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This paper is the result of investigations suggested by recent publications related to functional analysis and operator theory and completes the work of Huet 2017. It contains short accounts of several sides of the above theories not usually combined in a single document. The main topics which are dealt with are Steklov eigenproblems and reproducing kernels of the harmonic Bergman spaces, rotation numbers and analytic diffeomorphisms of the circle conjugate to a rotation, closed linear operators and pseudospectra, spectral flow and bifurcation. It aims to be a useful reference for young reseachers in mathematics and applied sciences.

INTRODUCTION

The article is divided into several sections as follows 

Index

A prepublication of some sections is presented in D. Huet [START_REF] Huet | A survey of topics related to functional analysis and operator theory hal-01952296 2[END_REF]. Notification: In the paper, without any precision, operator means, always, linear operator.

1 Classical Dirichlet biharmonic Steklov eigenproblems 1.1 Setup Cf. F. Gazzola, H-C. Grunau, G. Sweers [START_REF] Gazzola | Polyharmonic boundary value problems[END_REF]. Let Ω be a bounded domain in R n , n ≥ 2 with Lipschitz boundary ∂Ω, and a ∈ R. The classical Dirichlet biharmonic Steklov eigenproblem is the boundary value eigenvalue problem

∆ 2 u = 0 in Ω, u = ∆u -au ν = 0 on ∂Ω (1) 
Here, a solution to (1) is a function

u ∈ H 2 (Ω) ∩ H 1 0 (Ω) such that Ω ∆u∆vdx = a ∂Ω u ν v ν dω for all v ∈∈ H 2 (Ω) ∩ H 1 0 (Ω) (2) 
where ν(x) is the unit outward normal at x ∈ ∂Ω. (Since ∂Ω is Lipschitzian, the tangent hyperplane and the unit outward normal ν = ν(x) are well-defined for (a.e) x ∈ ∂Ω).

Orthogonal decomposition of

H 2 ∩ H 1 0 (Ω)
The bounded domain Ω is assumed to have a C 2 -boundary, and the Hilbert space

H 2 ∩H 1 0 (Ω) is endowed with the scalar product (u, v) → Ω ∆u∆vdx (3) 
Let Z be the space

Z = v ∈ C ∞ ( Ω) : ∆ 2 u = 0 in Ω, u = 0 on ∂Ω , (4) 
and V be the completion of Z with respect to the scalar product (3). The following orthogonal decomposition is obtained

H 2 ∩ H 1 0 (Ω) = V ⊕ H 2 0 (Ω) (5) If v = v 1 + v 2 is the corresponding orthogonal decomposition of v ∈ H 2 ∩ H 1 (Ω), v 1 ∈ V , and v 2 ∈ H 2 0 (Ω) are weak solutions of ∆ 2 v 1 = 0 in Ω, v 1 = 0 and (v 1 ) ν = v ν on ∂Ω (6) 
and

∆ 2 v 2 = ∆ 2 v in Ω, v 2 = 0 and (v 2 ) ν = 0 on ∂Ω (7) 
( [START_REF] Gazzola | Polyharmonic boundary value problems[END_REF] Theorem 3.19).

The least positive eigenvalue of (1)

Let Ω be a bounded domain with C 2 boundary.The least positive eigenvalue of ( 1) is characterised by

δ 1 (Ω) = min ∆u 2 L 2 (Ω) u ν 2 L 2 (∂Ω) ; u ∈ [H 2 (Ω) ∩ H 1 0 (Ω)]\H 2 0 (Ω) (8) 
In [START_REF] Gazzola | Polyharmonic boundary value problems[END_REF] (Theorem 3.17), it is proved that the minimum in ( 8) is achieved, and, up to a multiplicative constant, the minimiser ū is unique and solves (1) when a = δ 1 . Furthermore, ū ∈ C ∞ (Ω), and, up to the boundary, ū is as smooth as the boundary permits.

Remark 1. It is pointed out that this result is valid when Ω is a bounded domain with Lipschitz boundary which satisfied a uniform outer ball condition, where Definition 1. A bounded domain Ω ⊂ R n satisfies an outer ball condition if for each y ∈ ∂Ω there exists a ball B ⊂ R n \Ω such that y ∈ ∂B. If the radius of the ball B is independant of y, we say that it satisfies a uniform outer ball condition.

An alternative characterisation of δ 1 (Ω)

Here Ω is a bounded domain with Lipschitz boundary. Let

C 2 H ( Ω) = v ∈ C 2 ( Ω); ∆v = 0 in Ω (9)
equipped with the norm v H = v L 2 (∂Ω) , and define

H = the completion of C 2 H ( Ω) with respect to the norm . H . (10) 
Let

σ 1 (Ω) = inf h 2 L 2 (∂Ω) h 2 L 2 (Ω) ; h ∈ H\{0} (11) 
It is proved that σ 1 (Ω) admits a minimiser. If, moreover, Ω satisfies a uniform outer ball condition, then, the minimiser is positive, unique up to a constant multiplier, and

σ 1 (Ω) = δ 1 (Ω) ([19], Theorem 3.23).
2 Subspaces of H The Hausdorff (N-1)-dimensional measure and integration with respect to this measure are denoted, respectively, by σ, dσ, and σ(E) = σ(∂Ω) -1 σ(E). All functions, in this section, are real valued. The following equivalent inner product on

H 1 (Ω) is introduced [u, v] δ = Ω ∇u . ∇v dx + ∂Ω uv dσ. ( 12 
)
2.1 The spaces H(∆, Ω) and H 0 (∆, Ω)

Let H(div, Ω) denote the class of L 2 -vector fields F ∈ L 2 (Ω; R N ), whose divergence is in L 2 (Ω) i.e. there is a function ϕ ∈ L 2 (Ω) such that Ω u ϕ dx = Ω ∇u . F dx, for all u ∈ C ∞ c (Ω). ( 13 
)
Remark 2. For any integer p ∈ [0, ∞], C p c (Ω) denotes the spaces of p-continuously differentiable functions with compact support in Ω. For p = ∞, C ∞ c (Ω) is the L. Schwartz space D(Ω).

Definition 2. H(∆, Ω) = {u ∈ H 1 (Ω)|∇u ∈ H(div, Ω)}. ( 14 
)
With the inner product

[u, v] δ,∆ = [u, v] δ + Ω ∆u ∆v dx, (15) 
it is a real Hilbert space.

Remark 3. If u ∈ H(∆, Ω) then ∆u = div (∇u) ∈ L 2 (Ω).
Space H(Ω)

Definition 3. A function u ∈ H 1 (Ω) is said to be H 1 -harmonic in Ω provided Ω ∇u . ∇v dx = 0 for all v ∈ H 1 0 (Ω). ( 16 
)
The class of all H 1 -harmonic functions on Ω is denoted by H(Ω). The space H 0 (∆, Ω) is the orthogonal complement of H(Ω), with respect to the inner product [START_REF] Domokos | On nonlinear boundary-value problems: ghosts, parasites and discretizations[END_REF]. It is equipped with the inner product

[u, v] ∆ = Ω ∆u ∆v dx, (17) 
which generates an equivalent norm to that of (15)( [5], Lemma 3.3).

