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In the last 10 years, it has been shown in various types of experiments that it is possible to induce biological
effects in cells using the torque generated by magnetic nanoparticles submitted to an alternating or a rotating
magnetic field. In biological systems, particles are generally found under the form of assemblies because they
accumulate at the cell membrane, are internalized inside lysosomes, or are synthesized under the form of beads
containing several particles. The torque undergone by assemblies of single-domain magnetic nanoparticles has not
been addressed theoretically so far and is the subject of the present article. The results shown in the present article
have been obtained using kinetic Monte Carlo simulations, in which thermal activation is taken into account,
so the torque undergone by ferromagnetic and superparamagnetic nanoparticles could both be simulated. The
first system under study is a single ferromagnetic particle with its easy axis in the plane of the rotating magnetic
field. Then, elements adding complexity to the problem are introduced progressively and the properties of the
resulting system presented and analyzed: random anisotropy axes, thermal activation, assemblies, and finally
magnetic interactions. The most complex studied systems are particularly relevant for applications and are
assemblies of interacting superparamagnetic nanoparticles with randomly oriented anisotropy axes. Whenever
it is possible, analytical equations describing the torque properties are provided, as well as their domain of
validity. Although the properties of an assembly naturally derive from those of single particles, it is shown here
that several of them were unexpected and are particularly interesting with regard to the maximization of torque
amplitude in biological applications. In particular, it is shown that, in a given range of parameters, the torque
of an assembly increases dramatically in the direction perpendicular to the plane of the rotating magnetic field.
This effect results from a breaking of time reversal symmetry when the field is rotated and is comprehensively
explained. This strong enhancement occurs only if the magnetic field rotates, not if it oscillates. When this
enhancement does not occur, the total torque of an assembly scales with the square root of the number of particles
in the assembly. In the enhancement regime, the total torque scales with a power exponent larger than 1/2. It is
also found that, in superparamagnetic nanoparticles, this enhancement is induced by the presence of magnetic
interactions so that, in a rather large range of parameters, interacting superparamagnetic particles display a much
larger torque than otherwise identical ferromagnetic particles. In all cases studied, the conditions required to
obtain this enhancement are provided. The concepts presented in this article should help chemists and biologists
in synthesizing nano-objects with optimized torque properties. For physicists, it would be interesting to test
experimentally the results described in this article. For this purpose, torque measurements on well-characterized
assemblies of nanoparticles should be performed and compared with numerical simulations.

DOI: 10.1103/PhysRevB.94.184420

I. INTRODUCTION

Magnetic nanoparticles (MNPs) have several properties
which can be used in biology [1,2]. Submitted to a high-
frequency magnetic field, MNPs release heat—the so-called
magnetic hyperthermia—which can be used to destroy cancer
cells [3], release drugs [4], and activate gene expression [5],
neurons [6] or other biological processes. When placed in a
magnetic gradient, they generate a force which can be used
to enhance calcium influx inside cells, to improve transfection
rates for gene therapy, stem cell differentiation, and tissue
engineering [7]. This force can also be used to manipulate
molecules, to stimulate the growth of bone cells or neurons
[1,8], to drive drug delivery [9], or to extract molecules
captured by MNPs in bioseparation processes.

*julian.carrey@insa-toulouse.fr

When placed in a homogeneous magnetic field, under
certain conditions, MNPs also experience a torque, which is
for instance used to twist molecules [10], degrade proteins,
activate enzymes, trigger chemical reactions, or activate cell
growth [1,2,11–14]. Recently, it has also been observed that
it was possible to induce the death of cancer cells using
MNPs internalized inside lysosomes using a small-amplitude
(20 mT), low-frequency rotating magnetic field [15]. It is not
unreasonable to expect in the future triggering a large variety
of biological signals using this principle [1,2].

Calculating the torque undergone by MNPs submitted to a
magnetic field is not only useful to interpret quantitatively
such experiments but should also permit prediction of the
parameters maximizing the torque, which is especially useful
when the final objective is to destroy cancer cells. To be
relevant for biological applications, calculations should be
performed on assemblies of MNPs. Indeed, in biological
systems, one rarely faces isolated objects: MNPs have a strong
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tendency to form aggregates at the surface of cell membranes;
when internalized inside cells, they often accumulate inside
lysosomes, where they are generally well packed; finally,
commercial or laboratory-synthesized MNPs are sometimes
obtained in the form of beads containing several MNPs.

Several theoretical papers of interest have addressed the
torque, displacement, and hysteresis loops of magnetic objects
inside an alternating or rotating magnetic field [16–22].
References [18–20]—motivated by an application in magnetic
hyperthermia—were more focused on the shape and area of
the hysteresis loop than on the torque amplitude. In Ref. [21],
the authors calculated the torque undergone by magnetic
microdisks presenting a vortex state. In Ref. [22], the rotation
speed of a MNP in a fluid was calculated using linear response
theory. Finally, in Ref. [17], M. M. van Oene et al. have
used an approach similar to the one used here. They provide
complete results of the torque undergone by MNPs using
several models, and in particular that of Stoner-Wohlfarth,
which is very appropriate for describing MNPs. However,
when dealing with an assembly of N MNPs, the authors
hypothesize that all the anisotropy axes of the MNPs are
parallel. In this case, the torque of the assembly is simply
N times the torque of a single MNP. However, in real systems,
this hypothesis is rarely verified, so the case of anisotropy axis
randomly oriented in space should be studied to be applicable
to biology experiments.

One could a priori think that this additional hypothesis
should not change the problem dramatically and that the final
results would be approximately the same as with parallel axes,
except that the total torque would simply be multiplied by
a given constant factor. The objective of this article is to
show that this is not the case, and that the results obtained for
an assembly of MNPs with randomly oriented axes are very
different from the ones obtained for single MNPs. For instance,
for single MNPs, maximizing the torque simply requires maxi-
mizing the anisotropy and/or the magnetic field. In an assembly
of MNPs, it will be shown that an anisotropy or magnetic field
that is too large decreases the torque. Also, it will be shown
that, in certain conditions, assemblies of superparamagnetic
NPs generate a larger torque than ferromagnetic ones, which
is never the case for isolated MNPs. Although a few results,
which will be presented below, could appear counterintuitive at
first sight, it will be shown that most of them can be understood
qualitatively and sometimes quantitatively.

