..,3 satisfy very simple ODE’s:

Lemma 3.1 Assume m > 2 and let w ∈ C0([0, T ], L2(m)) be a solution of (11)
such that α = 0. Then, the coefficients (βi)i=1,..,3 defined by (54) satisfy

β̇i(τ) = −1
2
βi(τ) , τ ∈ [0, T ] .

Proof: We write the proof for i = 1. The two other cases can be proved along
the same lines, even for β3(τ) which is defined in a slightly different way.

β̇1(τ) =
∫
R2×(0,1)

ξ1

Lw3 +
2∑

j=1

∂j(wjv3 − vjw3)

 dz dξ (24)

as w and v are periodic in z. Since divτv(τ) = divτw(τ) = 0 and rotτv(τ) =
w(τ), we find the identities

ξ1Lw3 +
1
2
ξ1w3 = ∂1(ξ1∂1w3 +

1
2
ξ21w3 − w3) + ∂2(ξ1∂2w3 +

1
2
ξ1ξ2w3)∫

R2×(0,1)

ξ1

2∑
j=1

∂j(wjv3 − vjw3) dz dξ = −
∫
R2×(0,1)

∂2

(
v2
1 + v2

3 − v2
2

2

)
dz dξ .

This last equality requires integrations by parts and the fact that v is in L2(R2×
(0, 1)). Then, β̇1(τ) = − 1

2β1(τ).
In particular, it follows from lemma 3.1 that the subspace W1 is invariant

under the evolution defined by (11). The remainder q1 and r in (23) satisfy the
equations:

∂τq1 = Lq1 +Q1(N(w)) , div q1 = 0 , ξ ∈ R2 , τ ≥ 0

∂τr = Λ(τ)r + R̃(N(w)) , divτr(τ) = 0 , (ξ, z) ∈ R2 × (0, 1), τ ≥ 0

where Q1 and R̃ are defined in (56) and (50). The following result describes the
second order asymptotics of w(τ) as τ goes to infinity if v is of finite energy.
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Theorem 3.2 Let 1
2 < ν < 1, m > 1 + 2ν. There exists K ′′

0 > 0 such that, for
all initial data w0 ∈ L2(m) with div w0 = 0,

∫
R2×(0,1)

w0dξdz = 0 and ‖w0‖m ≤
K ′′

0 , equation (11) has a unique global solution w ∈ C0([0,+∞);L2(m)) satisfy-
ing w(0) = w0 and for any τ ≥ 0, divτw(τ) = 0,

∫
R2×(0,1)

w(ξ, z, τ)dξdz = 0.
In addition, there exists K3 > 0 such that

‖w(τ)−
3∑

i=1

βiFie
− τ

2 ‖m ≤ K3 e
−ντ‖w0‖m , τ ≥ 0 ,

where

β1 =
∫
R2×(0,1)

ξ1(w0)3(ξ, z) dz dξ ,

β2 =
∫
R2×(0,1)

ξ2(w0)3(ξ, z) dz dξ ,

β3 =
∫
R2×(0,1)

1
2
(ξ1(w0)2 − ξ2(w0)1)(ξ, z) dz dξ .

Proof: If w ∈ C0([0,∞);L2(m)) is the solution of (11) given by theorem 1.1 for
K ′′

0 ≤ K0 and v the corresponding velocity field, we define α(τ), βi(τ), q1 and
r as in (54) and (23). By lemma 2.1, α(τ) = α(0) = 0 and v is of finite energy
for any time. By lemma 3.1, β̇i(τ) = − 1

2βi(τ) for τ ≥ 0 and i = 1, .., 3. Then,
βi(τ) = e−τ/2βi where βi = βi(0) . To bound the remainder terms q1 and r, we
use the integral equations

q1(τ) = eτLq1(0) +
∫ τ

0

e(τ−σ)LQ1(N(w)(σ))dσ , τ ≥ 0, (25)

r(τ) = S(τ, 0)r(0) +
∫ τ

0

S(τ, σ)R̃(N(w)(σ))dσ , τ ≥ 0.

As far as q1 is concerned, we bound ‖q1‖m in three steps.
First step: We easily prove that

‖eτLq1(0)‖m ≤ Ce−ντ‖w0‖m . (26)

Indeed, (26) follows from proposition B.1 with n = 1, q = 2, α = 0 and
ε ∈ (0,m− 1− 2ν).

Second step: To bound the integral term in (25), we notice that the moments
up to order 1 of N are zero and

Q1(N(w)) = Q0(N(w)) =
∫ 1

0

N(w)dz =

 2∑
j=1

∫ 1

0

∂jMijdz


i=1,..,3

.

We cut (25) into two integrals between 0 and τ − 1 and between τ − 1 and τ
in order to obtain an optimal decay rate in time. The first term is bounded by
proposition B.1 with n = 1, q = 2, α = 0, ε > 0, m ∈ (2, 3] and another time
with n = −1, q = 3

2 , α = (1, 0, 0) or (0, 1, 0), ε > 0, and by Jensen’s inequality.
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We then get

‖
∫ τ−1

0

e(τ−σ)LQ1(N(w))dσ‖m = ‖
∫ τ−1

0

e(τ−σ−1)LQ1e
LQ1(N(w))dσ‖m

≤ C

∫ τ−1

0

e
τ−σ−1

2 (1−m+ε)‖eLQ1N(w)‖mdσ

≤ C

∫ τ−1

0

e
τ−σ−1

2 (1−m+ε)
∑

(i,j)∈I

‖∂je
L− 1

2

∫ 1

0

Mijdz‖mdσ

≤ C

∫ τ−1

0

e
τ−σ

2 (1−m+ε)‖w(σ)‖2mdσ ,

where I = {1, 2, 3} × {1, 2}. According to theorem 2.2, for 0 < µ < 1/2 and
m > 1 + 2µ, ‖w(σ)‖m ≤ K2e

−µσ‖w0‖m. The previous term is then bounded by

CK2
2‖w0‖2me−2µτ

∫ τ

1

e
u
2 (1−m+ε+4µ)du .

Taking ν = 2µ, m > 1 + 2ν and ε ∈ (0,m − 1 − 2ν), the second step leads to
the following estimate

‖
∫ τ−1

0

e(τ−σ)LQ1N(w)dσ‖m ≤ Ce−ντ‖w0‖2m . (27)

The same arguments are still valid when m > 3 and proposition B.1 with n = 1
and γ = 1 leads to estimate (27) for 1

2 < ν < 1.
Thrid step: In a similar way, the third step can be driven as follows

‖
∫ τ

τ−1

e(τ−σ)LQ1N(w)dσ‖m ≤ C

∫ τ

τ−1

e−
τ−σ

2

∑
(i,j)∈I

‖∂je
(τ−σ)L

∫ 1

0

Mijdz‖mdσ

≤ C

∫ τ

τ−1

e−
τ−σ

2

a(τ − σ)
2
3
‖w(σ)‖2mdσ

≤ CK2
2‖w0‖2me−2µτ

∫ 1

0

e−
u
2 (1−4µ)

a(u)
2
3

du

≤ Ce−ντ‖w0‖2m . (28)

It is clear that the previous bound would not have been sharp for the interval
(0, τ) as 1− 4µ < 0.

Joining inequalities (26, 27) and (28), we prove that for ν ∈ ( 1
2 , 1) and

m > 1 + 2ν, there exists C0 > 0 such that for any τ ≥ 0,

‖q1(τ)‖m ≤ C0e
−ντ‖w0‖m .

To turn to the bound of ‖r(τ)‖m, we refer to the proof of theorem 2.2 and the
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previous result on the decreasing of ‖q1(τ)‖m:

‖r(τ)‖m ≤Ce−4π2eτ

‖w0‖m

+ C(w)
∫ τ

0

e−
τ−σ

2 e−4π2(eτ−eσ)

a(τ − σ)
2
3 a(eτ − eσ)

1
12

(
e−νσ‖w0‖m + ‖r(σ)‖m

)
dσ

+ C(w)
∫ τ

0

e
σ
2 e−4π2(eτ−eσ)

a(τ − σ)
1
6 a(eτ − eσ)

7
12

(
e−νσ‖w0‖m + ‖r(σ)‖m

)
dσ

≤ Ce−ντ‖w0‖m + CC(w)
∫ τ

0

φ(τ, σ)‖r(σ)‖mdσ .

The last inequality is obtained by appendix D.2 with (α, β, γ, δ) equal to (0, ν−
1
2 ,

2
3 ,

1
12 ) and ( 1

2 , ν,
1
6 ,

7
12 ). Moreover,

∫ τ

0
φ(τ, σ)eν(τ−σ)dσ can be bounded in-

dependtly of τ by appendix D.2 with (α, β, γ, δ) equal to (0, ν − 1
2 ,

2
3 ,

1
12 ) or

( 1
2 , ν,

1
6 ,

7
12 ). Denote f(τ) = eντ‖r(τ)‖m. There exist positive constants C1, C2

such that for any T > 0,

‖f‖L∞(0,T ) ≤ C1‖w0‖m + C2C(w)‖f‖L∞(0,T ) .