Orthogonal decomposition of H(∆, Ω)

The following results are stated ([5],Lemma 3.1) 1-There are closed subspaces H 1 0 (Ω), H(Ω) of H 1 (Ω), and projections P 0 , P H onto these spaces such that, for all u ∈ H 1 (Ω)

u = P 0 u + P H u with [P 0 u, P H u] δ = 0 (18) 2-Moreover, if v = v 0 + v H is the correponding decomposition of v ∈ H(∆, Ω) (in particular, ∆v ∈ L 2 (Ω)), we have v 0 ∈ H 1 0 (Ω), ∆v 0 ∈ L 2 (Ω), v 0 = 0 on ∂Ω, and (19) 
v H ∈ H(Ω), ∆v H = 0 in Ω, v H = v on ∂Ω. (20) 
(Cf.Section 1.2).

Space BH(Ω)

A function b ∈ H(∆, Ω) is said to be weakly biharmonic provided

Ω ∆u ∆v dx = 0 for all v ∈ D(Ω). (21) 
The closed subspace of all biharmonic functions, in H 0 (∆, Ω), is denoted by BH(Ω).

From now on, assumption (B 1 ) on Ω is replaced by : (B 2 ) : Ω satisfies (B 1 ) and the normal derivative D ν is a compact mapping of H 0 (∆, Ω) into L 2 (∂Ω, dσ).

The Dirichlet Biharmonic Steklov (DBS) eigenproblem

Here, the DBS eigenproblem is to find solutions (q, b) ∈ R × H 0 (∆, Ω) of the system

Ω ∆b ∆v dx = q ∂Ω D ν b D ν v dσ, for all v ∈ H 0 (∆, Ω), ( 22 
)
where ν is an outward unit normal, defined at σ a.e. point of ∂Ω. Here q is the DBS eigenvalue which appears only in the boundary condition. By means of a suitable algorithm, the author shows the existence of a maximal countable sequence of ∆-orthonormal (( 17)) DBS eigenfunctions B = {b k |k ≥ 1} which is a basis of the subsspace BH(Ω) of H 0 (∆, Ω) ([5], Theorem 5.3). Therefore, a biharmonic function b has the spectral representation

b(x) = ∞ j=1 b, b j ∆ b j (x) on Ω. ( 23 
)
Moreover, he obtains the ∆-orthogonal (( 17)) decomposition

H 0 (∆, Ω) = H 00 (∆, Ω) ⊕ ∆ BH(Ω), (24) 
where

H 00 (Ω) = {u ∈ H 0 (∆, Ω)|D ν u = 0 on ∂Ω}. ( 25 
)
Let {q k , k ≥ 1} be the sequence of eigenvalues corresponding to B. The following sets are introduced:

1-Set h j = ∆b j and B H = {h j | j ≥ 1} ⊂ L 2 (Ω)(cf. Remark 3). 2-Set w j = q j |∂Ω|D ν b j , j ≥ 1, and W = {w j , j ≥ 1}.
It is proved that W is an orthonormal basis for L 2 (∂Ω, dσ).

2.3

An orthonormal basis for the real harmonic Bergman space L 2 H (Ω).

Definition 4. The real harmonic Bergman space L 2 H (Ω) is the space of functions u ∈ L 2 (Ω) that satisfy

Ω u ∆v dx = 0 for all v ∈ C 2 c (Ω). ( 26 
)
The h j = ∆b j for j ≥ 1 are harmonic and L 2 -orthonormal. It is proved that B H is an ortonormal basis of L 2 H (Ω), the orthogonal projection P H of L 2 (Ω) onto L 2 H (Ω) has the representation

P H f (x) = ∞ j=1 f, h j h j (x) for all f ∈ L 2 (Ω), (27) 
([5], Theorem 6.2). Moreover, L 2 H (Ω) is a Reproducing Kernel Hilbert space with reproducing kernel

R Ω (x, y) = ∞ j=1 ∆b j (x)∆b j (y), x, y ∈ Ω × Ω. ( 28 
)
3 Complex harmonic Bergman spaces The harmonic Bergman space b p (Ω) is the set of complex valued harmonic functions u, on Ω, such that

||u|| b p = Ω |u| p dV 1 p < ∞. ( 29 
)
For fixed x ∈ Ω, the map u ∈ b p (Ω) → u(x) ∈ C, called point evaluation at x, is continuous. The space b p (Ω) is a closed subspace of L p (Ω), and, therefore, it is a Banach space.

Remark 4. In [START_REF] Axler | Harmonic Function Theory[END_REF], L p (Ω) is denoted L p (Ω, dV ).

3.2 Cas p=2, reproducing kernel of Ω

Definition

For p = 2, b 2 (Ω) is a Hilbert space with the L 2 (Ω) inner product u, v = Ω u v dV. ( 30 
)
As a closed subspace of

L 2 (Ω, dV ), b 2 (Ω) is separable. For fixed x ∈ Ω, the map u ∈ b 2 (Ω) → u(x)
∈ C is a bounded linear functional on the Hilbert space b 2 (Ω). By the Riesz representation theorem, there exists a unique function

R Ω (x, . ) ∈ b 2 (Ω) such that u(x) = u, R Ω = Ω u(y)R Ω (x, y)dV (y). (31) 
Therefore, b 2 (Ω) is a reproducing kernel Hilbert space with reproducing kernel R Ω defined on Ω × Ω.

Remark 5. For the Riez representation theorem, see, for instance, [START_REF] Reed | Methods of modern mathematical physics, volume 1: Functional analysis[END_REF] Theorem II.4, p.43.

Properties of the reproducing kernel

([6], Proposition 8.4). The reproducing kernel of Ω is real valued, if (u m ) is an orthonormal basis of b 2 (Ω), then R Ω (x, y) = ∞ m=1 u m (x) u m (y), (32) 
for all x, y ∈ Ω,

R Ω (x, y) = R Ω (y, x), for all x, y ∈ Ω, (33) 
and

||R Ω (x, .)|| b 2 = R Ω (x, x) for all x ∈ Ω. ( 34 
)

Complex and real Bergman spaces have the same reproducing kernel

Indeed, let L 2 H (Ω) be the real harmonic Bergman space (cf. section 2) where Ω satisfies conditions (B 2 ). Thanks to properties of harmonic functions, if f 1 and f 2 are real-valued, and if

f = f 1 +if 2 , then f belongs to b 2 (Ω) if and only if f 1 , f 2 ∈ L 2 H (Ω). Moreover, with the notations of N. Aronszajn [4], p. 343, b 2 (Ω) = (L 2 H (Ω)) c = {f = f 1 + if 2 : f 1 , f 2 ∈ L 2 H (Ω)}.
Therefore, the two spaces b 2 (Ω) and L 2 H (Ω) have the same reproducing kernel given by (28).