To perform these theoretical studies, a home-made kinetic
Monte Carlo program was used. The main interest of this
algorithm is that it takes into account thermal activation,
so that MNPs in the ferromagnetic and superparamagnetic
regime can be simulated indifferently without any special
assumption. This program has proven to be very useful in
magnetic hyperthermia for theoretical studies on the heating
power of assemblies of interacting MNPs and in interpreting
experimental results [23,24]. The second interest of this
program is the implementation of magnetic interactions, which
will also be addressed in this article, because it is crucial in
assemblies of MNPs.

This article is organized as follows. The simulations will be
presented briefly, and various systems will be studied, starting
from single ferromagnetic MNPs with their easy axes in the
plane of the rotating field. Then, elements adding complexity

will be introduced progressively: random axes, thermal activa-
tion, assembly of particles, and magnetic interactions. Finally,
given the lengthiness of this article, a summary of the main
results will be provided before concluding.

II. BASIC THEORY AND SIMULATIONS USED

The magnetic properties of the MNP assembly have been
calculated using a kinetic Monte Carlo program, which has
been described in detail in Ref. [24]. The only modifications
made to the software described in that reference are: (i) the
possibility of rotating a constant norm magnetic field inside
a plane and (ii) calculation of the XYZ components of the
magnetization so that the XYZ components of the torque can
also be calculated. A brief summary of the key ingredients of
the simulations are presented thereafter.

This paper is restricted to the case of immobilized single-
domain MNPs. Perfectly monodisperse MNPs of diameter d

and volume V , with a uniaxial anisotropy Keff and displaying
a magnetization per unit volume MS , are considered. We
will also always remain in the two-level approximation—
the magnetization can only have two possible positions—so
the excited states into a potential well are not taken into
consideration. With these approximations, the energy of a
MNP is given by

E(θ,φ) = KeffV sin2(θ ) − μ0MSV Htot cos(θ − φ), (1)

where μ0Htot is the norm of the magnetic field
−−−→
μ0Htot acting

on the MNP, θ is the angle between the easy axis and
magnetization, and φ is the angle between the easy axis and−−−→
μ0Htot [see Fig. 1(a)].

In most cases studied here, an external rotating magnetic
field

−−−→
μ0Hext of norm μ0Hmax and frequency f is applied to

the MNP assembly. In this case, if the magnetic field rotates
in the, say, XY plane, the X and Y components of

−−−→
μ0Hext are

given by, respectively,

μ0H
X
ext = μ0Hmax cos (2πf t) (2)

and

μ0H
Y
ext = μ0Hmax sin (2πf t). (3)

In one restricted part of the article, the case of an oscillating
magnetic field will be studied. In this case, if the magnetic field
is applied in the, say, X direction, the X component of

−−−→
μ0Hext

is given by

μ0H
X
ext = μ0Hmax cos (2πf t), (4)

and the Y component is null.
In the article, the dipolar interactions between MNPs will

sometimes be neglected and sometimes taken into account. In
the former case,

−−−→
μ0Htot = −−−→

μ0Hext. In the latter case,
−−−→
μ0Htot

is the sum of
−−−→
μ0Hext and of the dipolar field

−−−−→
μ0Hdip created by

the other NPs. The latter is calculated using

−−−−→
μ0Hdip = μ0MSV

4π

∑
i �=j

3(−→mj · −→
eij )−→eij − −→

mj

r3
ij

, (5)

where −→
eij is the unitary vector joining two NPs, −→

mj is the
unitary vector linked to the magnetization orientation, and
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FIG. 1. (a) Schematic of a NP illustrating the angles and axes used in the main text. (b) Torque undergone by a single ferromagnetic NP
(T = 0 K) submitted to an alternating magnetic field with φ = π

2 . Dots are simulations; line is calculated using Eq. (7). (c, d) Torque undergone
by a single ferromagnetic NP (T = 0 K) submitted to a rotating field of (c) 1 mT and (d) 1 T. Dots are simulations. Line is calculated using (c)
Eq. (9) and (d) Eq. (10).

rij the distance between two NPs. This sum is calculated
exactly without Ewald summation or a cutoff radius.

Using the algorithm described in Ref. [24], the magne-
tization of each MNP is calculated as a function of time.
The algorithm takes into account thermal activation so that
thermally activated jumps between the two energy minima
over the energy barrier are allowed and taken into account
when temperature T > 0. Once the XYZ components of
magnetization for each particle have been calculated, the
total magnetic moment of the assembly −→

m is calculated by
performing a vector addition. Finally, the torque −→τ undergone
by the MNP assembly is calculated using

−→τ = μ0
−→
m × −−→

Hext. (6)

In all the results shown in this article, when calculating the
torque undergone by MNPs under the influence of a rotating
magnetic field, a full rotation of the magnetic field is first
performed and the results laid aside because a transient regime
occurs; only the second rotation, during which a constant
regime is achieved, is recorded and treated. The reason for

the presence of this transient regime will be clarified later and
illustrated in Sec. IV B.

Unless otherwise specified, the parameters used in the sim-
ulations are Keff = 13 kJ/m3,μ0Hmax = 10 mT,MS = 0.5 ×
106 A/m, d = 10 nm,T = 300 K, and the jump attempt fre-
quency over the energy barrier v0 = 1010 Hz. The magnetic
parameters are thus those of magnetite, a widely used material
in biomedical applications.