Since C(w) can be taken as small as we want by choice of appropriate initial
data, we take K ′′

0 such that |C2C(w)| < 1
2 . Then,

‖r(τ)‖m ≤ 2C1e
−ντ‖w0‖m

and taking K3 = C0 + 2C1 ends the proof of theorem 3.2.
We now translate this second asymptotics theorem in terms of the original

variables:

Corollary 3.3 Let 1
2 < ν < 1 and m > 1 + 2ν. There exists ε′′0 > 0 such

that for all initial data ω0 ∈ L2(m) with div ω0 = 0,
∫
R2×(0,1)

ω0dzdx = 0 and
‖ω0‖m ≤ ε′′0 , equation (5) has a unique global solution ω ∈ C0([0,+∞);L2(m))
satisfying ω(0) = ω0 and for any t ≥ 0, div ω(t) = 0 and

∫
R2×(0,1)

ω(t)dzdx = 0.
Moreover, for any p ∈ [1, 2], there exists ε3 > 0 such that

‖ω(t)− ωapp(t)‖Lp(R2×(0,1)) ≤
ε3

(1 + t)1−
1
p +ν

‖ω0‖m , t ≥ 0

where

ωapp(t) =
3∑

i=1

βi

(1 + t)3/2
Fi

(
x√

1 + t

)
β1 =

∫
R2×(0,1)

x1(ω0)3dzdx

β2 =
∫
R2×(0,1)

x2(ω0)3dzdx

β3 =
∫
R2×(0,1)

1
2
(x1(ω0)2 − x2(ω0)1)dzdx .
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4 Global Convergence

We adopt in this section a more general point of view. We are still interested
in the asymptotics of bounded global solutions of the integral equation (11)
together with periodic boundary conditions (3) but we relax the assumption of
smallness of the initial data. Of course, in this more general case, we do not
know how to show existence of solutions. However, as w = αG is such a global
bounded solution, we may assume that there exist some of them. Under this
assumption, we prove, following [7], that the result of the second section can
be generalised. Indeed, the asymptotics of such solutions are still governed by
Oseen vortices. The main result of this section can be stated as follows:

Theorem 4.1 Let m > 1 and w ∈ C0([0,+∞);L2(m)) be a global solution of
(11) that is uniformly bounded in time in L2(m). Then,

lim
τ→+∞

‖w(τ)− αG‖m = 0 ,

where α =
∫
R2×(0,1)

w3(ξ, z, 0)dzdξ.

Proof : As the proof of this theorem is quite long, we cut it in six lemmas and
corollaries. The main idea is to study the ω-limit set of the trajectory {w(τ)}τ≥0

and to prove that its elements are two-dimensional (i.e. independent of z). We
are then able to use the result of [7] where it is shown that Oseen vortices are
global attractors of any solution of the two-dimensional Navier-Stokes equation
with initial conditions in L2

2D(m), (see appendix B). Finally, using a Lyapunov
function, we prove that the ω-limit set of {w(τ)}τ≥0 is actually reduced to one
element: αG. Let us begin with the following lemma:

Lemma 4.2 Let w ∈ C0([0,+∞);L2(m)) be as in theorem 4.1. Then, there
exist positive constants K0,K1 such that

‖w(τ)‖m ≤ K0 , τ ≥ 0 (29)
‖∇w(τ)‖m ≤ K1 , τ ≥ 1 . (30)

Proof of lemma 4.2: Inequality (29) holds by assumptions. Regarding inequality
(30), we proceed as in lemma 2.1 in [7].

Since m > 1, we decompose the solution w with the spectral projection P0

defined in appendix B.3 by (54):

w(τ) = α(τ)G + f(ξ, z, τ)

where α(τ) =
∫
R2×(0,1)

w3(ξ, z, τ)dz dξ so that P0f = 0. Then, as shown in
lemma 2.1, α̇(τ) = 0 and f satisfies the following equation

∂τf = Λ(τ)f + (Q0 + R̃)N(w)(τ) ,

which can be also written in its integral form

f(τ) = S(τ, 0)f(0) +
∫ τ

0

S(τ, σ)(Q0 + R̃)N(w)(σ)dσ ≡ F1(τ) + F2(τ) , (31)

where the projection R̃ is defined in (50).
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Lemma 4.3 Let F1 and F2 be defined as in (31). There exist positive constants
γ, C,K2 such that

‖F1(τ)‖m ≤ Ce−γτ‖w(0)‖m , τ ≥ 0 (32)
‖F2(τ)‖m+1 ≤ K2 , τ ≥ 0 (33)

‖∇F2(τ)‖m+1 ≤ K2 , τ ≥ 1 (34)

Proof of lemma 4.3: Inequality (32) is an easy consequence of propositions C.1
and B.1. Indeed, F1(τ) = eτLQ0w(0)+S(τ, 0)R̃w(0). The first term is bounded
by proposition B.1 with n = 0, q = 2 and α = 0. The second one is bounded by
proposition C.1(b) with α = 0 and q = 2. To prove (33), notice as in section 2
that for i = 1, .., 3,

(Q0 + R̃)N(w)(σ)i =
2∑

j=1

∂jM̂ij + e
σ
2 ∂zM̂i3

where for (i, j) ∈ {1, .., 3}2 and vf the velocity corresponding to f

M̂ij = α
(
Gjv

f
i −Giv

f
j + fjv

G
i − fiv

G
j

)
+ fjv

f
i − fiv

f
j .

Then, using proposition C.1 for q ∈ ( 6
5 , 2], we get

‖F2(τ)‖m+1 ≤ C

∫ τ

0

∑
(i,j)∈I

e−
τ−σ

2

a(τ − σ)
1
q a(eτ − eσ)

1
2 ( 1

q−
1
2 )
‖bm+1M̂ij‖Lqdσ

+ C

∫ τ

0

3∑
i=1

e
σ
2 e−4π2(eτ−eσ)

a(τ − σ)
1
q−

1
2 a(eτ − eσ)

1
2+ 1

2 ( 1
q−

1
2 )
‖bm+1M̂i3‖Lqdσ

where I = {1, 2, 3} × {1, 2}. Bounding ‖bm+1M̂ij‖Lq is slightly different from
what we did before. Indeed, for any (i, j) ∈ {1, .., 3}2, using Hölder’s inequality
and the Biot-Savart law, we get for q = 3

2

‖bm+1αGjv
f
i ‖L

3
2 (R2×(0,1))

≤ C|α|‖G‖m+1‖vf‖L6(R2×(0,1))

≤ C|α|‖G‖m+1

(
‖f̃‖L2(R2×(0,1)) + ‖f̄‖

L
3
2 (R2)

)
≤ C|α|‖G‖m+1‖f‖m ≤ C|α|‖G‖m+1K0 .

Notice that f̃ and f̄ are the usual notations defined in appendix A. More easily,
for q = 2,

‖bm+1αvG
i fj‖L2(R2×(0,1)) ≤ C|α|‖f‖m‖bvG‖L∞ ≤ C|α|‖bvG‖L∞K0 .

The last bound uses the idea that, since f has mean value zero, quantities like
vff decay a little bit faster at infinity than f itself. Using Hölder’s inequality
and splitting vf as in appendix A, we first get for (i, j) ∈ {1, .., 3}2

‖bm+1fiv
f
j ‖Lq(R2×(0,1)) ≤ C‖bmf‖L2(R2×(0,1))‖bvf‖

L
2q

2−q (R2×(0,1))

≤ C‖f‖m

(
‖bv̄f‖

L
2q

2−q (R2)
+ ‖bṽf‖

L
2q

2−q (R2×(0,1))

)
.
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As far as the first part, independent of z, is concerned, we use proposition B.1
in [5]. For q = 2

m and m ∈ (1, 2), we get

‖bv̄f‖
L

2q
2−q (R2)

≤ ‖bv̄f
3 ‖

L
2q

2−q (R2)
+
∥∥∥∥b( v̄f

1

v̄f
2

)∥∥∥∥
L

2q
2−q (R2)

≤ C

(∥∥∥∥bm( f̄1
f̄2

)∥∥∥∥
L2(R2)

+ ‖bmf̄3‖L2(R2)

)
≤ C‖f‖m .

For m greater than 2, the embedding L2(m) ↪→ L2(m′) for m ≤ m′ leads to the
same conclusion.

For the second part, the Biot-Savart law A.2 helps to conclude for q ∈ ( 6
5 ; 3

2 ]
and m > 1,

‖bṽf‖
L

2q
2−q (R2×(0,1))

≤ ‖bṽf‖H1(R2×(0,1)) ≤ C‖ṽf‖H1(1)

≤ C‖f̃‖L2(1) ≤ C‖f̃‖m ≤ C‖f‖m .

Finally, ‖bm+1fiv
f
j ‖Lq(R2×(0,1)) ≤ C‖f‖2m ≤ CK2

0 .
Collecting information from the last three steps where we used different

values of q for the different terms and using appendix D.2, we get inequality
(33) for τ ≥ 0. Once more, (34) is due to the regularizing effect and we omit
the details.

Corollary 4.4 Let w ∈ C0([0,+∞);L2(m)) be as in theorem 4.1. Then, the
trajectory {w(τ)}τ≥0 is relatively compact in L2(m).

Proof of corollary 4.4: We write, as in lemma 4.2, w = αG + F1 + F2. Observe
that, by Rellich’s criterion (see [13]), the embedding of H1(m + 1) into L2(m)
is compact. Since F1(τ) converges to zero and F2(τ) is bounded in H1(m+ 1)
for τ ≥ 1, we conclude that {w(τ)}τ≥0 is relatively compact in L2(m).

Let m > 1 and w ∈ C0([0;+∞);L2(m)) be a global solution of (11) that is
uniformly bounded in time in L2(m). Let Ω ⊂ L2(m) denote the ω-limit set
of this trajectory. By corollary 4.4, we know that Ω is nonempty, compact and
connected. By lemma 4.3, Ω is also bounded in H1(m + 1). By a bootstrap
argument, we see that Ω is bounded in H1(m′) for all m′ > 1.

Lemma 4.5 Let w ∈ C0([0,+∞);L2(m)) be as in theorem 4.1. Let Ω be the ω-
limit set of {w(τ)}τ≥0. Then, the elements of Ω are independent of z. Namely,
R̃(Ω) = {0}.