Rotation number

There are several definitions of rotation number in the literature.

Rotation number related to the equation

x = f (t, x), (t, x) ∈ R × R
From E.A. Coddington and N. Levinson [START_REF] Coddington | Theory of differential equations[END_REF]. Consider the differential equation

x = f (t, x), (t, x) ∈ R × R, ( 35 
)
where f is a real continuous function,

f (t + 1, x) = f (t, x + 1) = f (t, x)
and through every point of the (t, x) plane there passes a unique solution of [START_REF] Trefethen | Spectra and Pseudospectra[END_REF]. In R 3 , with rectilinear coordinates (u, v, w), let J be the torus given by

u = (a + b cos 2πx) cos 2πt v = (a + b cos 2πx) sin 2πt w = b sin 2πx, ( 36 
)
where a and b are constants with 0 < b < a. The function f may be considered as a function on J , whose points can be described by Cartesian coordinates (t, x), where two points (t 1 , x 1 ) and (t 2 , x 2 ) are regarded as identical if (t 1 -t 2 ) and (x 1 -x 2 ) are integers.

Through every point P of J , there exists a unique solution path (t, ϕ(t)) of ( 35). Let ϕ = ϕ(t, η) be the solution of [START_REF] Trefethen | Spectra and Pseudospectra[END_REF] such that ϕ(0, η) = η, and set ψ(η) = ϕ(1, η). Then ψ is a homeomorphism of the real line onto itself. Let C be the circle on J , defined as the set of all (t, x) on

J such that t = 0. (The equations of C, in R 3 , are v = 0, u -a = b cos 2πx, v = b sin 2πx). Define the homeomorphism T : C → C by P = (0, η) → T (P ) = P 1 = (1, ϕ(1, η)) = (0, ψ(η)) = (1, ψ(η) + n), (37) 
for any integer n. Set

ψ 0 (η) = η, η n = ψ n (η) = ψ[ψ n-1 (η)], (38) 
and

T 0 P = P, P n = T n P = T (T n-1 P ), (39) 
for n = 0, ±1, ±2, .... (Since T is a homeomorphism, the inverse T -1 exists).

Definition 5. The rotation number ρ of T for the equation ( 35) is defined by

ρ = lim |n|→∞ η n n . ( 40 
)
The number ρ is rational if and only if some power of T has a fixed point (cf.Theorem 2.1 de [START_REF] Coddington | Theory of differential equations[END_REF]).

4.2 Rotation number for the system dϕ dt = Φ(ϕ, δ), dδ dt = Θ(ϕ, δ), on the torus From V.V. Nemyyskii and V.V. Stepanov [START_REF] Nemytskii | Qualitative theory of differential equations[END_REF]. The authors consider dynamical systems defined by a system of differential equations

dϕ dt = Φ(ϕ, δ), dδ dt = Θ(ϕ, δ), (41) 
on the torus:

u = (R + r cos 2πδ) cos 2πϕ v = (R + r cos 2πδ) sin 2πϕ w = r sin 2πδ, (42) 
where 0 ≤ ϕ < 1, 0 ≤ δ < 1, 0 < r < R. The functions Θ and Φ are assumed to be sufficiently smooth (for instance Lipschitz functions). Moreover, Φ is assumed to be different from 0 everywhere. By setting

A(ϕ, δ) = Θ(ϕ, δ) Φ(ϕ, δ) , (43) 
the system (41) becomes

dδ dϕ = A(ϕ, δ). ( 44 
)
The trajectories, in the (ϕ, δ) plane, of equation ( 44), yield the trajectories on the torus, if points (ϕ 1 , δ 1 ) and (ϕ 2 , δ 2 ) are identified when the differences ϕ 1 -ϕ 2 and δ 1 -δ 2 are integers. Let δ = u(ϕ, δ 0 ) be the solution of (44) such that u(0, δ) = δ 0 .

Example 1. A(ϕ, δ) = µ, ( 45 
)
where µ is a constant. The integral curves are straight lines u(ϕ, δ 0 ) = δ 0 + µϕ, whose slope is µ = lim ϕ→∞ u(ϕ,δ0) ϕ .

In the general case, the rotation number µ of system (41) (or (44)) is defined by

µ = lim ϕ→∞ u(ϕ, δ 0 ) ϕ . (46) 
4.3 Rotation number of an orientation-preserving homeomorphism f : S 1 → S 1 (cf. L. Wen [START_REF] Wen | Differentiable Dynamical Systems. An introduction to structural stability and hyperbolicity[END_REF] p.24). Here S 1 denotes the unit circle. Let f : S 1 → S 1 be an orientationpreserving homeomorphism, and F : R → R be a lifting of f . For any t ∈ R, the limit

lim n→∞ F n (t) -t n (47)
exists, is independent of t, and is denoted by ρ(F ). If F 1 and F 2 are two liftings of f , ρ(F 1 ) -ρ(F 2 ) is an integer. The rotation number of f is defined by ρ(f ) = ρ(F ) mod 1. In some sens, the rotation number of f measures the average rotation of points under f.

Remark 6. A continuous map F : R → R is a lifting of f if π • F = f • π, where π : t ∈ R → e 2πit ∈ S 1 is the projection of modulo integer parts. The homeomorphism f is orientation preserving [resp. reversing] if any lifting of f to R is strictly increasing [resp. decreasing]. Example 2. If f α is a rotation by the angle α, then F α (x) = x + α and F n α = x + nα, which is periodic if α is rational.
5 Analytic reduction of analytic diffeomorphism of the circle to a rotation 5.1 Arnold's Theorem (V.I. Arnold [START_REF] Arnold | Geometrical methods in the Theory of Ordinary Differential Equations[END_REF], pp.112-115). Set

Π ρ = {z ∈ C; Imz| ≤ ρ}, (48) 
and, for an analytic and bounded function a in this strip,

||a|| ρ = sup |a(y)|, y ∈ Π ρ . (49) 
An irrational number µ is of type (K, σ), K > 0, σ > 0, if

|µ - p q | ≥ K |q| 2+σ , (50) 
for any integers p and q = 0. For a number µ of type (K, σ), we have the "small denominator estimate" (cf [START_REF] Arnold | Small denominators, 1: Mappings of the circumference onto itself[END_REF] )

|e 2πikµ -1| ≥ K 2|k| 1+σ . ( 51 
)
Then the author states the following theorem: Theorem. There exists (K, µ, σ) > 0, such that, if a is a 2π-periodic analytic function, real on the real axis, with ||a|| ρ < and such that the transformation

y → A(y) = y + 2πµ + a(y) (52) 
is the lifting to R of a diffeomorphism of the circle A, with rotation number µ of type (K, σ), then A is analytically equivalent to the rotation R 2πµ by the angle 2πµ (cf. Example 2) i.e. there exists an analytic diffeomorphism H : R → R such that

A • H = H • R 2πµ . (53) 
In this case, A is said to be analytically conjugate to the rotation of angle 2πµ, or analytically linearized, and H is called the conjugacy or the linearization.