III. TORQUE UNDERGONE BY A SINGLE PARTICLE

Here, the torque undergone by a single particle will be
presented for a few cases of interest. The objectives are
threefold: (i) to present a few cases where simple analytical
formulas for the torque are valid, (ii) to illustrate that, in these
cases, there is perfect agreement between the simulations
and the analytical formulas, which is a way to validate
our program, and (iii) to understand the physics behind
this phenomenon, starting with the simple case; it will be
shown that, even in simple cases, some nontrivial effects are
sometimes encountered.
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A. A single ferromagnetic particle with its easy axis
in the plane of the field

The case of a purely ferromagnetic particle is presented.
For that purpose, the temperature is set to T = 0 K. Since
there are no thermal fluctuations in this case, the magnetization
never jumps over the energy barrier and stays inside the local
or global energy minimum. The torque can be calculated
analytically in the case where an alternating magnetic field is
applied perpendicularly to the easy axis of the MNP, i.e., with
φ = π

2 . In this case, the equilibrium position of magnetization
is found by searching the θ value for which ∂E

∂θ
= 0, leading

to sin θ = μ0MSHtot

2Keff
, and using Eq. (6),

τZ = τmax

√
1 −

(
μ0MSHtot

2Keff

)2

, (7)

with

τmax = μ0MSV Hmax. (8)

The comparison between Eq. (7) and simulations is shown
in Fig. 1(b), with μ0Hmax = 50 mT. The torque displays
a maximum since, for a large applied magnetic field, the
magnetization and magnetic field are aligned, cancelling the
torque. A perfect agreement between Eq. (7) and simulations
is found.

Another simple case is when a MNP is submitted to a
magnetic field (i) rotating in a plane including the MNP easy
axis and (ii) small enough so the particle magnetization does
not rotate under its influence (θ = 0). In this case, the torque
is simply given by

τZ = τmax sin φ, (9)

assuming that the easy axis is along the X axis defined in
Fig. 1(a) and that the field rotates in the (XY ) plane. The
comparison between simulations and Eq. (9) is shown in
Fig. 1(c). A magnetic field of 1 mT, much smaller than the
anisotropy field (see below), was used, so the magnetization
stayed along the X axis during the magnetic field rotation. With
these conditions, a perfect agreement between simulations and
Eq. (9) was found. Thus, Eq. (9) is valid only if the anisotropy
of the particle is large enough and/or the magnetic field small
enough (see below).

Finally, it was shown in Ref. [17] that, for a very large
applied magnetic field, the torque equals

τZ = KeffV sin 2φ. (10)

In Fig. 1(d), the comparison between this equation and
simulations for a magnetic field of 1 T is shown. Here again,
perfect agreement is found.

Equations (9) and (10) are two limit cases corresponding to
a low and high magnetic field, respectively; the intermediate
cases must be calculated numerically. To do so, the torque as
a function of φ has been calculated for a fixed value of Keff =
13 kJ/m3 and various values of μ0Hmax. Data for μ0Hmax in
the range 1 mT−1 T are shown in Figs. 2(a)–2(c). Figures 2(a)
and 2(b) illustrate the evolution of the magnetization angle
θ when the magnetic field rotates, and Fig. 2(c) shows the
corresponding torque amplitude. In Fig. 2(c), values of the
ratio μ0Hmax

μ0HK
are also provided, where μ0HK is the anisotropy

FIG. 2. (a–c) A single ferromagnetic NP (T = 0 K) is submitted to
a rotating magnetic field varying between 1 mT and 1 T. Its easy axis
is in the plane of the field. Keff = 13 kJ/m3, d = 10 nm. (a) Evolution
of θ as a function of φ. Initially, magnetization is at θ = 0. The dashed
pink line illustrates a rotation of the field in the opposite direction for
μ0Hmax = 30 mT. (b) Trajectory of θ for various values of μ0Hmax.
(c) Normalized torque τZ

KeffV
as a function of φ. Normalized magnetic

field values μ0Hmax
μ0HK

are given in the legend for information, but raw
magnetic field values are the same as in (a). (d) Normalized torque
τZ

τmax
for a single ferromagnetic NP (T = 0 K) submitted to a rotating

field of 50 mT with an anisotropy Keff varying between 500 J/m3 and
200 kJ/m3. Its easy axis is in the plane of the field.

field defined as μ0HK = 2Keff
MS

. For parameter values used in
Fig. 2, μ0HK = 52 mT. Similarly, the evolution of the torque
for a fixed value of μ0Hmax = 50 mT and for Keff varying
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between 500 J/m3 and 200 kJ/m3 is shown in Fig. 2(d). A
careful analysis of Figs. 2(c) and 2(d) permits extraction of
the domain of validity of Eqs. (9) and (10). Equation (9)
is valid at the condition μ0Hmax < 0.06μ0HK . When this
condition is fulfilled, the magnetization of the MNPs can be
considered fixed and is not influenced by the presence of the
rotating magnetic field. Equation (10) is valid at the condition
μ0Hmax > 12μ0HK .

The angular dependence of the torque shown in Figs.
2(a) and 2(b) presents several features, which will be of
importance in understanding the properties of MNP assemblies
discussed below. First, at low magnetic field, when μ0Hmax �
μ0HK

2 , the magnetization rotates partially with the rotating
magnetic field, but eventually comes back smoothly to its
initial position [see Fig 2(a)]. When μ0Hmax � μ0HK , the
magnetization performs a continuous rotation, approximately
following the magnetic field. For μ0Hmax � μ0HK , θ ≈ φ.
As will be clearer below, the most interesting regime occurs
when μ0HK

2 < μ0Hmax < μ0HK . This regime comes with three
features: (i) Magnetization switches during the magnetic field
rotation, going abruptly to a second equilibrium position. This
switch is associated with an abrupt change in the sign of the
torque [see Figs. 2(c) and 2(d)]. (ii) As previously noted and
illustrated in Ref. [17], there is a breaking of time reversal
symmetry: magnetic properties are not the same if the magnetic
field rotates clockwise or counterclockwise. This is illustrated
in Fig. 2(a) for μ0Hmax = 30 mT. (iii) The τZ(φ) function
is not symmetrical with respect to the abscissa axis, so the
mean value of τZ is nonzero during one full rotation. This
can be seen clearly for μ0Hmax

μ0HK
= 0.58 in Fig. 2(c) or for

Keff = 22 kJ/m3 in Fig. 2(d). This latter point is important,
and its consequences will be discussed again when studying
the properties of assemblies.