Proof of lemma 4.5: Let w ∈ C0([0,+∞);L2(m)) be a solution of (11) that is
uniformly bounded in time in L2(m). We decompose w as in appendix A:

w(ξ, z, τ) = w̄(ξ, τ) + r(ξ, z, τ)

where R̃r = r for any τ ≥ 0. Then, r satisfies the evolution equation

∂τr = Λ(τ)r + R̃(N(w)(τ)) , τ ≥ 0
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which can be written in the integral form:

r(τ) = S(τ, 0)r(0) +
∫ τ

0

S(τ, σ)R̃(N(w)(σ))dσ ,

see (19) and (21). Since for i = 1, .., 3,

R̃(N(w))i =
2∑

j=1

∂jR̃(Mij) + e
σ
2 ∂zMi3

where Mij = w̄jv
r
i −vr

j w̄i + rj v̄i− v̄jri + rjv
r
i −vr

j ri, we get by proposition C.1,

‖r(τ)‖m ≤Ce−4π2eτ

‖w0‖m

+ C

∫ τ

0

(
e−

τ−σ
2 e−4π2(eτ−eσ)

a(τ − σ)
2
3 a(eτ − eσ)

1
12

+
e

σ
2 e−4π2(eτ−eσ)

a(τ − σ)
1
6 a(eτ − eσ)

7
12

)
dσ

as ‖w(σ)‖m is uniformly bounded in time. According to appendix D.2 with
(α, β, γ, δ) equal to (0, 0, 2

3 ,
1
12 ) or ( 1

2 , 0,
1
6 ,

7
12 ), this integral can be uniformly

bounded in time and
‖r(τ)‖m ≤ Ce−

τ
3 , τ ≥ 0 . (35)

Obviously, lim
τ→+∞

‖w(τ)−w̄(τ)‖m = 0 and the ω-limit set Ω is made of functions

independent of z. This ends the proof of lemma 4.5.

Lemma 4.6 Let w ∈ C0([0,+∞);L2(m)) be as in theorem 4.1. Let Ω be the ω-
limit set of {w(τ)}τ≥0. Then, Ω is totally invariant under the evolution defined
by the autonomous system

∂τ ŵ = Lŵ + (ŵ · ∇ξ v̂ − v̂ · ∇ξŵ) , τ ≥ 0 , (36)

where ∇ξ = (∂ξ1 , ∂ξ2 , 0)T , ŵ(ξ, τ) : R2 ×R+ → R3 and v̂ is given in terms of
ŵ via the Biot-Savart law in appendix A.

Remark: If the initial condition ŵ0 is independent of z, this property is
preserved by (36) and (36) is nothing but equation (9) applied to functions
independent of z.

Proof of lemma 4.6: Denote S2D(τ) the dynamical system associated with
(36). Then, any solution ŵ(τ) of (36) with initial data ŵ0 is given by S2D(τ)ŵ0.
We observe that

S2D(τ)ŵ0 = eτLŵ0 +
∫ τ

0

e(τ−σ)LN̂(S2D(σ)ŵ0)dσ (37)

where N̂(ŵ) = (ŵ · ∇ξ)v̂ − (v̂ · ∇ξ)ŵ. We devide this proof in two steps. First,
we prove that Ω is positively invariant (i.e S2D(τ)Ω ⊂ Ω) and then, that Ω
is included in S2D(τ)Ω. Thus, we prove that Ω is totally invariant under the
evolution defined by (36).

First step: Let ŵ0 ∈ Ω and T > 0. We shall prove that S2D(τ)ŵ0 ∈ Ω for
τ ∈ [0, T ]. By lemma 4.5, ŵ0 is independent of z and there exists (τn)n∈N such
that lim

n→+∞
τn = +∞ and lim

n→+∞
‖w(τn)− ŵ0‖m = 0. The idea is to show that
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w(τ +τn) converges to S2D(τ)ŵ0 as n goes to infinity. Therefore, we decompose
w(τ + τn) as in appendix A,

w(τ + τn) = w̄(τ + τn) + w̃(τ + τn) ≡ w̄n(τ) + w̃n(τ) ,

and we shall prove that

‖w̃n(τ)‖m ≤ Ce−
τ+τn

3 , (38)

‖w̄n(τ)− S2D(τ)ŵ0‖m ≤ Cε(n) + C

∫ τ

0

‖w̄n(σ)− S2D(σ)ŵ0‖mdσ . (39)

where ε(n) goes to zero when n goes to infinity. As easily verified, (38, 39) and
Gronwall’s lemma show that

lim
n→+∞

‖w(τ + τn)− S2D(τ)ŵ0‖m = 0 .

Hence, S2D(τ)ŵ0 ∈ Ω and Ω is positively invariant.
To prove (38, 39), notice that (38) is a consequence of (35) while (39) is

obtained by combining two integral equations. Indeed, (37) and

w̄n(τ) = eτLw̄n(0) +
∫ τ

0

e(τ−σ)LR̄N(w)(τn + σ)dσ

lead to the following equality

w̄n(τ)− S2D(τ)ŵ0 =eτL(w̄n(0)− ŵ0)

+
∫ τ

0

e(τ−σ)L
(
R̄N(w)(τn + σ)− N̂(S2D(σ)ŵ0)

)
dσ

where

R̄N(w)(τn + σ) = N(w̄n)(σ) + R̄N(w̃n)(σ)

= N(w̄n)(σ) +

 2∑
j=1

∂j

∫ 1

0

M̃ijdz


i=1,..,3

and M̃ij = w̃j ṽi−ṽjw̃i. Using proposition B.1, Jensen’s and Hölder’s inequalities
and the Biot-Savart law, we get for q ∈ (1, 2)

‖e(τ−σ)LR̄N(w̃n)(σ)‖m ≤ C
e−

τ−σ
2

a(τ − σ)
1
q

‖w̃n‖m‖ṽn‖
L

2q
2−q (R2×(0,1))

≤ C
e−

τ−σ
2

a(τ − σ)
1
q

‖w̃n(σ)‖2m .

Finally,

‖
∫ τ

0

e(τ−σ)LR̄N(w̃n)(σ)dσ‖m ≤ Ce−
2τn
3 .

Then,

w̄n(τ)−S2D(τ)ŵ0 = ε(n) + eτL(w̄n(0)− ŵ0)

+
∫ τ

0

e(τ−σ)L
(
N(w̄n)(σ)− N̂(S2D(σ)ŵ0)

)
dσ
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where ε(n) converges to zero when n goes to infinity. Using proposition B.1
to bound eτL(w̄n(0) − ŵ0) and inequality (14) to bound the integral term, we
obtain (39).

Second step: Let ŵ0 ∈ Ω. There exists (τn)n∈N such that lim
n→+∞

τn = +∞
and lim

n→+∞
‖w(τn)−ŵ0‖m = 0. Let T > 0. We should prove that ŵ0 ∈ S2D(T )Ω.

As {w(τ)}τ≥0 is relatively compact, (w(τn − T ))n∈N converges towards an ele-
ment of Ω denoted ŵ−T . According to the first step, w(τn) converges in L2(m) to
S2D(T )ŵ−T . By the uniqueness of such a limit, ŵ0 = S2D(T )ŵ−T ∈ S2D(T )Ω.
This ends the proof of lemma 4.6.

Lemma 4.7 Let w ∈ C0([0,+∞);L2(m)) be as in theorem 4.1. Let Ω be the
ω-limit set of {w(τ)}τ≥0. Then, Ω = {αG}, α =

∫
R2×(0,1)

w3(ξ, z, 0)dξdz.

Proof of lemma 4.7: Let ŵ0 ∈ Ω. As Ω is totally invariant under the evolu-
tion defined by (36), there exists a complete trajectory of (36) in Ω denoted
{ŵ(τ)}τ∈R satisfying ŵ(0) = ŵ0. As Ω is compact, ŵ(τ) is uniformly bounded
in time in L2(m) and by lemma 4.5, it is independent of z. As in appendix
A.1, the trajectory divides itself into two independent systems (ŵ3, v̂1, v̂2) and
(ŵ1, ŵ2, v̂3).

As far as the first system is concerned, {ŵ3(τ)} is a complete trajectory
bounded in L2

2D(m) for the evolution studied in [5]. Then, by lemma 3.3 in [7],

ŵ3(τ) = αG and (v̂1, v̂2) = α(vG
1 , v

G
2 )

where α =
∫
R2×(0,1)

w3(ξ, z, 0)dzdξ. For the second system, we look at the
velocity v̂3 which satisfies

∂τ v̂3(τ) +
(
vG
1 ∂1 + vG

2 ∂2

)
v̂3(τ) = (L − 1

2
)v̂3(τ) .

Since ŵ ∈ L2(m), m > 1, by lemma A.5, v̂3 ∈ L2(R2) and

1
2
d

dt
‖v̂3‖2L2(R2) = −

∫
R2
|∇v̂3|2dξ ≤ 0 .

Consider Φ(ŵ) =
∫
R2 |v̂3(ξ)|2dξ. Then, Φ is a Lyapunov function for the semi-

flow defined by (36). More precisely, Φ is strictly decreasing along the trajecto-
ries of (36), except along the subset {ŵ ∈ L2(m) | v̂3 = 0} where Φ is constant.
By LaSalle’s invariance principle, the ω-limit and the α-limit sets of this tra-
jectory are contained in the set {ŵ ∈ L2(m) | v̂3 = 0}. As Φ must be strictly
decreasing or zero along the trajectories,

‖v̂3(τ)‖L2(R2) = 0 , τ ∈ R .

As a consequence, v̂3 and ŵ1, ŵ2 are zero and

ŵ(τ) = αG , τ ∈ R .