Remark 7. Thanks to [START_REF] Waine | An introduction to KAM theory[END_REF], Remark 2.8, stated for fonctions of period 1, if A has the more general form

A(x) = x + 2πα + a(x), (54) 
with the rotation number ρ of type (K, ν), (where

α = ρ), then if ||η|| σ = ||2π(α-ρ)+a|| σ ≤ (K, ν, σ), A is analytically conjugate to R 2πρ .
The following is taken from J-C. Yoccoz [START_REF] Smf | La Gazette des mathématiciens Avril 2018: Jean-Christophe Yoccoz, Numero special[END_REF] and [START_REF] Yoccoz | Analytic linearization of circle diffeomorphism[END_REF]. A number µ, which satisfies condition (50), is also called Diophantine. In [START_REF] Smf | La Gazette des mathématiciens Avril 2018: Jean-Christophe Yoccoz, Numero special[END_REF] p.57, the set of such µ is denoted by CD(K, σ). The following notations are introduced

CD(σ) = K>0 CD(K, σ) and CD = σ>0 CD(σ).
(55)

The Brjuno condition and the set B

An irrational number α ∈ (0, 1) always admits an infinite unique continuous fraction expansion (cf. H.H. Hardy and E.M. Wright [START_REF] Hardy | An introduction to the theory of numbers[END_REF], Theorem 170):

1

a 1 + 1 a 2 + 1 a 3 + • • • , ( 56 
) also denoted α = [a 1 , a 2 , ...]. (57) 
Then pn qn = [a 1 , ..., a n ] is a rationnal number.

Definition 6. α is said to verify the Brjuno condition if and only if

∞ n=1 log q n+1 q n < ∞. (58) 
This is also a condition on the α ∈ R/Z. The set of such α is denoted by B.

The condition and the set H

Let A : (0, 1) → (0, 1) be the map defined by

A(x) = 1 x - 1 x , (59) 
where 1

x denotes the integer part of 1 x , and, for α ∈ R/Q, let (α n ) n≥0 be defined by

α 0 = α -α , α n = A n (α 0 ), for n > 0, (60) 
and (a n ) n≥0 defined by

a 0 = α α -1 n-1 = a n + α n , for all n ≥ 1.
Then

α = a 0 + 1 a 1 + 1 . . . + 1 a n + α n , (61) 
and

p n q n = a 0 + 1 a 1 + 1 . . . + 1 a n = [a o , a 1 , ...a n ] (62) 
Let

β -1 = 1, β n = n j=0 α j ≡ (-1) n (q n α -p n ) ∀n ≥ 0. ( 63 
)
For α ∈ R/Q, the Brjuno function B : R/Q → R + ∪ {∞} is defined by

B(α) = n≥0 β n-1 log α -1 n . ( 64 
)
Condition H For α ∈ (0, 1), x ∈ R, let r α the function defined by

r α (x) = α -1 (x -log α -1 + 1) if x ≥ log α -1 e x if x ≤ log α -1 , (65) 
and set, for α ∈ R/Q, and k > 0, (cf.(60))

∆ k (α) = r α k-1 • ... • r α0 (0). ( 66 
)
Let α ∈ B and define, for n ≥ k ≥ 0,

H k,n = {α ∈ B, B(α n ) ≤ ∆ k (α n-k )}. ( 67 
)
Definition of the set H

H = {∩ m≥0 ∪ k≥0 H k,k+m } = {α ∈ B, ∀m ≥ 0, ∃k ≥ 0, B(α m+k ) ≤ ∆ k (α m )}. ( 68 
)
It is proved that

C ⊂ B ⊂ H, (69) 
where the inclusions are proper. In [START_REF] Yoccoz | Analytic linearization of circle diffeomorphism[END_REF], J-C Yoccoz proves the following result (Theorem 1.4, p.127): Let f be an analytic diffeomorphism of the circle with rotation number α. If α ∈ H, then f is analytically conjugate to the rotation R α . Moreover, if f / ∈ H, there exists an analytic diffeomorphism of the circle, f , with rotation number α, which is not analytically linearizable.

Remark 8. For historical comments and the contributions of H. Poincaré (1881/6) [START_REF]Mémoire sur les courbes définies par une équation différentielle[END_REF], A. [START_REF] Denjoy | Sur les courbes définies par les équations différentielles à la surface du tore[END_REF] [START_REF] Denjoy | Sur les courbes définies par les équations différentielles à la surface du tore[END_REF] and M.R. Hermann (1979) [START_REF] Herman | Sur la conjugaison différentielle des difféomorphismes du cercle à des rotations[END_REF] and (1985) [START_REF] Herman | Simple proofs of local conjugacy theorems for diffeomorphisms of the circle with almost every rotation number[END_REF],to the theory, see the above references and W. de Melo and S. van Strien [START_REF] De Melo | One dimensional dynamics, A series of Modern Surveys in Mathematics[END_REF].

Closed linear operators and pseudospectra

As usual, operator means, always, linear operator. Notation In a Banach space X, the norm is denoted by || . ||, or, if a confusion is possible, by || . || X .

Introduction: closed operators

(Cf. L.N. Trefethen, M. Embree, [START_REF] Trefethen | Spectra and Pseudospectra[END_REF]). Let (X, . ) be a Banach space, B(X) be the set of bounded operators on X and C(X) be the set of closed operators on X. (An operator A is closed provided that, if {u k } is a sequence in the domain D(A) of A, converging to a limit u ∈ X, and if {Au k } converges to a limit v ∈ X, then u ∈ D(A) and Au = v.) Remark 9. For a closed unbounded operator A in X, its domain D(A) is different from X, but the domain D(A) of a bounded operator is the whole of X.

Invertibility and perturbation of closed operators

If A ∈ C(X) has a bounded inverse A -1 , then, for any E ∈ B(X), with ||E|| < 1/||A -1 ||, A + E has a bounded inverse (A + E) -1 satisfying ||(A + E) -1 || ≤ ||A -1 1 -||E||||A -1 || . ( 70 
)
Conversely, for any µ > 1/||A -1 || there exists E ∈ B(X), ||E|| < µ, such that (A + E)u = 0 for some nonzero u ∈ X.

Cf. [START_REF] Trefethen | Spectra and Pseudospectra[END_REF], Theorem 4.1 and [27] Theorem 1.16, p. 196. Given A ∈ C(X), the resolvent set ρ(A) is the set of z ∈ C for which the inverse (z -A) -1 exists and is in B(X). The spectrum σ(A) of A ∈ C(X) is the complement of ρ(A) in C, i.e. σ(A) = C/ρ(A), with the convention that, for z ∈ σ(A), ||(z -A) -1 || = +∞.