From Figs. 2(c) and 2(d), it is possible to extract the
maximum value of the torque as a function of the anisotropy
value for a constant magnetic field or reciprocally. Such data
are displayed in Fig. 3. Figure 3(a) shows the maximum
torque obtained during the rotation of the magnetic field as
a function of μ0Hmax. The two features of interest are (i)
the maximum torque τ = KeffV is reached for μ0Hmax = Keff

MS

and (ii) below the saturation, the maximum torque that a
MNP can undergo is linear with the magnetic field and is
given by

τ = μ0HmaxMSV = τmax. (11)

Similarly, Fig. 3(b) shows the maximum torque obtained
during the rotation of the magnetic field as a function of Keff

for a constant μ0Hmax. Two features of interest are evidenced:
(i) τmax is reached when Keff = μ0HmaxMS and (ii) below
saturation, the maximum torque that a MNP can undergo is
linear with its anisotropy. It is thus given by

τ = τmax
Keff

μ0HmaxMS

= KeffV. (12)

The data in Figs. 3(a) and 3(b) can thus be summarized
quite simply. The optimal matching between anisotropy
and magnetic field occurs when Keff = μ0HmaxMS . If the
anisotropy is too small compared with the magnetic field, the

FIG. 3. (a, b) The maximum value of torque obtained in Figs. 2(c)
and 2(d) are plotted as a function of (a) μ0Hmax for a constant Keff =
13 kJ/m3 (b) Keff for a constant μ0Hmax = 50 mT. In both graphs,
the vertical line displays the condition for which Keff = μ0HmaxMS.

torque is limited to KeffV ; if the magnetic field is too small,
the torque is limited to τmax.

B. A single ferromagnetic particle with randomly oriented axis

The case where a single ferromagnetic NP (T = 0 K) has
its easy axis randomly oriented in space is now studied. To
perform our calculation, the total torque |τ | undergone by a
particle submitted to a 50 mT rotating magnetic field was
calculated 25 times. We will hereafter call a “cycle” one
full rotation of the magnetic field. For each new cycle, a
different easy axis, randomly oriented in space, was drawn.
Figure 4(a) shows as an example 12 cycles calculated for
Keff = 500 J/m3. It can be observed that, for some cycles,
the maximum theoretical torque KeffV is reached, but not for
others. For each cycle, the maximum value of the torque was
determined, and then the mean value and standard deviation
of this maximum was calculated over 25 cycles. These data
are plotted in Fig. 4(b). It can be observed that these data
resemble those in Fig. 3(b), which also have been plotted in
Fig. 4(b) for comparison. However, since KeffV is not reached
for each value, the averaged value of the maximum torque
is slightly smaller. For a better visualization of these data,
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FIG. 4. (a) Normalized torque |τ |
τmax

for a single ferromagnetic
NP (T = 0 K) submitted to a rotating field of 50 mT with Keff =
500 J/m3. |τ |

τmax
as a function of time is shown for 12 different easy

axis configurations. Each configuration (referred as “Cycle number”)
corresponds to a new random orientation of the easy axis and to a 360°
rotation of the magnetic field. Each cycle is separated from the other
by a blank space, for clarity. The horizontal dashed line indicates τ =
KeffV . (b) Dots are the mean value and standard deviation, averaged
over 25 cycles, of the maximum torque reached in data similar to (a).
The line displays the data of Fig. 3(b). (c) Same data as (b) except
that |τ |

KeffV
is plotted.

FIG. 5. Illustration of a MNP (shown as a small dark grey ellipse)
with any angle between its easy axis and the plane in which the
magnetic field rotates (shown as large light grey disk). The arrows
represent various positions of the magnetic field for which φ is
maximum, φ is minimum, and φ = π/2.

Fig. 4(c) shows the data of Fig. 4(b) normalized by KeffV .
It is clear from Fig. 4(c) that the fact KeffV is not always
reached during a cycle has an anisotropy-dependant origin:
for anisotropies below 10 kJ/m3, this is often the case, but
this is extremely rare for higher anisotropies, except around
25 kJ/m3, where it appears again.

As a matter of fact, this phenomenon can be easily
understood from simple considerations, illustrated in Fig. 5:
when a MNP has a random orientation axis, the angle φ does
not vary between 0 and 2π but between a minimum and
a maximum value between which π

2 is always included. In
other words, there is always a position of the magnetic field
during its rotation for which φ = π

2 , but this is not true for
the other values. The closer a given value is to π

2 , the higher
the probability that there is a position of the field for which φ

equals this value. As a consequence, φ values near 0 or π have
a low probability. If one now looks carefully at Fig. 2(d), one
can see that the angle for which the maximum torque is reached
has a complex behavior as a function of the anisotropy, which
is clearly at the origin of the data shown in Figs. 4(b) and 4(c).
Indeed, at low anisotropy, the angle for which the maximum
torque is reached is close to π

4 and increases progressively [see
Fig. 2(d)]. In Fig. 4(c) this is associated with a reduced value of
the normalized mean torque at low anisotropy, which increases
with anisotropy. When anisotropy is in the range 10–20 kJ/m3

or is very large, the angle for which the maximum torque
is reached is close to π

2 [see Fig. 2(d)]. In Fig. 4(c), it can be
seen that, in these conditions, the maximum torque was indeed
always reached during the 25 cycles. Figure 4(c) can thus be
satisfactorily explained using Figs. 5 and 2(d).

C. Torque undergone by a superparamagnetic particle

1. Influence of thermal activation on the torque properties

The case of a superparamagnetic particle is now presented.
The temperature is thus T = 300 K in the next simulations,
to introduce thermal activation. First, simulations with the
MNP diameter varying between 5 and 50 nm have been
calculated to illustrate the progressive transition from the
superparamagnetic to the ferromagnetic regime. A single MNP
with its easy axis along the X direction is considered and
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FIG. 6. Study of the superparamagnetic regime, with T = 300 K
and μ0Hmax = 10 mT. A single particle is studied with its easy
axis along X. (a, b) Normalized torque τZ

τmax
as a function of φ for (a)

d = 50 and 20 nm and (b) d = 14 nm. (c) Average normalized torque
as a function of d . Data similar to (a) and (b) have been calculated
50 000 times and then averaged. Open dots corresponds to Eq. (18)
calculated for d = 9 and 12 nm.