This implies that ŵ0 = αG and concludes the proof of lemma 4.7.
Proof of theorem 4.1: Let m > 1 and w ∈ C0([0,+∞);L2(m)) be a global

solution of (11), uniformly bounded in time in L2(m). By corollary 4.4 and
lemma 4.7, the trajectory {w(τ)}τ≥0 is relatively compact and its ω-limit set Ω
is reduced to {αG} where α =

∫
R2×(0,1)

w3(ξ, z, 0)dξdz. This shows that

lim
τ→+∞

‖w(τ)− αG‖m = 0 .

This ends the proof of theorem 4.1.
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5 Stress-free boundary conditions

The aim of this section is to rewrite the previous results in the case of stress-
free boundary conditions. We consider the vorticity equation (9) together with
initial condition w(ξ, z, 0) = w0(ξ, z) and boundary conditions (6). Therefore,
we work in the weighted Lebesgue space L2

sf (m) defined by

L2
sf (m) = {f : R2 × (0, 1) → R3 | ‖f‖m <∞ and f satisfies (6)} , (40)

where the norm ‖.‖m is given in (10).
The main difference that occurs in this case is the splitting u = ū+ ũ defined

in appendix A. Indeed, ū is here two-dimensional and horizontal and ũ is no
more of mean value zero in z, see (47).

Appendix A.3 and A.4 deal with Biot-Savart laws in this case and show that
the same estimates hold as for periodic boundary conditions.

As far as appendix B is concerned, the spectrum of the linear operator L in
R̄(L2

sf (m)) is studied in B.5. It is shown that for m > 1, the discrete spectum
of L in R̄(L2

sf (m)) consists of isolated eigenvalues λk = −k
2 , k ∈ N, k < m− 1

with multiplicity (k + 1) and that the essential spectrum lies in the half plane
{λ ∈ C | Re (λ) ≤ 1−m

2 }. Notice that the projection R̄, defined in (50), has the
same notation as in the periodic case but is slightly different.

Equipped with those results, we are now able to deal with the Cauchy prob-
lem (9)-(6) and the asymptotics of solutions.

5.1 The Cauchy Problem

Theorem 1.1 can be easily rewritten in L2
sf (m). In the Banach space X defined

as

X = {w ∈ C0([0,+∞);L2
sf (m)) |divτw(τ) = 0 , ‖w‖X = sup

τ≥0
‖w(τ)‖m < +∞}

estimates (14) still hold and the fixed point theorem leads to the following
theorem:

Theorem 5.1 Let m > 1. There exists K0sf > 0 such that, for all initial
data w0 ∈ L2

sf (m) with div w0 = 0 and ‖w0‖m ≤ K0sf , equation (9) has a
unique global solution w ∈ C0([0,+∞);L2

sf (m)) satisfying w(0) = w0 and for
any τ ≥ 0, divτw(τ) = 0. In addition, there exists K1sf > 0 such that

‖w(τ)‖m ≤ K1sf‖w0‖m , τ ≥ 0 .

5.2 First-Order Asymptotics

In this section, we determine the first-order asymptotics of solution w given by
theorem 5.1. Defining projections R̄ and R̃ as in (50) and P0, Q0 as in (54, 56),
we can easily decompose w as

w(ξ, z, τ) = P0w(ξ, z, τ) +Q0w(ξ, z, τ) + R̃w(ξ, z, τ)
= α(τ)G(ξ) + q0(ξ, τ) + r(ξ, z, τ) (41)

The following lemma shows that the conservation of mass still holds:
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Lemma 5.2 Assume m > 1 and w ∈ C0([0, T );L2
sf (m)) is a solution of (9).

Then, the coefficient α defined in (54) is constant in time.

Proof: As in lemma 2.1, integrating by parts, we get

α̇(τ) =
∫
R2×(0,1)

(
Lw3 + eτ∂2

zw3 +N(w)3
)
dz dξ

=
∫
∇ξ ·

(
∇ξw3 +

1
2
ξw3

)
+ eτ∂2

zw3 − v3divτw(τ) + w3divτv(τ)dzdξ

= 0 .

Indeed, ∂zw3(ξ, 0, τ) = ∂zw3(ξ, 1, τ) = 0, divτw(τ) = divτv(τ) = 0 and
lim

|ξ|→+∞
wjvi = 0.

From now on, the proof of theorem 2.2 can be rewritten in the case of stress-
free boundary conditions as the estimates satisfied by q0 and r are the same as
for periodic conditions. It is then straightforward that the following theorem on
the first-order asymptotics of solutions holds.

Theorem 5.3 Let 0 < µ < 1
2 and m > 1+2µ. There exists K ′

0sf > 0 such that,
for all initial data w0 ∈ L2

sf (m) with div w0 = 0 and ‖w0‖m ≤ K ′
0sf , equation

(9) has a unique global solution w ∈ C0([0,+∞);L2
sf (m)) satisfying w(0) = w0

and for any τ ≥ 0, divτw(τ) = 0. In addition, there exists K2sf > 0 such that

‖w(τ)− αG‖m ≤ K2sf e
−µτ‖w0‖m , τ ≥ 0 ,

where α =
∫
R2×(0,1)

(w0)3(ξ, z) dz dξ.

5.3 Second-Order Asymptotics

For the second-order asymptotics, we can once more rewrite the results of section
3. With the definitions (54, 56, 50) of appendix B, we decompose any solution
w ∈ L2

sf (m) given by theorem 5.1 as

w(ξ, z, τ) = P1w(ξ, z, τ) +Q1w(ξ, z, τ) + R̃w(ξ, z, τ)

= α(τ)G(ξ) +
2∑

i=1

βi(τ)Fi(ξ) + q1(ξ, τ) + r(ξ, z, τ)

Looking at solutions of finite energy, α = 0 and β̇i(τ) = − 1
2βi(τ) for τ ≥ 0 and

i = 1 or 2. Therefore, the proof of theorem 3.2 can be easily rewritten in the
case of stress-free boundary conditions and we get:

Theorem 5.4 Let 1
2 < ν < 1, m > 1 + 2ν. There exists K ′′

0sf > 0 such that,
for all initial data w0 ∈ L2

sf (m) with div w0 = 0,
∫
R2×(0,1)

w0dξdz = 0 and
‖w0‖m ≤ K ′′

0sf , equation (9) has a unique global solution
w ∈ C0([0,+∞);L2

sf (m)) satisfying w(0) = w0 and for any τ ≥ 0, divτw(τ) = 0,∫
R2×(0,1)

w(ξ, z, τ)dξdz = 0. In addition, there exists K3sf > 0 such that

‖w(τ)−
2∑

i=1

βiFie
− τ

2 ‖m ≤ K3sf e
−ντ‖w0‖m , τ ≥ 0 ,

where βi =
∫
R2×(0,1)

ξi(w0)3(ξ, z) dz dξ for i = 1 or 2.
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Notice that in the above theorem, the sum
2∑

i=1

βiFie
− τ

2 only occurs on i = 1

and 2. The vector F3 does not appear in the asymptotics of solutions for stress-
free boundary conditions. Therefore, the long-time behavior of the velocity is,
in this case, two-dimensional and horizontal.

5.4 Global convergence

As far as global convergence towards Oseen vortices of uniformly bounded so-
lutions of (9) is concerned, we can easily read the proof of theorem 4.1 with
appropriate projections R̄ and R̃ defined in (50). The same arguments hold
as for periodic conditions. A simplification even occurs in lemma 4.7 since the
decomposition of appendix A.3 gives directly that v̂3, ŵ1 and ŵ2 are zero. A
Lyapunov function is in this case useless, (see also the remark at the end of
appendix A.5). We thus have the following theorem

Theorem 5.5 Let m > 1 and w ∈ C0([0,+∞);L2
sf (m)) be a global solution of

(9) that is uniformly bounded in time in L2
sf (m). Then,

lim
τ→+∞

‖w(τ)− αG‖m = 0

where α =
∫
R2×(0,1)

w3(ξ, z, 0)dzdξ.

A The Biot-Savart Law

Let ω be the vorticity given by ω(x, z) : R3 → R3, 1-periodic in z and div ω = 0.
Define the associated velocity field by u(x, z) : R3 → R3, 1-periodic in z such
that {

div u = 0,
rot u = ω.

The aim of this section is to express the velocity field u in terms of the vorticity
ω via the Biot-Savart law and to collect useful estimates for the velocity u in
terms of ω. We first decompose the functions (ω, u) into two parts which still
satisfy periodic boundary conditions. The first one (ω̄, ū) is independent of z
and the other one (ω̃, ũ) is of mean-value zero in z: for any (x, z) ∈ R3, we thus
set

ω(x, z) = ω̄(x) + ω̃(x, z) , u(x, z) = ū(x) + ũ(x, z) ,∫ 1

0

ω̃(x, z)dz = 0 ,
∫ 1

0

ũ(x, z)dz = 0 . (42)

Then, ω̄ = rot ū and ω̃ = rot ũ. Moreover, as div ω = 0 and as ω is 1-periodic
in z, notice that ∂1ω̄1 + ∂2ω̄2 = 0, hence also div ω̃ = 0. This means that our
decomposition leads to two independent systems with their own Biot-Savart
laws:

A.1


ω̄, ū : R2 → R3

div ω̄ = 0
div ū = 0
ω̄ = rot ū

A.2


ω̃, ũ : R3 → R3 , 1-periodic in z∫ 1

0
ω̃(x, z)dz =

∫ 1

0
ũ(x, z)dz = 0

div ũ = div ω̃ = 0
ω̃ = rot ũ
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A.1 The Biot-Savart law for (ω̄, ū).