Definition of pseudospectra

Definition of the -pseudospectrum σ (A)

Let A ∈ C(X) and > 0 be arbitrary.

In [START_REF] Trefethen | Spectra and Pseudospectra[END_REF], p. 31, the authors give the following equivalent definitions.

Definition 7. The -pseudospectrum of A is the set of z ∈ C satisfying any of the conditions

||(z -A) -1 || > -1 , (71) 
z ∈ σ(A + E) for some E ∈ B(X) with ||E|| < , (72) 
z ∈ σ(A), or ||(z -A)u|| < for some u ∈ D(A) with ||u|| = 1. ( 73 
)
If z and u satisfy the last equation they are called -pseudoeigenvalue and -pseudoeigenvector, respectively, for the operator A. The pseudospectra of A is the family {σ (A) } >0 .

Trivial pseudospectra

A closed operator T is said to have a trivial pseudospectra if, for some positive constant κ,

||(T -z) -1 || ≤ κ dist(z, σ(T )) for all z ∈ C/σ(T ) (74) 
(cf [START_REF] Henry | Pseudospectra of the Schrödinger operator with discontinuous complex potential[END_REF], section 2.3).

Examples

Example 3. The virtual eigenvalues of J. Arazy and L. Zelenko [START_REF] Arazy | Virtual eigenvalues of high order Schrödinger operator[END_REF] are in the pseudospectra of (-∆) , in X = L 2 (R d ), ∈ N, 2 ≥ d. Indeed, they consider the operator (see also [START_REF] Huet | A survey of topics related to partial differential equations[END_REF], p.132):

H γ = (-∆) + γV (x), D(H γ ) = {u ∈ L 2 (R d )|u ∈ W 2l 2,loc (R d ), H γ u ∈ L 2 (R d )}, (75) 
γ ∈ R, x ∈ R d → V (x) ∈ R, (76) 
where V (x) ≥ 0 is assumed to be continuous and to satisfy lim |x|→∞ V (x) = 0. Here A = (-∆) is self-adjoint and, therefore, closed, the multiplication operator V. = V (x) is bounded and belongs to B(X). Their virtual eigenvalues are the eigenvalues of H γ , where

||γV || B(X) = |γ| V B(X) ≤ , (77) 
as soon as

|γ| ≤ ||V || B(X) . (78) 
Therefore, for > 0, σ(H γ ) is the -pseudospectra of (-∆) l when the inequality (78) is satisfied.

Example 4. (Cf [START_REF] Trefethen | Spectra and Pseudospectra[END_REF] p. [START_REF] Trefethen | Spectra and Pseudospectra[END_REF][START_REF] Waine | An introduction to KAM theory[END_REF][START_REF] Waterstraat | Spectral flow and bifurcation for a class of strongly indefinite elliptic systems[END_REF]. Let A be the operator acting in X = L 2 (0, d), d > 0, whose domain is

D(A) = {u ∈ L 2 (0, d), u(d) = 0, u is absolutely continuous (ac) }, (79) 
such that Au = du dx and u(d) = 0, for u ∈ D(A).

We recall that a function F (x) is absolutely continuous in an interval (a, b) if it is the indefinite integral of a function f ∈ L 1 loc (cf. [START_REF] Titchmarsh | The Theory of Functions[END_REF] Section 11.7). The spectrum σ(A) is empty, since, for z ∈ C, u(d) = e zd = 0. Nevertheless, the pseudospectra of A are "enormous". The resolvent (z -A) -1 exists as a bounded operator, and, for any z ∈ C,

u(x) = (z -A) -1 v(x) = d x e z(x-s) v(s)ds, x ∈ (0, d).
(81)

The equation (81) means that (z -A) -1 v(x) is the restriction to (0, d) of the convolution product v * g where v and g are regarded as functions in L 2 (-∞, +∞) with

g(x) = e zx for x ∈ [-d, 0], 0 otherwise . ( 82 
)
By means of the Fourier transform in L 2 (R), (81) leads to

||u|| ≤ ||v * g|| = || v * g|| = ||v|| ||ĝ|| ≤ ||v|| sup ω∈R |ĝ(ω)| = ||v|| e -dRe -1 |Rez| , (83) 
where || . || denotes the norm in L 2 (-∞, +∞). Then

||(z -A) -1 || ≤ 1 Rez , (84) 
for Rez > 0, and

||(z -A) -1 || = e d|Rez| 2|Rez| + O( 1 |Rez| ), (85) 
for Rez < 0. These results imply ( [START_REF] Trefethen | Spectra and Pseudospectra[END_REF], Theorem 5.1) that the pseudospctra of A are halfplanes of the form

σ (A) = {z ∈ C : Rez < c }, (86) 
with c ∼ (log /d) if → 0 if → ∞. ( 87 
)
Example 5. The ghost solution of D. Domokos and P. Holmes (Cf. [START_REF] Domokos | On nonlinear boundary-value problems: ghosts, parasites and discretizations[END_REF]). In [START_REF] Trefethen | Spectra and Pseudospectra[END_REF], p. 98-99, this ghost solution is presented in the following way. The author considers the linear differential equation

Au = u + xu = 0, (88) 
acting on sufficiently smooth functions in L 2 (-L, +L) and associated to the boundary con-

ditions u(-L) = u(L) = 0. ( 89 
)
The function

u(x) = e -x 2 2 -e -L 2 2 ( 90 
)
satisfies the boundary conditions (89) and the equation

Au = u (x) + xu(x) = xe -L 2 2 (91) 
i.e. (88) for all x, up to an error no greater than Le -L 2 2 . Therefore

|Au| ≤ Le -L 2 2 , ( 92 
)
and 0 belongs to the -pseudospectrum of A for a value of that decreases exponentially as L → ∞.

Example 6. The non-self-adjoint (NSA) harmonic oscillator The harmonic oscillator The harmonic oscillator is the closure, in L 2 (R), of the operator H a defined by

(H a f )(x) = -f (x) + ax 2 f (x), ( 93 
)
for f in the L. Schwartz's space S(R), with a > 0. The operator H a is essentialy selfadjoint on S (i.e. its closure is self-adjoint in L 2 (R)), and the resolvent operators are compact. Moreover, the spectrum of H a is

{(2n + 1)a 1/2 : n = 0, 1, ...}, (94) 
each eigenvalue λ is of multiplicity 1, and the corresponding eigenfunctions are

φ n (x) = H n (a 1/4 x)e -a 1/2 x 2 /2 , ( 95 
)
where H n is the hermite polynomial of degree n. After normalization, the eigenfunctions provide a complete orthonormal set in L 2 (R).

The non-self-adjoint (NSA) harmonic oscillator Reminder: Definitions Cf. [START_REF] Davies | Linear operators and their spectra[END_REF]. Let X be a Hilbert space with inner product (f, g) → f, g . A sequence {x j }, in X, is a normalized basis if it is a basis with ||x j || = 1 for each j.