submitted to a rotating field of 10 mT in the XY plane. In
Figs. 6(a) and 6(b), representative graphs of the torque are
shown for d = 50, 20, and 14 nm. For d between 30 and
50 nm, the torque is similar to that observed for a purely

ferromagnetic NP (T = 0 K). For d = 25 nm, a few thermally
activated jumps between the two equilibrium positions occur
(not shown) and become more frequent for d = 20 nm [see
Fig. 6(a)]. Figure 6(a) illustrates clearly that these jumps
are more frequent when φ is close to ±π

2 since, when the
magnetic field is perpendicular to the easy axis, the magnetic
field more efficiently lowers the energy barrier between the
two equilibrium positions. When lowering again the diameter
of the MNPs, the jumps become more frequent and occur for
any φ value, although they are still more probable when φ is
close to ±π

2 [see Fig. 6(b)]. It means that a superparamagnetic
particle in a weak external field generates a torque of changing
sign at high frequency. This frequency is not the one given
by the external magnetic field, but the one given by thermally
activated jumps. This frequency is strongly size dependant—
similar to the Néel relaxation time—and is slightly modulated
by the rotating external magnetic field because of the angular
dependence of the jump probability illustrated in Figs. 6(a)
and 6(b).

Thus, using a superparamagnetic particle is a way to apply
a high-frequency torque to an entity on which it is bounded
without applying a high-frequency magnetic field. On the other
hand, it is possible that the entity on which it is bounded—for
instance a biological membrane—acts as a low-pass filter
so that only the average value of the torque is felt, so its
calculation could be useful. Indeed, although it is not easy
to see it in Figs. 6(a) and 6(b), the two equilibrium positions
do not generate a torque with exact opposite values, and the
probabilities of being in one of the two positions are not
equal: the position in the direction of the field is always more
probable. This means that the average torque is nonzero. In
Fig. 6(c), the average value of the torque as a function of φ

and d is provided. It has been calculated by averaging 50 000
graphs similar to those shown in Figs. 6(a) and 6(b). It is clear
from this figure that the thermal activation strongly decreases
the average torque undergone by the MNP. This effect is also
enhanced by the fact that τmax strongly diminishes with d,
although this is not illustrated by Fig. 6(c), which displays the
normalized torque τZ

τmax
only.

2. Analytical expression for the average torque

An analytical expression giving the average torque under-
gone by a superparamagnetic NP as a function of the angle at
low magnetic field has been found. Without loss of generality,
let us assume that the MNP easy axis is along X. If so,
when the magnetic field is aligned along the easy axis X,
the magnetization along X is given by [25]

MX = MS tanh

(
μ0V HextMS

kBT

)
. (13)

When the magnetic field is aligned perpendicularly to the
easy axis, i.e., along Y , it can be derived from Eq. (1) that

MY = M2
Sμ0Hext

2Keff
(14)

when μ0Hext < 2Keff
MS

, and MY = MS above. We have then
hypothesized that, for a small enough magnetic field, the
magnetization for any φ would be a linear combination of
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these two equations, so that

MX = MS cos φ tanh

(
μ0V HextMS

kBT

)
(15)

and

MY = sin φ
M2

Sμ0Hext

2Keff
. (16)

Finally, using

τZ = V
(
μ0H

Y
extMX − μ0H

X
extMY

)
, (17)

then

τZ = τmax

2
sin 2φ

(
tanh

(
τmax

kBT

)
− τmax

2KeffV

)
. (18)

This equation is plotted in Fig. 6(c), alongside numerical
results, for d = 9 nm and d = 12 nm. For small diameters, up
to d = 9 nm, Eq. (18) is in perfect agreement with numerical
results. Discrepancy between both starts to occur for diameters
larger than 12 nm (see below).

3. Domain of validity of the analytical expression and
superparamagnetic-ferromagnetic transition

To study the domain of validity of Eq. (18), a large number
of simulations have been performed, where the average torque
as a function of the angle was calculated and compared
with Eq. (18). The ratio between Eq. (18) and simulations
is plotted in Fig. 7(a). A ratio equal to 1 means that the torque
amplitude given by the equation and the simulations is the
same. Careful analysis of our data allowed us to find the three
conditions which need to be fulfilled to have good agreement
between equation and simulation. First, Fig. 7(a) illustrates
that the dimensionless parameter μ0HmaxMSV

kBT
is important: when

data are plotted against it, a lot of data points collapse on
the same universal curve, shown in Fig. 7(a). When this
parameter value increases, matching between simulation and
equation decreases. A closer look to the raw data (not shown)
permits differentiation into two regimes: when μ0HmaxMSV

kBT
< 1,

simulations show that the torque has still a sin(2φ) dependence
but with an increased amplitude compared with the one given
by Eq. (18). This means that, in this regime, Eq. (18) can be
corrected using the universal curve shown in Fig. 7(a). When
μ0HmaxMSV

kBT
> 1, the torque progressively evolves toward a more

complex angular dependence, so Eq. (18) should not be used,
even after a correction of its amplitude. Concrete illustrations
of these principles will be shown below in Sec. III C 4. The
second criterion of validity is that μ0Hmax should be small
enough compared with the anisotropy field μ0HK . Curves
designated by the arrows labeled “1” in Fig. 7(a) illustrate
that when μ0Hmax > 0.2μ0HK , small discrepancies between
equation and simulation start to appear and that, for larger
values of the magnetic field, Eq. (18) is not valid at all. Finally,
Fig. 7(a) illustrates that, for some values of parameters, the
equation/simulation ratio displays an abrupt drop. Such a drop
is illustrated by arrow 2 in Fig. 7(a). This drop occurs when
the parameters are such that the magnetization never jumps
over the energy barrier during the magnetic field rotation.
To make it simple, this can be called a superparamagnetic-
ferromagnetic transition. This transition is expected to depend

FIG. 7. Study of the validity of Eq. (18). In both graphs the ratio
between Eq. (18) and numerical simulations is plotted along the
ordinate. When not otherwise specified in the legend, the parameters
used in the simulations were μ0H = 10 mT,T = 300 K,Keff =
13 kJ/m3, and MS = 0.5 × 106 A/m. (a) Data are plotted as a
function of the dimensionless parameter μ0HmaxMSV

kBT
. The curves

designated by the arrows labeled with a 1 correspond to the cases
when μ0H < 0.2μ0HK is not satisfied. The jump labeled as 2 can be
seen in several other curves and correspond to the transition between
the ferromagnetic regime and superparamagnetic regime. (b) The data
are plotted as a function of the approximate number of jumps over the
energy barrier n, provided by Eq. (19). The vertical dashed line shows
n = 1, which corresponds to the transition between a ferromagnetic
and a superparamagnetic behavior of the MNP.