Let (ω̄, ū) : R2 → R3 such that ∂1ū1 + ∂2ū2 = 0
∂1ω̄1 + ∂2ω̄2 = 0
ω̄ = rot ū .

This system divides itself into two independent systems:

(a)

 ω̄1 = ∂2ū3

ω̄2 = −∂1ū3

∂1ω̄1 + ∂2ω̄2 = 0
(b)
{
ω̄3 = ∂1ū2 − ∂2ū1

∂1ū1 + ∂2ū2 = 0 .

The second system (b) is equivalent to the Biot-Savart law in R2 (see [5]). Then,(
ū1

ū2

)
(x) =

1
2π

∫
R2

(x− y)⊥

|x− y|2
ω̄3(y)dy . (43)

If x = (x1, x2) ∈ R2, we denote x⊥ = (−x2, x1)T . To solve the first system (a),
notice that

−∆xū3 = ∂1ω̄2 − ∂2ω̄1 .

By the fundamental solution of the Laplacian ∆x in R2,

ū3(x) = − 1
2π

∫
R2

log(|x− y|)(∂1ω̄2(y)− ∂2ω̄1(y))dy ,

and integrating by parts, we get

ū3(x) = − 1
2π

∫
R2

(x− y)
|x− y|2

∧
(
ω̄1

ω̄2

)
(y)dy. (44)

Equalities (43) and (44) are very similar to the Biot-Savart law in R2 and we
refer to [17] and [5] for detailed proofs of the following estimates:

Proposition A.1 Let ū be the velocity field obtained from ω̄ via the Biot-Savart
laws (43-44). Assume 1 < p < 2 < q <∞ and 1

q = 1
p −

1
2 . If ω̄ ∈ Lp(R2), then

ū ∈ Lq(R2) and there exists C > 0 such that

‖ū‖Lq(R2) ≤ C‖ω̄‖Lp(R2).

A.2 The Biot-Savart law for (ω̃, ũ)

Let (ω̃, ũ) : R3 → R3, 1-periodic in z such that
∫ 1

0
ω̃(x, z)dz =

∫ 1

0
ũ(x, z)dz = 0

div ω̃ = div ũ = 0
ω̃ = rot ũ .

We use a decomposition of ω̃ and ũ in Fourier variables (k, n) where our con-
ventions for Fourier transformation are

f(x, z) =
∫
R2

∑
n∈Z

fn(k)ei(k·x+2πnz)dk

fn(k) =
1
2π

∫
R2

∫ 1

0

f(x, z)e−i(k·x+2πnz)dzdx. (45)
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Using the relations between the derivatives of ũ and ω̃, we easily get for any
k ∈ R2 and any n ∈ Z∗,

ũn(k) =
1

|k|2 + 4π2n2

 0 −i2πn ik2

i2πn 0 −ik1

−ik2 ik1 0

 ω̃n(k) . (46)

As in section 1, we shall work in weighted spaces L2(m) defined by (10). The
L2(m)-norm is also equivalent to another one defined by Fourier coefficients:∑

n∈Z

∫
R2

∑
|α|≤m

|∂αfn(k)|2dk

 1
2

where α = (α1, α2) ∈ N2, ∂α = ∂α1
k1
∂α2

k2
, |α| = α1 + α2. Weighted Sobolev

spaces can be defined in a similar way. For instance,

H1(m) = {f ∈ L2(m) | ∂if ∈ L2(m), i = 1, .., 3}

and the norm in H1(m) is given by one of the following equivalent expressions:(∫
R2

∫ 1

0

(1 + |x|2)m
(
|f(x, z)|2 + |∇f(x, z)|2

)
dzdx

) 1
2

,∑
n∈Z

∫
R2

(1 + |k|2 + n2)
∑
|α|≤m

|∂αfn(k)|2dk

 1
2

.

Using these norms and relation (46) where n is different from 0, we get the
following proposition:

Proposition A.2 Let ũ be the velocity field obtained from ω̃ via the Biot-Savart
law (46). For any m ∈ N, if ω̃ ∈ L2(m), then ũ ∈ H1(m) and there exists C > 0
such that

‖ũ‖H1(m) ≤ C‖ω̃‖L2(m).

As a consequence, using Sobolev embedding H1(R2× (0, 1)) ↪→ Lq(R2× (0, 1))
for all q ∈ [2, 6] and proposition A.2 for m = 0, we get

Corollary A.3 Let ũ be the velocity field obtained from ω̃ via the Biot-Savart
law (46). If ω̃ ∈ L2(R2 × (0, 1)), then ũ is in Lq(R2 × (0, 1)) for any q ∈ [2, 6]
and there exists C > 0 such that

‖ũ‖Lq(R2×(0,1)) ≤ C‖ω̃‖L2(R2×(0,1)) .

A.3 The Biot-Savart law in the case of stress-free bound-
ary conditions

Let ω(x, z) : R2 × (0, 1) → R3 be the vorticity field which satisfies div ω = 0
and stress-free boundary conditions (6). Define u(x, z) : R2 × (0, 1) → R3 the
corresponding velocity field such that u satisfies stress-free conditions (4) and{

div u = 0,
rot u = ω.
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We prove in this subsection that the previous Biot-Savart laws stated in appen-
dix A.1 and A.2 still hold with stress-free boundary conditions. To obtain a
decomposition of ω and u which fits with the boundary conditions, we split ω
and u as follows:

ω(x, z) =

 0
0

ω̄3(x)

+ ω̃(x, z) , u(x, z) =

 ū1(x)
ū2(x)

0

+ ũ(x, z) , (47)

where ũ1, ũ2 and ω̃3 satisfy Neumann boundary conditions in z = 0 and z = 1
and are of mean-value zero in z, while ω̃1, ω̃2 and ũ3 satisfy Dirichlet boundary
conditions in z = 0 and z = 1, see (4) and (6). Notice that the last three
functions, ω̃1, ω̃2 and ũ3, are no more of mean-value zero in z. We can then
divide our problem into two independent systems with their own Biot-Savart
laws:

ω̄, ū : R2 → R3

ω̄1 = ω̄2 = ū3 = 0
∂1ū1 + ∂2ū2 = 0
ω̄3 = ∂1ū2 − ∂2ū1


ω̃, ũ : R2 × (0, 1) → R3

div ũ = div ω̃ = 0
ω̃ = rot ũ
ũ1, ũ2, ω̃3 Neumann and mean value zero in z
ω̃1, ω̃2, ũ3 Dirichlet .

The first system is exactly system A.1(b) which is solved in (43). Therefore,
proposition A.1 still holds.

As far as the second system is concerned, we use a Fourier decomposition
which takes into account boundary conditions (4) and (6). Namely, for i = 1 or
2,

ω̃i(x, z) =
∫
R2

∞∑
n=1

ωin(k)eik·x sin(nπz)dk

ω̃3(x, z) =
∫
R2

∞∑
n=1

ω3n(k)eik·x cos(nπz)dk

ũi(x, z) =
∫
R2

∞∑
n=1

uin(k)eik·x cos(nπz)dk

ũ3(x, z) =
∫
R2

∞∑
n=1

u3n(k)eik·x sin(nπz)dk

and the relation ω̃ = rot ũ reads for any k ∈ R2 and any n ≥ 1,

ũn(k) =
1

|k|2 + π2n2

 0 nπ ik2

−nπ 0 −ik1

−ik2 ik1 0

 ω̃n(k) .

As this relation is very similar to (46), proposition A.2 and corollary A.3 still
hold in L2

sf (m) and H1
sf (m).

A.4 The Biot-Savart law in scaling variables

As we work in this article with scaling variables, we translate the above results
in terms of (ξ, z, τ) and (w, v) defined in section 1 by (7). As for any τ ≥ 0 and
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any q ≥ 1,
‖u(t)‖Lq(R2×(0,1)) = eτ( 1

q−
1
2 )‖v(τ)‖Lq(R2×(0,1))

and
‖ω(t)‖Lq(R2×(0,1)) = eτ( 1

q−1)‖w(τ)‖Lq(R2×(0,1)) ,

the above sections A.1, A.2 and A.3 easily imply the following estimates:

Proposition A.4 Let v be the velocity field obtained from w via the Biot-Savart
law. Decompose v and w as in (42) or (47). If w̃ ∈ L2(R2 × (0, 1)), then
ṽ ∈ Lq(R2 × (0, 1)) for any q ∈ [2, 6]. If w̄ ∈ Lp(R2), then v̄ ∈ L

2p
2−p (R2) for

any p ∈ (1, 2) and

‖ṽ‖Lq(R2×(0,1)) ≤ Ce−
τ
q ‖w̃‖L2(R2×(0,1))

‖v̄‖
L

2p
2−p (R2)

≤ Cp‖w̄‖Lp(R2).

A.5 Another bound for the velocity

For the purpose of section 4, we need some further estimates on the velocity
field in scaling variables in case it is independent of the third coordinate z.

Lemma A.5 Let m > 1. If w ∈ L2(m) satisfies div w = 0 and ∂zw = 0, then
the corresponding velocity field v given by the Biot-Savart law in appendix A.1
satisfies

v3 ∈ L2(R2) .

Proof: Using appendix A.1, we get

v3(ξ) = − 1
2π

∫
R2

(ξ − η)
|ξ − η|2

∧
(
w1

w2

)
(η)dη (48)

−∆ξv3 = ∂1w2 − ∂2w1 .

By the Biot-Savart law, we obtain that if w ∈ Lq(R2) for q ∈ (1, 2), then
v ∈ L

2q
2−q (R2). But this result is not sufficient to prove this lemma. The idea is

to take benefit from another property satisfied by the vorticity. Indeed, the first
moments of wi are zero. This result, together with lemma B.2 in [5], enables us
to conclude. We divide this proof in three steps.