An unconditional basis is a basis with the property that every permutation of the sequence is also a basis.

A sequence {f n } ∞ n=1 , in X, is said to be an Abel-Lidskii basis in X, if it is a part of a biorthogonal pair {f n }, {φ n } such that, for all f ∈ X, one has

f = lim →0 ∞ n=1 e -n f, φ n f n (96) 
Remark 10. If X is a Hilbert space, a sequence {x j } is an unconditional basis if and only if there exists a bounded invertible operator S on X such that {e j = S -1 x j } is a complete orthonormal set in X. It is also called Riesz basis.

The NSA is the operator H a defined by (93) where a is allowed to be complex. In this case, the eigenvalues are complexe, but they are given by the same formula (94). It is proved, in E.B. Davies [START_REF] Davies | Linear operators and their spectra[END_REF], Corollary 14.5.2, that the sequence of eigenfunctions φ n cannot be an Abel-Lidskii basis and Theorem 14.5.4, that, if 0 < θ < arg(a), the resolvent R r,θ = (re iθ I -H a ) -1 is such that ||R r,θ || diverges at a super-polynomial rate, as r → ∞ and if arg(a) < θ < 2π, then ||R r,θ || → 0 as r → ∞. Therefore, given > 0, there exists r o ( ) such that, for r > r o , ||R r,θ || > -1 i.e. the -pseudospectra of H a is {z = re iθ , 0 < θ < arg(a), r > r o }.

Remark 11. In [START_REF] Davies | Pseudo-spectra, the harmonic oscillator and complexes resonances[END_REF], E.B. Davies considers the harmonic oscillator (93), when a is complexe, with Re a > 0 and Im a > 0. He introduces two real positive parameters η and α and constructs a family of pseudoeigenfunctions f η concentrated around the point x 0 = αη, associated to the pseudoeigenvalues

z η = η 2 + aα 2 η 2 -iaα such that lim η→+∞ ||(H a -z η ) -1 || = +∞. ( 97 
)
He also proves that the eigenfunctions of H a do not form an unconditional basis in L 2 (R).

Example 7. In [START_REF] Henry | Pseudospectra of the Schrödinger operator with discontinuous complex potential[END_REF], R. Henry and D.Krejčiřík consider, in L 2 (R), the operator

H = - d 2 dx 2 + i sign (x), (98) 
with domain

D(H) = W 2,2 (R). ( 99 
)
It is closed and densely defined, but, neither self-adjoint nor normal. However it satisfies H * = T HT , H * = PHP, and [H, PT ] = 0 (PT -symmetry),

where H * denotes the adjoint of H and T and P are, respectively, defined by T ψ = ψ, (Pψ)(x) = ψ(-x). Its numerical range Num(H) (i.e. the set of all complex numbers (ψ, Hψ) with ψ ∈ D(H) and ||ψ|| = 1), is

Num(H) = S, where S = [0, +∞) + i(-1, 1). (101) Moreover, σ(H) = σ ess (H) = [0, +∞) + i{-1, +1}. (102) 
They show that H cannot have trivial pseudospectra. For that, they set z = τ + iδ and they construct a function f 0 such that

||(H -z) -1 || ≥ ||(H -z) -1 f 0 || ||f 0 || ≥ φ(τ, δ) ∼ τ √ 1 -δ 2 , (103) 
as τ → ∞, where φ(τ, δ) is a suitable function. For z real, positive (δ = 0)

||(H -z) -1 || ≥ ||(H -z) -1 f 0 || ||f 0 || ≥ φ(τ, 0) ∼ τ, (104) 
and dist(z, σ(H)) = 1. The equation (104) shows that, for any positive constant C, there exists a z 0 ∈ C/(σ(H), real, positive, such that

||(H -z 0 ) -1 || > C dist(z 0 , σ(H)) (105) 
i.e. (74) cannot hold inside S.

However, H has a non-trivial pseudospectra. Indeed, thanks to (104), given > 0, there exist

z ∈ C/σ(H) such that ||(H -z) -1 || > -1 .
Remark 12. In the references of this section, the authors present nice figures of the pseudospectra.

7 Metrics for closed operators in a Hibert space 7.1 Product metric (Cf. L. Schwartz [START_REF] Schwartz | Analyse, Topologie Générale et Analyse Fonctionnelle[END_REF] Chapitre VII). Let (E 1 , d 1 ) and (E 2 , d 2 ) two metric spaces. It is possible to introduce, on the product E 1 × E 2 , the following equivalent metrics δ = Max (d 1 , d 2 ) and d 1 + d 2 , respectively defined by

δ((x 1 , x 2 ), (y 1 , y 2 )) = Max(d 1 (x 1 , y 1 ), d 2 (x 2 , y 2 )) (106) 
and

(d 1 + d 2 )((x 1 , x 2 ), (y 1 , y 2 )) = d 1 (x 1 , y 1 ) + d 2 (x 2 , y 2 ). ( 107 
)
Remark 13. Let H, K be two Hilbert spaces. The product H × K with the scalar product

((h 1 , k 1 ), (h 2 , k 2 )) H×K = (h 1 , h 2 ) H + (k 1 , k 2 ) K (108) 
is a Hilbert space. On the other hand, the topological direct sum H ⊕ K is the Hilbert space {h ⊕ k = (h, k) ∈ H × K} with the scalar product

h 1 ⊕ k 1 , h 2 ⊕ k 2 = (h 1 , h 2 ) H + (k 1 , k 2 ) K . (109) 
and the map (h, k)

∈ H × K → h ⊕ k ∈ H ⊕ K is an isomorphism (cf. [14], p.112)
7.2 Metrics for closed linear subspaces of a Hilbert space (Cf. Gohberg-Krein [START_REF] Gohberg | Fundamental aspects of defect numbers, root numbers and indexes of linear operators[END_REF] and Cordes-Labrousse [START_REF] Cordes | The invariance of the index in the metric space of closed operators[END_REF]). Let H be a Hilbert space and S, T two closed subspaces of H.

d(T, S) = sup x∈S,||x||=1 d(x, T) + sup x∈T,||x||=1 d(x, S) (110) 
defines a metric on the totality of closed linear subsets of H. Equivalent metrics are defined by g(T, S) (112)

= ||P T -P S ||, (111) where P 

Metrics for closed operators

Let A be a closed linear operator (or, simply, closed operator) in the Hilbert space H, with domain D(A), and S(A) be the graph of A i. e. the set of pairs (u ∈ D(A), Au) in H × H. With the product metric, H × H is a Hilbert space (cf. subsection 7.1), and it is well known that A is closed in H, if and only if its graph S(A) is a closed linear manifold in H × H (cf. Kato [START_REF] Kato | Perturbation theory for linear operator[END_REF] p. 164) or, in terms of topological direct sum, if S(A) is a closed linear subspace of the direct sum h = H ⊕ H. 

d(A, B) = d(S(A), S(B)), g(A, B) = g(S(A), S(B)), (113) and θ 
(A, B) = θ(S(A), S(B)) (114) 
8 Spectral flow

There are several definitions of spectral flow in the literature.