on Keff,V ,MS,μ0Hmax, f, and v0. It was already shown above
and illustrated in Figs. 6(a) and 6(b) that the jumps are more
probable when φ is close to ±π

2 , so this transition is expected
to be governed by magnetization switching when φ = ±π

2 .
It can be easily demonstrated that the jump probability over
the barrier in this case equals ν0 exp(−Keff−μ0HmaxMS

kBT
V ). The

number of jumps n over the energy barrier during one cycle of
the magnetic field is thus expected to be roughly given by the
equation

n ≈ ν0 exp
(−Keff−κμ0HmaxMS

kBT
V

)
f

, (19)

where κ = 1. By plotting all the data of Fig. 7(a) as a function
of n, it is shown that all the drops in the equation/simulation
indeed occurs when n ≈ 1. A good collapse of all data occur

184420-8



TORQUE UNDERGONE BY ASSEMBLIES OF SINGLE- . . . PHYSICAL REVIEW B 94, 184420 (2016)

for κ = 1 (not shown), but a better one is achieved when
κ = 1.07 ± 0.04, especially for data calculated for a low field.
Figure 7(b) shows the result of this plotting for κ = 1.07.
This means that the last condition of validity of Eq. (18) is that
n > 1 with κ = 1.07.

In summary, when the three conditions n > 1,μ0Hmax <

0.2μ0HK , and μ0HmaxMSV

kBT
< 1 are fulfilled, it is possible to

calculate without simulations the average torque undergone
by a superparamagnetic particle. If μ0HmaxMSV

kBT
� 1, Eq. (18)

can be used directly. If μ0HmaxMSV

kBT
< 1, Eq. (18) underestimates

slightly the torque amplitude, but the universal curve shown
in Fig. 7(a) can be used to correct the amplitude. When these
conditions of validity are not fulfilled, numerical simulations
should be used to calculate the torque.

4. A superparamagnetic particle with an arbitrary angle
with respect to the field plane

The previous part presented the special case where the easy
axis of the superparamagnetic MNPs is in the same plane as
that in which the magnetic field rotates. The analytical results
can be generalized to the case of an arbitrary orientation of
the easy axis, taking into consideration the following points:

(i) as illustrated in the case of a ferromagnetic particle in
Fig. 5, when the particle has an arbitrary angle with respect
to the field plane, φ does not evolve sinusoidally between 0
and 2π but sinusoidally between two other angles. (ii) The
time evolution of φ can be easily obtained by calculating the
scalar product between the unitary vector of the easy axis
and the unitary vector of the rotating magnetic field. This
scalar product equals cos(φ). (iii) Once the time evolution of
φ has been calculated, Eq. (18) permits calculating the torque
amplitude, if the conditions discussed above are fulfilled. To
get a more accurate value of the torque amplitude, its value can
be divided by the equation/simulation ratio found in Fig. 7(a),
using μ0HmaxMSV

kBT
. (iv) One should note that the torque is, in the

general case, not oriented along the Z axis, but its direction
is given by the vector product between the easy axis and
the magnetic field and has a precession-like motion. (v) We
emphasize once more that Eq. (18) provides only the value
of the torque averaged on thousands of cycles. During one
cycle, the torque evolution would resemble the curves shown
in Fig. 6(b).

As an illustration, these few principles have been used to
calculate analytically the torque undergone by a MNP with an
easy axis out of the plane of the rotating magnetic field and

FIG. 8. Torque |τ | as a function of time for a single superparamagnetic NP, the easy axis of which makes a π

4 angle with respect to the
plane of the rotating magnetic field. The values d = 10, 12, 16, and 20 nm correspond to μ0HmaxMSV

kBT
values of approximately 0.6, 1.1, 2.6,

and 5, respectively. The dots are simulation results; the red line represents Eq. (18); the green line corresponds to Eq. (18) corrected using the
universal curve of Fig. 7(a) (see text).
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making a π
4 angle with respect to this plane. The results are

shown in Fig. 8 for MNPs with diameters of 10, 12, 16, and
20 nm, corresponding to μ0HmaxMSV

kBT
values of approximately

0.6, 1.1, 2.6, and 5. Please note that, in this figure and several
others that follow, the absolute value of the torque |τ |—and
not τZ—is plotted. The torque value calculated directly using
Eq. (18) and the value corrected using the universal curve
in Fig. 7(a) are shown. The agreement is very good up to a
diameter of 12 nm. This figure illustrates well that the methods
explained above can be used to calculate analytically the torque
undergone by a MNP with any angle with respect to the plane
in which the field rotates.

IV. TORQUE UNDERGONE BY AN ASSEMBLY OF
INDEPENDENT NANOPARTICLES

Results on the torque generated by an assembly of
nanoparticles are now presented. Experimentally, this can
be encountered in two cases of interest. The first is in the
so-called “beads” of particles, which can be bought in most
commercial suppliers of MNPs or are synthesized in several
laboratories. They consist in a sphere—generally made of
polymers—containing several magnetic particles. Bead size,
generally in the range 50–500 nm, is larger or much larger
than the size of the MNPs themselves, which is rather in
the range 10–20 nm. The second case is what occurs in
biological systems when isolated particles are targeted toward
cells: they accumulate either at the cell membrane or inside
lysosomes, where they form aggregates. The underlying issues
are the following: (i) providing that the torque generated by
individual MNPs is rather small for reasonable values of MNP
volume and anisotropy, is it possible to increase the torque by
aggregating several MNPs in beads or at the cell membrane?
(ii) If yes, what is the role played by magnetic interactions:
are they detrimental or beneficial to the torque amplitude? (iii)
What is the best way to maximize the torque? Trying to answer
these questions has guided us in the study presented below.