First step: We show that the moments of the vorticity are zero. Indeed,
wi = div (ξiw) and ξiw ∈ L2(m− 1). As m > 1, L2(m) ↪→ L1(R2 × (0, 1)) and
for all p ∈ (1, 2), p > 2

m+1 , we get easily the continuous embedding L2(m) ↪→
Lp(R2 × (0, 1)). Then, ξiw ∈ Lp(R2 × (0, 1)) for p ∈ ( 2

m , 2) and wi ∈ L1(R2 ×
(0, 1)). As w is independent of z, this implies for i = 1, 2 that∫

R2
wi(ξ)dξ = 0 . (49)

Second step: According to (48) and (49),

v3(ξ) = − 1
2π

∫
R2

(
ξ − η

|ξ − η|2
− ξ

|ξ|2

)
∧
(
w1

w2

)
(η)dη .
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For all (ξ, η) ∈ R2 with ξ 6= 0 and ξ 6= η, we have the identity

ξ1 − η1
|ξ − η|2

− ξ1
|ξ|2

=
1

|ξ|2|ξ − η|2
((ξ1 − η1)ξ · η + (ξ2 − η2)ξ ∧ η)

where ξ · η = ξ1η1 + ξ2η2 and ξ ∧ η = ξ1η2 − ξ2η1. A similar estimate holds for
ξ2−η2
|ξ−η|2 −

ξ2
|ξ|2 . Therefore,

|v3(ξ)| ≤ C

∫
R2

1
|ξ||ξ − η|

|η|(|w1(η)|+ |w2(η)|)dη .

Combining this estimate with (48), we obtain

|b(ξ)v3(ξ)| ≤ C

∫
R2

1
|ξ − η|

|b(η)w(η)|dη .

Third step: Let 1 < m < 2 and w ∈ L2(m). From lemma B.2 in [5] with
u = |bv3| and ω = |bw|, we get for all q ∈ (2,+∞),

‖bm−1− 2
q bv3‖Lq(R2) ≤ C‖w‖m .

Finally, by Hölder’s inequality and q = 2
m−1 > 2, we get

‖v3‖L2(R2) ≤ C‖b−1‖
L

2q
q−2 (R2)

‖bv3‖Lq(R2) ≤ C‖w‖m ,

hence v3 ∈ L2(R2).
Form greater than 2, L2(m) ↪→ L2(m′) for somem′ ∈ (1, 2) and the previous

result ends the proof of lemma A.5.
Remark: This result has no interest in case of stress-free conditions since

w ∈ L2
sf (m) and ∂zw = 0 imply v3 = 0.

B Spectrum of the linear operator L
In this appendix, we are interested in the spectrum of the linear operator L,

L = ∆ξ +
1
2
ξ · ∇ξ + 1 , ξ ∈ R2 .

A complete study has already been carried out in [5] when L is applied to scalar
functions, namely in weighted L2-spaces defined for m ≥ 0 by

L2
2D(m) = {w : R2 → R , ‖w‖2D(m) <∞}

‖w‖2D(m) =
(∫

R2
(1 + |ξ|2)m|w(ξ)|2 dξ

) 1
2

= ‖bmw‖L2(R2) .

We use the same notation L for the operator applied to scalar or vectorial
functions, as for any vectorial function w,

Lw = L

 w1

w2

w3

 =

 Lw1

Lw2

Lw3

 .
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The spectrum σ(L) of L in L2
2D(m), m ≥ 0, is

σ(L) =
{
λ ∈ C

∣∣Re(λ) ≤ 1−m

2

}
∪
{
−k

2

∣∣ k ∈ N
}
.

Moreover, under the assumption m > 1, the discrete spectrum of L in L2
2D(m)

consists of isolated eigenvalues λk = −k
2 , k ∈ N, k < m − 1, with multiplicity

(k+1) and the essential spectrum lies in the half plane {λ ∈ C |Re(λ) ≤ 1−m
2 } .

We want to generalize this property for vectorial functions, that is to say,
we study the spectrum of L in the space L2(m) or L2

sf (m) of vectorial functions
defined respectively by (10) or (40) together with the incompressibility condition
(8). As L only acts on the first two components ξ ∈ R2, we consider its action
on functions independent of z. Hence, the first idea is to split the vorticity w
into w̄ and w̃ as we did in appendix A. Let us define some useful projections:

R̄ : L2(m) or L2
sf (m) −→ L2(m) or L2

sf (m)
w 7−→ w̄

R̃ : L2(m) or L2
sf (m) −→ L2(m) or L2

sf (m)
w 7−→ w̃ .

(50)

Then, 1 = R̄+ R̃ and the projectors R̄ and R̃ are well defined by (42) in L2(m)
or (47) in L2

sf (m) depending on the boundary conditions we consider. Notice
that for periodic boundary conditions,

R̄(L2(m)) = {w ∈ L2(m) | ∂zw = 0}

while for stress-free conditions,

R̄(L2
sf (m)) = {w ∈ L2

sf (m) |w1 = w2 = 0 , ∂zw3 = 0} .

The incompressibility condition (8) states in those two-dimensional spaces that

∇ξ · wξ = ∂1w1 + ∂2w2 = 0 . (51)

We now want to study the spectrum of L in R̄(L2(m)) or R̄(L2
sf (m)). Notice

that if λ is an eigenvalue of L with eigenfunction w = (w1, w2, w3)T in R̄(L2(m))
or R̄(L2

sf (m)) , then for i ∈ {1, 2, 3}, wi is an eigenfunction of L in L2
2D(m)

with eigenvalue λ. In the next four subsections, we deal with periodic boundary
conditions and we postpone the study of stress-free conditions to appendix B.5.

B.1 The discrete spectrum of L.

For the purpose of this article, we only turn our attention to the first two
eigenvalues. In L2

2D(m), λ0 = 0 is a simple eigenvalue of L with eigenfunction
G(ξ) = 1

4π e
−|ξ|2/4 and λ1 = − 1

2 is an eigenvalue of multiplicity 2 with eigen-
functions F1(ξ) = ξ1

2 G(ξ) and F2(ξ) = ξ2
2 G(ξ). As a consequence, 0 and − 1

2 are
eigenvalues of L in R̄(L2(m)) with multiplicity less than 3 and 6 respectively.
Among the possible eigenfunctions, we must check which ones are in R̄(L2(m))
and satisfy the incompressibility condition (51).

As far as the first eigenvalue λ0 = 0 is concerned, the only suitable eigen-

function is G =

 0
0
G

 since ∂zG = 0. Then, λ0 = 0 is a simple eigenvalue of

L in R̄(L2(m)) with eigenfunction G.
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The same arguments are valid for the second eigenvalue λ1 = − 1
2 . Six

vectorial eigenfunctions can be built from F1 and F2 and we must check which
ones are suitable. If w ∈ R̄(L2(m)) satisfies (51), it follows for i = 1 or 2 that∫

R2×(0,1)

wi(ξ, z)dξdz =
∫
R2×(0,1)

div (ξiw)dξdz

=
∫
R2
ξiw(ξ, 1)dξ −

∫
R2
ξiw(ξ, 0)dξ = 0 .

Moreover, for (i, j) ∈ {1, 2}2, div (ξiξjw) = ξiwj + ξjwi and as ∂zw = 0,∫
R2×(0,1)

ξ1w1(ξ, z) dξdz =
∫
R2×(0,1)

ξ2w2(ξ, z) dξdz = 0 ,∫
R2×(0,1)

ξ1w2(ξ, z) dξdz = −
∫
R2×(0,1)

ξ2w1(ξ, z) dξdz .

As
∫
R2×(0,1)

ξ1F1 dξdz =
∫
R2×(0,1)

ξ2F2 dξdz = 1 and
∫
R2×(0,1)

ξjFi dξdz = 0
for i 6= j, the only vectorial eigenfunctions which satisfy the above conditions
are

F1 =

 0
0
F1

 , F2 =

 0
0
F2

 , F3 =

 −F2

F1

0

 .

Since these three vectors are independent vectors, λ1 = − 1
2 is an eigenvalue of

L in L2(m) of multiplicity 3 with eigenfunctions F1, F2 and F3.
Remark: Even if we do not need for the purpose of this article more infor-

mation on the discrete spectrum of L in R̄(L2(m)), we can state that for any
k ∈ N, −k

2 is an eigenvalue of L in R̄(L2(m)) with multiplicity (2k + 1). In-
deed, −k

2 is an eigenvalue of L in L2
2D(m) with multiplicity (k+1). Hence, there

could be a maximum of 3(k + 1) suitable vectorial eigenfunctions. However, to
be in R̄(L2(m)) and verify the incompressibility condition (51), the vectorial
eigenfunctions must satisfy (k + 2) relations on moments of order k. Indeed,∫

R2×(0,1)

ξk
1w1(ξ, z) dξdz =

∫
R2×(0,1)

ξk
2w2(ξ, z) dξdz = 0

and the k other moments of order k of w1 can be expressed by the k other
moments of order k of w2. Therefore, only 3(k+ 1)− (k+ 2) = 2k+ 1 vectorial
eigenfunctions are suitable.

As a consequence, the spectrum σ(L) of L in R̄(L2(m)) satisfies

σ(L) ⊃
{
−k

2

∣∣ k ∈ N
}
. (52)

B.2 The essential spectrum of L.