A roughly speaking description

In [START_REF] Fitzpatrick | Spectral flow and bifurcation of critical points of strongly-indefinite functionals, Part I. General Theory[END_REF], P.M. Fitzpatrick et al. present the following description of the spectral flow. Let H be a real separable Hilbert space, Φ 0 (H) be the space of all (linear) Fredholm operators of index 0 acting on H, (i.e. its kernel N (T ) has finite dimension nul(T ), its range R(T ) is closed and has a finite codimension def (T ); the index of T is i(T ) = nul (T )-def (T ) ) and Φ S (H) the subset of Φ 0 (H) of self-adjoint and, therefore closed, operators. Thanks to subsection 7.3, Φ S (H) is a topological space. Let I = [a, b] be a real interval. For a path i.e. a continuous map L : λ ∈ I → L λ ∈ Φ S (H), the spectral flow sf(L, I) is the number of negative eigenvalues of L a that become positive as the parameter λ travels from a to b minus the number of positive eigenvalues of L a that become negative.

A similar description was presented and justified by K. Furutani and N. Otsuki in [START_REF] Furutani | Spectral flow and Maslov index arising from Lagrangian intersection[END_REF] , when H is a separable complex Hilbert space and Φ S (H) is the space of bounded Fredholm, self-adjoint operators with index 0.

Spectral flow via the Cayley transform

(Cf. B. Booss-Bavnbek et al. [START_REF] Booss-Bavnbek | Unbounded Fredholm operators and spectral flow[END_REF]). Let H be a separable complex Hilbert space with the scalar product ( , ). the authors denote by C sa the space of closed, densely defined operators T acting in H, that are self-adjoint, and by CF sa the subspace of C sa that are Fredholm .

Several topologies have been introduced on C sa .

The gap topology

Let T ∈ C sa , and P denotes the orthogonal projection onto the graph of T in H × H. The gap metric is δ(T 1 , T 2 ) = ||P 1 -P 2 || (where ||.|| denotes the norm in the space B of bounded operators acting in H)

The "Cayley transform" metric

For a densely defined operator T in H, the Cayley transform κ is defined by

T → κ(T ) = (T -i)(T + i) -1 (115) 
Let U be the subspace of B of unitary operators H → H. It is proved that

κ(CF sa ) = {u ∈ U|(U + I)is Fredholm and (U -I)is injective} =: F U inj , (116) 
moreover the metric δ, on CF sa , defined by

δ(T 1 , T 2 ) = ||κ(T 1 ) -κ(T 2 )|| (117)
is equivalent to the metric δ.

The metric γ

On C sa , the metric γ, defined by

γ(T 1 -T 2 ) = ||(T 1 + i) -1 -(T 2 + i) -1 || (118) 
is uniformly equivalent to the gap metric, and δ(T 1 , T 2 ) = 1 2 γ(T 1 , T 2 ) ( [START_REF] Booss-Bavnbek | Unbounded Fredholm operators and spectral flow[END_REF], Theorem 1.1).

8.2.4

The map wind

Let F U = {U ∈ U| -1 ∈ spec ess U ( i.e. (U + 1)is Fredholm)} The following "description" (definition) of wind is given ([7], Proposition 2.1): Let L : I = [0, 1] → F U be a continuous path. There is a partition 0 = t 0 , < t 1 < ... < t n = 1 of [0, 1], and positive real numbers 0 < j < π, j = 1, ..., n, such that ker(f (t)-e i(π± j ) = {0}.

Then wind(f ) is defined by

wind(f ) = n j=1 k(t j , j ) -k(t j-1 , j ) (119) 
where

k(t, j ) = 0≤θ< j dim ker(f (t) -e i(π+θ) ) ( 120 
)
This definition is independent of the choice of the partition of the interval and of the barriers j .

Definition of the spectral flow of L, sf (L) : 

sf (L) = sf (L, I) = wind(κ • L) (121) 

Spectral flow and bifurcation

Differentiable functions in Banach spaces

Let E and F be two Banach spaces and U a neighborhood of 0 in E. We say that the maps

f 1 : U → F and f 2 : U → F are tangent at a ∈ U if m(r) = sup ||x-a||≤r ||f 1 (x) -f 2 (x)|| (122) satisfies the condition lim r→0,r>0 m(r) r = 0 or m(r)=o(r) (123) Definition 9. A map f : U → F is differentiable at the point a ∈ U if there exists a g ∈ L(E, F ) such that ||f (x) -f (a) -g(x -a)|| F = o(||x -a|| E ) as x → a (124) 
where L(E, F ) is the space of linear continuous maps from E to F with its usual norm. The map g is called the (Fréchet) derivative of f at the point a and is denoted by f (a) or Df (a). (Cf. H. Cartan [START_REF] Cartan | Calcul Differentiel, Hermann, Collection Méthodes[END_REF] )

Derivative of second order (Cf. [START_REF] Dieudonné | Eléments d'analyse. Tome I: Fondements de l'Anlyse Moderne[END_REF]. Let f be a continuously differentiable function in an open set A of a Banach space E to a Banach space F. Then Df is a continuous map from A to L(E, F ). If Df is differentiable at the point a ∈ A, f is said to be twice continuously diffferentiable at a ∈ A and the derivative of Df at the point a is called the second derivative of f at a, and is denoted by f (a) or D 2 f (a).

Partial derivatives

Let E 1 , E 2 , F be Banach spaces, E = E 1 × E 2 ,
A be an open set of E, and f a differentialbe map from A to F and a = (a 1 , a 2 ) ∈ A Definition 10. The map f is said differentiable, at the point (a 1 , a 2 ), with respect to the first [resp. second variable] if the partial map

x 1 → f (x 1 , a 2 ) [resp. x 2 → f (a 1 , x 2 )] is differentiable in a 1 [resp. a 2 ]
. These derivatives are called partial derivative with respect to the first variable [resp. the second variable] at the point (a 1 , a 2 ) and are denoted by

D x1 f (a 1 , a 2 )(∈ L(E 1 , F )) [resp. D x2 f (a 1 , a 2 )(∈ L(E 2 , F ))]. Moreover the gradient of f at the point (a 1 , a 2 ) is defined by ∇f (a 1 , a 2 ) = D x1 f (a 1 , a 2 ) × D x2 f (a 1 , a 2 ) ∈ L(E 1 , F ) × L(E 2 , F ) (125) 
Remark 14. The above definition can be extented, in the same way, when E is a product of more than two spaces.