A. Influence of anisotropy and magnetic field amplitude

The torque undergone by an assembly of N MNPs sub-
mitted to a rotating magnetic field is now presented. The case
of ferromagnetic and superparamagnetic particles was first
studied by stating T = 0 K and T = 300 K in simulations
with otherwise identical parameters. The case where all the
anisotropy axes are aligned in the same direction leads to a
trivial result (not shown): the total torque is simply N times the
torque undergone by a single particle. The case of randomly
oriented anisotropy axes is more complex. Technically, we
draw a given random orientation of easy axes, and then
calculate the torque as a function of the angle. Then, we draw
a new configuration of axes and repeat the calculation. Each
time a new configuration is drawn, the obtained |τ |(φ) function
is different. Representative results for N = 10 000,T = 0 K,
μ0Hmax = 50 mT, and various values of Keff are shown in
Fig. 9(a). First, it can be observed that the |τ |(φ) function
shape depends on the anisotropy: for small anisotropies (500
and 3000 J/m3), the torque is more often a constant value
plus a sin2(2φ)-like function. For high anisotropies (30 kJ/m3

and larger, not shown), it is almost always a constant value

FIG. 9. Torque undergone by an assembly of 10000 noninter-
acting MNPs with randomly oriented anisotropy axes. (a) Typical
example of simulation results: |τ | as a function of φ is shown for
five different easy axis configurations. Data are shown for five values
of Keff : 0.5, 3, 22, 25, and 30 kJ/m3, where μ0Hmax = 50 mT and
T = 0 K. (b) Maximum value of the torque as a function of Keff for
superparamagnetic (T = 300 K) and ferromagnetic (T = 0 K) MNPs
for μ0Hmax = 10 and 50 mT. (c) Orientation of torque as a function
of anisotropy for μ0Hmax = 50 mT and T = 0 K. The maximum of
the torque norm in the XY plane (τXY ) and along the Z axis (τZ)
are plotted. For comparison, the mean value of τZ , labeled 〈τZ〉,
for a single particle with its easy axis along the X axis is shown.
It corresponds to the mean value of τZ in Fig. 2(d). (b, c) When
N = 10000, each dot corresponds to an average of five simulations
with a different random configuration of the easy axis.
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plus a sin2(φ)-like function. This behavior resembles that
observed on single MNPs [see Fig. 2(d) and Eqs. (6) and
(7)]. For Keff = 22 kJ/m3, the torque is very large and almost
independent of φ. For Keff = 25 kJ/m3, it is a constant value
plus a sin(φ)-like function. It will be shown below—when
studying the effect of magnetic interactions—that identifying
these shapes will be helpful in interpreting simulation data.

Figure 9(b) summarizes the effect of anisotropy on the
torque undergone by superparamagnetic and ferromagnetic
MNPs for μ0Hmax = 10 and 50 mT. To plot this graph,
the maximum of |τ | was extracted from five |τ |(φ) functions
corresponding to five different random axis configuration [see
Fig. 9(a)]. A data point in Fig. 9(b) represents the mean of these
five values and their standard deviation. This graph illustrates
a very interesting feature, which is one of the main findings
of this paper: in a given anisotropy range, the torque strongly
increases, and there is an anisotropy value maximizing the
torque. The vertical dashed lines in Fig. 9(b) illustrate that the
condition to maximize the torque is quite simple: the torque
increases sharply when μ0HmaxMS

2 < Keff < μ0HmaxMS and is
maximized when Keff is just below μ0HmaxMS . For Keff �
μ0HmaxMS , the torque undergoes an abrupt drop greater than
one order of magnitude. This range of anisotropy corresponds
to the range of parameters where time reversal symmetry is
broken, as discussed above and in Ref. [17].

At first sight, this result is surprising because it might
appear to contradict what has been found for isolated particles,
where an increase of anisotropy was never detrimental to
the torque amplitude (see Figs. 3 and 4). However, a closer
look at Fig. 2(d) permits an understanding of the underlying
phenomenon. In this graph, it can be observed that, for high
and low anisotropy values, the τZ(φ) function is symmetrical
with respect to the abscissa so that the average value of τZ

during a 360° rotation of the magnetic field is null or close
to zero. Another way to interpret Fig. 2(d) is to imagine an
assembly of particles with their easy axis in the XY plane with
evenly spaced angles. Then, the torque per particle undergone
by this assembly after a full rotation of the magnetic field
in the XY plane would be the average of τZ . Again, for
high and low anisotropy values, this average torque would
be null. However, it can be observed that, for an intermediate
range of anisotropy—curves for Keff = 20 and 22 kJ/m3 are
good examples—the τZ(φ) function is not symmetrical with
respect to the abscissa: the mean torque undergone by a single
particle or by an assembly of MNPs with their easy axes
evenly spaced in the XY plane after a full rotation of the
field is nonzero. To illustrate this point, the average value of
τZ as a function of anisotropy was extracted from Fig. 2(d)
and plotted in Fig. 9(c), where an increase by several orders
of the magnitude of 〈τZ〉 for μ0HmaxMS

2 < Keff < μ0HmaxMS

is evidenced. In Fig. 9(c), the maximum values of the torque
in the plane (τXY ) and perpendicular to the plane (τZ) of the
magnetic field are plotted as a function of the anisotropy for the
assembly of 10000 particles. These data provide information
on the orientation of the torque. It can be observed that for low
and large values of anisotropy, the torque is mainly isotropic:
no special orientation is favored. On the contrary, when
μ0HmaxMS

2 < Keff < μ0HmaxMS, it can be clearly seen that the
large increase of |τ | is entirely due to an increase of τZ . As a

FIG. 10. Torque undergone by an assembly of 10000 noninteract-
ing MNPs with randomly oriented anisotropy axes, Keff = 13 kJ/m3,
and T = 0 K. (a) Magnetic field dependence of the torque for (�) a
rotating or (•) an oscillating magnetic field. The pairs of vertical
dotted lines correspond to the condition Keff = μ0HmaxMS and
Keff = μ0HmaxMS

2 . (b) Angular evolution of the torque during the first
rotation of the magnetic field; μ0Hmax = 30 mT.

consequence, it is clear from Fig. 9(c) that the rise of torque in
the assembly and the increase of 〈τZ〉 observed in Fig. 2(d) on
a single MNP are two consequences of the same phenomenon:
they both occur when μ0HmaxMS

2 < Keff < μ0HmaxMS, when
time reversal symmetry is broken. One should note that, in
Fig. 9(c), the perfect quantitative matching between 〈τZ〉 and
τZ is completely fortuitous: for a different value of N , the
maximum value of τZ in the assembly could have been above
or below the 〈τZ〉 value for a single MNP (see IV C and Fig. 11
below).