In [5], it is proved that the essential spectrum of L in L2
2D(m) lies in the half

plane {λ ∈ C |Re(λ) ≤ 1−m
2 }. For any λ ∈ C with Re(λ) < 1−m

2 , there
exists ψλ ∈ C∞(R2,R) such that Lψλ = λψλ. Then, for any λ ∈ C with
Re(λ) < 1−m

2 , (0, 0, ψλ)T is a vectorial eigenfunction of L in R̄(L2(m)) which
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satisfies the incompressibility condition (51) and since the spectrum of L is
closed,

σ(L) ⊃
{
λ ∈ C

∣∣Re(λ) ≤ 1−m

2

}
. (53)

B.3 The spectral projections.

Assume m ≥ 0. For n ∈ {−1, 0, 1} and n + 1 < m, we define Pn the spectral
projection onto the

∑n
k=0(2k + 1)-dimensional subspace of R̄(L2(m)) spanned

by the eigenfunctions of L corresponding to the eigenvalues {−k
2 | k = 0, .., n}.

For any w ∈ R̄(L2(m)),

P−1w = 0
P0w = αG

P1w = αG +
3∑

i=1

βiFi

where

α =
∫
R2×(0,1)

w3 dξdz (54)

β1 =
∫
R2×(0,1)

ξ1w3 dξdz

β2 =
∫
R2×(0,1)

ξ2w3 dξdz

β3 =
∫
R2×(0,1)

1
2
(ξ1w2 − ξ2w1) dξdz .

We also denote Wn the complement of the corresponding spectral subspace

Wn = {w ∈ R̄(L2(m)) |Pnw = 0} . (55)

Finally, we also define the complementary spectral projection Qn by

Qn = R̄− Pn . (56)

Then, 1 = Pn +Qn + R̃ in case of periodic boundary conditions with R̃ defined
in (50).

B.4 The semigroup eτL.

The operator L is the generator of a linear semigroup eτL in R̄(L2(m)) which
satisfies the following estimates:

Proposition B.1 Let n ∈ {−1, 0, 1}, m > n + 1 and q ∈ [1, 2]. For all α =
(α1, α2, 0) ∈ N2 × {0} and all ε > 0, there exists C > 0 such that for all
w ∈ R̄(L2(m)) and all τ > 0,

‖bm∂αeτLQnw‖L2(R2) ≤
Ce−γτ

a(τ)
1
q−

1
2+

|α|
2

‖bmw‖Lq(R2)
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where

a(τ) = 1− e−τ

γ =
m− 1− ε

2
if n+ 1 < m ≤ n+ 2

γ =
n+ 1

2
if m > n+ 2 .

Proof: We deal separately with the different values of n ∈ {−1, 0, 1}. The
idea of this proof is to come back to scalar functions to take benefit of Th.
Gallay and C.E. Wayne’s work in two dimensions, see [5] and proposition B.2
below. Therefore, we introduce other spectral projections for the scalar and two-
dimensional case (see Appendix A in [5]). For any n ∈ N, let P̄n be the spectral
projection onto the

∑n
k=0(k + 1)-dimensional subspace of L2

2D(m) spanned by
the eigenfunctions of L corresponding to the eigenvalues {−k

2 | k = 0, .., n}.
Notice that the condition P̄nf = 0 is also equivalent to∫

R2
ξαf(ξ)dξ = 0 for all α ∈ N2 with |α| ≤ n .

For any n < 0, define P̄n = 0. Moreover, we denote for any n ∈ Z

Q̄n = 1− P̄n . (57)

Let m ≥ 0, q ∈ [1, 2], α = (α1, α2, 0) and ε > 0. Assume w ∈ R̄(L2(m)).
Case 1: n = −1. Then, Q−1w = (R̄− P−1)w = w and by proposition B.2,

we get

‖bm∂αeτLQ−1w‖L2(m) ≤
3∑

i=1

‖bm∂αeτLQ̄−1wi‖L2(R2)

≤ Ce−γτ

a(τ)(
1
q−

1
2+

|α|
2 )

3∑
i=1

‖bmwi‖Lq(R2)

≤ Ce−γτ

a(τ)(
1
q−

1
2+

|α|
2 )
‖bmw‖Lq(R2)

where γ is defined in the statement of proposition B.1.
Case 2: n = 0. Then,

Q0w = (R̄− P0)w = w − αG =

 w1

w2

w3 − αG

 .

As stressed before in this appendix,
∫
R2×(0,1)

w1dξdz =
∫
R2×(0,1)

w2dξdz =∫
R2×(0,1)

(w3−αG)dξdz = 0. As w is independent of z, these equalities precisely
state that

Q̄0w1 = w1 , Q̄0w2 = w2 , Q̄0w3 = w3 − αG .

Then,

Q0w =

 Q̄0w1

Q̄0w2

Q̄0w3


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and by proposition B.2, we get

‖bm∂αeτLQ0w‖L2(R2) ≤
3∑

i=1

‖bm∂αeτLQ̄0wi‖L2(R2)

≤ Ce−γτ

a(τ)(
1
q−

1
2+

|α|
2 )
‖bmw‖Lq(R2)

where γ is defined as in proposition B.1.
Case 3: n = 1. Then,

Q1w = (R̄− P1)w = w − (αG +
3∑

i=1

βiFi)

=

 w1 + β3F2

w2 − β3F1

w3 − αG− β1F1 − β2F2

 .

As α, β1, β2 and β3 have been chosen as in (54) so that the moments up to
order one of Q1w are zero,

Q1w =

 Q̄1w1

Q̄1w2

Q̄1w3


and proposition B.2 applies coordinate by coordinate,

‖bm∂αeτLQ1w‖L2(R2) ≤
Ce−γτ

a(τ)(
1
q−

1
2+

|α|
2 )
‖bmw‖Lq(R2) .

Then, proposition B.1 holds for all values of n ∈ {−1, 0, 1}.
For easy reference, we reproduce here the main estimates of the study of eτL

in [5].

Proposition B.2 (Th. Gallay and C.E. Wayne) Let m ≥ 0, n ∈ Z and
q ∈ [1, 2] such that n + 1 < m. For all α = (α1, α2) ∈ N2 and all ε > 0, there
exists C > 0 such that for all w ∈ L2

2D(m) and all τ > 0,

‖bm∂αeτLQ̄nw‖L2(R2) ≤
Ce−γτ

a(τ)(
1
q−

1
2+

|α|
2 )
‖bmw‖Lq(R2)

where

γ =
m− 1− ε

2
if n+ 1 < m ≤ n+ 2

γ =
n+ 1

2
if m > n+ 2 ,

and where Q̄n is defined in (57).

Proof: If q = 2, proposition B.2 follows from proposition A.2 in [5]. If q < 2,
and τ ∈ (0, 2), proposition B.2 follows from proposition A.5 in [5]. If q < 2 and
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τ ≥ 2, using the above results, we get

‖bm∂αeτLQ̄nw‖L2(R2) = ‖bm∂αe(τ−1)LQ̄ne
LQ̄nw‖L2(R2)

≤ Ce−γ(τ−1)

a(τ − 1)
|α|
2

‖bmeLQ̄nw‖L2(R2)

≤ Ce−γτ

a(τ − 1)
|α|
2 a(1)(

1
q−

1
2 )
‖bmw‖Lq(R2)

≤ Ce−γτ

a(τ)(
|α|
2 + 1

q−
1
2 )
‖bmw‖Lq(R2) .

This ends the proof of proposition B.2.
Remark: Using proposition B.1, it is easy to complete the study of the

spectrum σ(L) of L in R̄(L2(m)). Let n ∈ Z and m ≥ 0 such that n+ 1 < m ≤
n+ 2. Then, σ(L) = σ(LPn) ∪ σ(LQn). By construction, σ(LPn) = ∅ if n < 0
and σ(LPn) = {0,− 1

2 , ..,−
n
2 } if n ∈ N. On the other hand, by the Hille-Yosida

theorem (see [11]) and proposition B.1, σ(LQn) ⊂ {λ ∈ C |Re(λ) ≤ 1−m
2 }.

Thus, using (52) and (53),

σ(L) =
{
λ ∈ C

∣∣Re(λ) ≤ 1−m

2

}
∪
{
−k

2

∣∣ k ∈ N
}
.

B.5 Stress-free boundary conditions:

In an analogous way, we can study the spectrum of L in R̄(L2
sf (m)) where the

projector R̄ for stress-free boundary conditions has been defined in (50) and
(47). We recall that in this case

R̄(L2
sf (m)) = {w ∈ L2

sf (m) |w1 = w2 = 0 , ∂zw3 = 0} .

Then, the study of σ(L) in R̄(L2
sf (m)) with stress-free boundary conditions

can be brought back to the study of [5] for the two-dimensional Navier-Stokes
equation. The discrete spectrum of L in R̄(L2

sf (m)), m > 1, consists of isolated
eigenvalues λk = −k

2 , k ∈ N, k < m−1, with multiplicity (k+1) and eigenvalues
(0, 0, φα)T where for any α ∈ N2, φα ∈ S(Rn) is the Hermite function defined by
φα = ∂α

ξ G and |α| = k. Namely, φ(0,0) = G, φ(1,0) = F1, φ(0,1) = F2. Moreover,
the essential spectrum lies in the half plane {λ ∈ C |Re(λ) ≤ 1−m

2 }. We can
also define spectral projections as in appendix B.3. If for any n < 0, Pn = 0 and
for any n ∈ N, Pn is the spectral projection onto the

∑n
k=0(k + 1)-dimensional

subspace of R̄(L2
sf (m)) spanned by the eigenfunctions of L corresponding to the

eigenvalues {−k
2 | k = 0, .., n}, we have for any w ∈ R̄(L2

sf (m)),

P−1w = 0
P0w = αG

P1w = αG +
2∑

i=1

βiFi ,

where α, β1 and β2 are defined in (54). Then, proposition B.1 still holds since
it is an easy consequence of proposition B.2.
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C Bounds on the evolution operator S(τ, σ)

In this section, we consider the operator Λ(τ) given for any τ ≥ 0 by

Λ(τ) = L+ eτ∂2
z = (∆ξ +

1
2
ξ · ∇ξ + 1) + eτ∂2

z .