Bifurcation

(Cf. [START_REF] Fitzpatrick | Spectral flow and bifurcation of critical points of strongly-indefinite functionals, Part I. General Theory[END_REF]) Let f (I ×U ) → X be a continuously differentiable mapping defined on the product of the interval I = [a, b] with a neighborhood U of the origin in a real Banach space X, such that f (λ, 0) = 0 for all λ ∈ I. Solutions of the equation f (λ, x) = 0 of the form (λ, 0), are called trivial. A bifurcation point for solutions of the equation f (λ, x) = 0 is a point λ * ∈ I such that every neighborhood of (λ * , 0) contains nontrivial solutions of this equation. Let, for λ ∈ I, L λ = D x (f (λ, x))(λ, 0) ∈ L(X, X) be the derivative of f (λ, x) with respect to x, at the trivial solution. By the implicit function theorem, bifurcation can occur only at points where L λ is singular i.e. is noninvertible. The following result is presented in P. M. Fitzpatrick et al. [START_REF] Fitzpatrick | Spectral flow and bifurcation of critical points of strongly-indefinite functionals, Part II. Bifurcation of Periodic Orbits of Hamiltonian Systems[END_REF] Theorem A. Let I = [a, b] be an interval of real numbers, X be a real separable Hilbert space and U be a neighborhood of I × {0} in R × X on which the C 2 function ψ : (λ, x) ∈ U → ψ(λ, x) ∈ R has the property that, for each λ ∈ I, 0 is a critical point of ψ λ ≡ ψ(λ, . ). It is assumed that the Hessian L λ of ψ λ , at 0, is Fredholm, and that L a and L b are nonsingular. Then, if the spectral flow of {L λ } on the interval I is nonzero, every neigborhood of I × {0} contains points of the form (λ, x) where x = 0 is a critical point of ψ λ .

Examples Example 8. ([17])

Let I = [a, b] and H = (λ, t, u) ∈ I × R × R 2n → H(λ, t, u) ∈ R be a twice continuously differentiable function, 2π-periodic in t with H(λ, t, 0) ≡ 0. The following Hamiltonian system for the differentiable function u : R → R 2n , is considered:

Ju (t) + ∇ u H(λ, t, u(t)) = 0, u(0) = u(2π) (126) 
where

J = 0 -Id n Id n 0 ( 127 
)
is the symplectic 2n × 2n matrix. The authors make assumptions under which they can apply their previous results [START_REF] Fitzpatrick | Spectral flow and bifurcation of critical points of strongly-indefinite functionals, Part I. General Theory[END_REF] and show that bifurcation of 2π-periodic orbits from the branch of equilibrium arises. Here

X = H 1 2 ≡ H 1 2 (S 1 , R 2n ), (128) 
the function ψ : I × H 

3. 1

 1 Definition(Cf.[START_REF] Axler | Harmonic Function Theory[END_REF] p.172). Let Ω denote an open subset of R n , and p a number satisfying 1 ≤ p < ∞.

  S , P T are the orthogonal projections on S and T, respectively, and by θ(T, S) = Max{ sup x∈S,||x||=1 d(x, T), sup x∈T,||x||=1 d(x, S)}.

Definition 8 .

 8 ([10], Definition 3.1). If A and B are closed operators acting in H, then the metrics d(A, B) and g(A, B) are defined by

8. 2

 2 .5 Homotopy (Cf. J. Dieudonné[START_REF] Dieudonné | Eléments d'analyse. Tome I: Fondements de l'Anlyse Moderne[END_REF]). Let L 1 and L 2 two paths defined in the same intervalle I = [a, b], and A an open set in C, such that L 1 (I) ⊂ A and L 2 (I) ⊂ A. An homotopy of L 1 to L 2 in, A, is a continuous map ϕ : (t, ξ) ∈ I × [α, β](α < β ∈ R) → A such that ϕ(t, α) = L 1 (t) and ϕ(t, β) = L 2 (t) in I. Then the two paths L 1 and L 2 are said to be homotopes in A The spectral flow defined by (121) is invariant under homotopies leaving the end points fixed ([7] Proposition 2.3).

1 2. 2 ,

 12 Ju (t), v(t) dt, ∀v ∈ H The Hessian L λ of ψ(λ, . ) defined by L λ = D u F (λ, 0), whereF (λ, u) = ∇ u ψ(λ, u), (λ, u) ∈ I × H 1 (130)is Fredholm. The spectral flow sf (L, I) of the path L = {L λ } λ∈I is nonzero.Example 9. (Cf. N. Waterstraat[START_REF] Waterstraat | Spectral flow and bifurcation for a class of strongly indefinite elliptic systems[END_REF]). Let Ω be a bounded domain in R N , N ∈ N, with a smooth boundary∂Ω, I = [0, 1]. Let a, b, c : I × Ω → R and G : I × Ω × R 2 → R be C 2 -functions. Systems of elliptic partial differential equations of the form    -∆u = b λ (x)u + c λ (x)v + G v (λ, x, u, v) in Ω -∆v = a λ (x)u + b λ (x)v + G u (λ, x, u, v) in Ω u = v = 0 on ∂Ω (131)are considered. Here G u (λ, x, 0, 0) and G v (λ, x, 0, 0) are assumed to be 0 for all (λ, x) ∈ I ×Ω. Aditionnal assumptions are made on G and its derivatives such that the following results are justified. Let D 2 G(λ, x, u, v) denote the Hessian matrix of G(λ, x, . , . ) : R 2 → R, at the point (u, v) ∈ R 2 with D 2 G(λ, x, 0, 0) = 0. Let E be the Hilbert space H 1 0 (Ω, R) × H 1 0 (Ω, R) with the corresponding scalar product . , . E , and for z = (u, v) ∈ E, define the mapf λ (z) = Ω ∇u, ∇v dx -1 2 Ω (a λ (x)u 2 + 2b λ (x)uv + c λ (x)v 2 dx -Ω G(λ, x, u, v)dx (132)which is C 2 . Moreover, f λ (0) = 0 for all λ ∈ I. For z = (u, v) ∈ E, the map z = (ũ, ṽ) ∈ E toD 2 0 f λ (z, z) = Ω ∇u, ∇ṽ dx + Ω ∇ũ, ∇v dx -Ω a λ (x)uũ + b λ (x)(ũv + uṽ) + c λ (x)vṽ dx (133) is a continuous linear form on E. From the Riesz representation theorem, there exists L λ (z) ∈ E such that L λ z, z E = D 2 0 (f λ (z, z)) z, z ∈ E,(134)and L λ ∈ Φ S (E). Therefore, the path L = {L λ |λ ∈ I} is a path of bounded linear selfadjoint, Fredholm operators and the spectral flow sf (L, I) is well defined. It is proved that if the linearized systems   -∆u = b λ (x)u + c λ (x)v in Ω -∆v = a λ (x)u + b λ (x)v in Ω u = v = 0 on ∂Ω(135)have no nontrivial solution for λ = 0 and λ = 1, then the spectral flow sf (L, I), estimated in terms of the coefficients of (135), is nonero. This implies the existence of a bifurcation point λ * ∈ (0, 1) for the family of equations (131) ( [37], Theorems 2.1 and 4.2 ).
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