Since its coefficients depend linearly on the space variables (ξ, z), Λ(τ) becomes
a first order differential operator when expressed in the Fourier variables (k, n)
defined in (45). Indeed, for any n ∈ Z, k ∈ R2 and τ > 0,

(Λ(τ)f)n(k) = −(|k|2 +
1
2
k · ∇k + 4π2eτn2)fn(k) .

Then, Λ(τ) is the generator of a family of evolution operators (or evolution
system) S(τ, σ) given for any 0 ≤ σ ≤ τ by

S(τ, σ) = e(τ−σ)L ◦ e(e
τ−eσ)∂2

z = e(e
τ−eσ)∂2

z ◦ e(τ−σ)L ,

or in Fourier variables (k, n) ∈ R2 × Z by

(S(τ, σ)f)n(k) = e−a(τ−σ)|k|2e−4π2(eτ−eσ)n2
fn

(
ke−

τ−σ
2

)
,

where a(τ) = 1− e−τ . We refer to Henry [8] chapter 7.1 and Pazy [11] chapter
5 for more information on evolution operators or evolution systems. The aim of
this section is to prove the following estimates on the evolution system S(τ, σ)
for any 0 < σ < τ :

Proposition C.1 (a) Fix m > 1. For all α = (α1, α2, α3) ∈ N3 and q ∈ [1, 2],
there exists C > 0 such that for all w ∈ L2(m) or L2

sf (m) and all 0 < σ < τ ,

‖∂αS(τ, σ)w‖m ≤ C

a(τ − σ)
1
q−

1
2+

α1+α2
2 a(eτ − eσ)

1
2 ( 1

q−
1
2 )+

α3
2

‖bmw‖Lq(R2×(0,1))

where a(τ) = 1− e−τ .
(b) Fix m > 1. For all α = (α1, α2, α3) ∈ N3 and q ∈ [1, 2], there exists C > 0
such that for all w ∈ L2(m) or L2

sf (m) and 0 < σ < τ , assuming α3 6= 0 or
R̃w = w,

‖∂αS(τ, σ)w‖m ≤ Ce−4π2(eτ−eσ)

a(τ − σ)
1
q−

1
2+

α1+α2
2 a(eτ − eσ)

1
2 ( 1

q−
1
2 )+

α3
2

‖bmw‖Lq(R2×(0,1)) .

Remark: L2(m) is defined in (10), L2
sf (m) in (40) and R̃ in (50).

Proof: To prove (a), we expand ∂αS(τ, σ)w in Fourier series. In the case of
periodic conditions,

∂αS(τ, σ)w(ξ, z) =
∑
n∈Z

(2iπn)α3e−4π2(eτ−eσ)n2
∂(α1,α2)e(τ−σ)Lwn(ξ)e2iπnz

(58)
where for any n ∈ Z,

wn(ξ) =
∫ 1

0

w(ξ, z)e−2iπnzdz.
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Then, using Parseval’s equality, we get

‖∂αS(τ, σ)w‖2m =
∑
n∈Z

(2πn)2α3e−8π2(eτ−eσ)n2
‖bm∂(α1,α2)e(τ−σ)Lwn‖2L2(R2) .

In case of stress-free conditions, Fourier series in sinus and cosinus lead to a
similar Parseval’s equality. By proposition B.1 with n = −1, m > 1, for any
ε > 0, any q ∈ [1, 2], there exists C > 0 independent of n such that

‖∂αS(τ, σ)w‖m ≤ C

a(τ − σ)(
1
q−

1
2+

α1+α2
2 )

(∑
n∈Z

g2
n‖bmwn‖2Lq(R2)

) 1
2

where gn = (2πn)α3e−4π2(eτ−eσ)n2
. Finally, using Hölder’s inequality, we get

‖∂αS(τ, σ)w‖m ≤ C

a(τ − σ)(
1
q−

1
2+

α1+α2
2 )

‖gn‖lp

(
‖
(
‖bmwn‖Lq(R2)

)
‖lq′

)
where p and q′ satisfy the relation 1

p + 1
q′ = 1

2 . By appendix D.1 with γ = α3p

and A = 4π2p(eτ − eσ), there exists C > 0 such that for any 0 < σ < τ ,

‖gn‖lp ≤
C

a(eτ − eσ)
1
2p +

α3
2
. (59)

Moreover, Riesz-Thorin’s interpolation’s theory [12] asserts that if 1
q + 1

q′ = 1,

‖ ‖bmwn‖Lq(R2)‖lq′ ≤ C‖bmw‖Lq(R2×(0,1)).

Indeed, ‖ ‖bmwn‖L1(R2)‖l∞ ≤ ‖bmw‖L1(R2×(0,1)) and by Parseval’s equality,
‖ ‖bmwn‖L2(R2)‖l2 ≤ ‖bmw‖L2(R2×(0,1)). This concludes the proof of (a).

As far as the property (b) is concerned, the only difference appears in the
bound of ‖gn‖lp in (59). As R̃w = w or α3 6= 0, the sum (58) over n ∈ Z
only appears in the proof (b) over n 6= 0. Indeed, in case of periodic boundary
conditions,

∂αS(τ, σ)w(ξ, z) =
∑
n 6=0

iα3gn∂
(α1,α2)e(τ−σ)Lwn(ξ)e2iπnz

and the same phenomenon occurs in case of stress-free boundary conditions.
Then, by appendix D.1,∑

n 6=0

|gn|p
1/p

≤ C
e−4π2(eτ−eσ)

a(eτ − eσ)
1
2p +

α3
2
.

This concludes the proof of (b).

D Bounds on integrals and series

The aim of this technical appendix is to precise the bound of a sum which
appears in appendix C and to give some details in the bound of an integral used
quite often throughout this paper.
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D.1 How to bound
∑

n∈Z |n|γe−An2
?

Proposition D.1 Let γ be a positive constant. There exists C > 0 such that
for any A > 0,

S(A) ≡
∑
n∈Z

|n|γe−An2
≤ C

a(A)
γ+1
2

,

T (A) ≡
∑

n∈Z∗

|n|γe−An2
≤ Ce−A

a(A)
γ+1
2

,

where a(A) = 1− e−A.

Proof: Since the function S is continous on (0,+∞) and uniformly bounded on
[ε,+∞) for any ε > 0, the bound on S(A) follows from the computation

lim
A→0

A
γ+1
2 S(A) =

∫
R

|x|γe−x2
dx = Γ

(
γ + 1

2

)
,

where Γ is the Euler function defined by Γ(α) =
∫ +∞
0

tα−1e−tdt. The bound on
T (A) is then an easy consequence of the previous result by a change of index.

D.2 Bound on integrals

Proposition D.2 Let (α, β, γ, δ) ∈ (R+)4 such that γ + δ < 1. Then, there
exists a positive constant C > 0 such that for any t ≥ 0,

I(t) ≡
∫ t

0

eαseβ(t−s)e−4π2(et−es)

a(t− s)γa(et − es)δ
ds ≤ Ce(α+γ−1)t ,

where a(t) = 1− e−t.

Proof: First note some easy estimates: et−es = eta(t−s) and by the mean-value
theorem,

es(t− s) ≤ et − es ≤ et(t− s) , 0 ≤ s ≤ t .

According to the properties of function a, we divide our study in two steps
depending if t is greater or smaller than 1.

First case: If t ∈ [0, 1], it is sufficient to prove that I(t) is uniformly bounded
in time. Since

I(t) ≤ C

∫ t

0

ds

(t− s)γ+δ
≤ C

∫ 1

0

du

uγ+δ

and γ + δ < 1, the first step is finished.
Second case: If t > 1, we divide the integral I(t) at a critical point s0 ∈ (0, t)

such that et − es0 = 1. Then, s0 = t + ln a(t). We denote I1 and I2 the two
parts of I(t) obtained by this cut:

I1(t) =
∫ s0

0

eαseβ(t−s)e−4π2(et−es)

a(t− s)γa(et − es)δ
ds ,

I2(t) =
∫ t

s0

eαseβ(t−s)e−4π2(et−es)

a(t− s)γa(et − es)δ
ds .
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We first bound I1. With the first easy estimate recalled above, we get

I1 = e(β+γ)te−4π2et

∫ s0

0

e(α−β)se4π2es

(et − es)γa(et − es)δ
ds .

Taking into account that 0 ≤ s ≤ s0 implies et − es ≥ 1, we have

I1 ≤ Ce(β+γ)te−4π2et

∫ t

0

e(α−β)se4π2es

ds .

By a change of variables r = es and some integrations by parts, we bound the
last integral as follows∫ t

0

e(α−β)se4π2es

ds =
∫ et

1

rα−β−1e4π2rdr ≤ Ce(α−β−1)te4π2et

.

Then, I1(t) ≤ Ce(α+γ−1)t for any t > 1.
As far as I2 is concerned, s is greater than s0 and et − es and (t− s) are in

[0, 1]. Hence, we get

I2 ≤ Ceαt

∫ t

s0

ds

a(t− s)γa(et − es)δ
.

Using once more the first easy estimate and a change of variables, we obtain

I2 ≤ Ce(α−δ)t

∫ t−s0

0

du

uγ+δ
≤ Ce(α−δ)t(t− s0)1−γ−δ .

As s0 = t+ ln a(t), we finally get

I2(t) ≤ Ce(α−δ)te−(1−γ−δ)t .

This completes the proof.
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