A direct consequence of this finding is that a magnetic field
maximizing the torque amplitude for a given anisotropy also
exists. This is illustrated in Fig. 10(a), where the magnetic field
amplitude of the torque is calculated for N = 10 000,Keff =
13 kJ/m3, and T = 0 K. The torque amplitude is greatly
enhanced when μ0HK

2 < μ0Hmax < μ0HK and is maximized
when the magnetic field is just above μ0HK

2 .
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B. Rotation vs oscillation, and transient regime

We have seen just above that the strong increase of torque
in a given parameter range is due to a breaking of time
reversal symmetry when the magnetic field rotates. From
this finding, we can expect that this strong increase does not
occur if the magnetic field, instead of rotating, oscillates in
a fixed direction. To illustrate this important point, Fig. 10(a)
shows the magnetic field dependence of the torque amplitude
undergone by an assembly submitted to an oscillating magnetic
field. The data are compared with the torque values for an
otherwise identical rotating magnetic field. It is very clear from
this figure that, when μ0HK

2 < μ0Hmax < μ0HK, the torque
generated by an oscillating magnetic field is much lower (up to
a factor 30). However, outside this range, the torque undergone
by a rotating and an oscillating magnetic field are similar. This
again confirms that the breaking of time reversal symmetry due
to rotation is absolutely necessary to observe an enhancement
of the torque amplitude.

To illustrate further this feature, Fig. 10(b) shows the
angular evolution of the torque during the first rotation of the
magnetic field. The parameters are the same as those used in
Fig. 10(a), and the applied magnetic field equals 30 mT, a value
for which there is a strong difference in the torque amplitude
between an oscillating and a rotating field. We emphasize that
such data were not shown in this paper so far: in Fig. 9(a), only
the second cycle was shown but not the first. Data in Fig. 10(b)
show that the torque evolves from a very small value typical
a nonrotating magnetic field to a very large value typical of
a rotating magnetic field in less than half of a period, which
is thus the duration of the transient regime during which time
symmetry is broken and the torque strongly enhanced.

C. Evolution with the number of particles

Evolution of the torque amplitude as a function of the
number of particles N in the assembly is now presented.
It has been calculated for μ0Hmax = 10 mT, T = 0 K, and
three representative values of anisotropy: Keff = 2, 4.5, and
13 kJ/m3. The middle value corresponds to the anisotropy
maximizing the torque for N = 10000 [see Fig. 9(b)]. The
evolution of the torque per particle for N varying between 1 and
1024 is shown in Fig. 11. The torque per particle follows the
equation |τ | = τ1N

−α, where τ1 is the torque value of a single
particle. For Keff = 2 and 13 kJ/m3, α = 1

2 . The fact that this
simple exponent is found can be easily understood. Indeed, at
low magnetic field, the torque generated by an assembly of
MNPs can be seen as a 3D random walk problem: each MNP
contributes to the total torque by a given randomly oriented
vector, the total torque being the sum of these vectors. In this
case, the total torque for N particles is

√
N times the torque

of one particle randomly oriented. The torque per particle thus
decreases as 1√

N
. On the contrary, for Keff = 4.5kJ/m3, the

best fit of simulation data leads to α = 0.22. This means that
the total torque scales as N0.78 for an optimized anisotropy.
In this case, the torque is not randomly oriented in space
but larger in the Z direction, leading to a larger total torque.
Similar data have been calculated for μ0H = 50 mT and three
anisotropies (Keff = 10, 22, and 50 kJ/m3), and similar results
were obtained (not shown): α = 1

2 is obtained for Keff = 10
and 50 kJ/m3, and α = 0.21 for Keff = 22 kJ/m3. The case of

FIG. 11. |τ | as a function of N for three values of Keff ; T = 0 K
and μ0Hmax = 10 mT. The dashed line corresponds to τ ∝ 1√

N
and

the plain line to τ ∝ N−0.22.

superparamagnetic particles has also been tested for several
anisotropies at T = 300 K. In this case, the torque decreases
with α = 1

2 for any anisotropy, since there is no increase of the
τZ component (not shown).

In conclusion, increasing the number of particles in an
assembly increases the total torque but decreases the torque
per particle and thus the overall energy transferred from the
external magnetic field to the system. A good way to avoid this
would be to have assemblies of MNPs with perfectly oriented
easy axes, so that the total torque is N times the torque per
particle (α = 0). However, this might be hardly feasible in
biological applications. On one other hand, it is shown here
that, by choosing an appropriate match between anisotropy
and the applied magnetic field, the total torque undergone by
the assembly can be greatly enhanced.

We also would like to make clear what happens when
several assemblies are measured. For instance, let us imagine
that 10 assemblies, each composed of 100 particles with
randomly oriented axes, are grafted at different places of a
cell membrane. Their anisotropy is such that the equation for
the torque per particle |τ | = τ1N

−0.5 is verified. Locally, each
assembly will apply a total torque to the membrane of 10 τ1 (the
individual torque per particle being 0.1τ1). Now, if the torque
applied to the whole cell is calculated, it is the one generated
by an assembly of 1000 particles, i.e., approximately 31τ1.
Therefore, a 10τ1 torque would be applied locally by each
assembly and would tend to bend the membrane, and a 31 τ1

torque would be applied globally and would tend to rotate the
whole cell.

D. Influence of the diameter

To illustrate the progressive transition from superparam-
agnetic to ferromagnetic NPs, simulations as a function of
the magnetic field amplitude were performed for diameters
varying between 20 and 50 nm at T = 300 K [see Fig. 12(a)].
This graph is of interest for applications, since it is the
calculation of the behavior of an assembly of randomly
oriented magnetite NPs as a function of their diameter. One
should note that, in Fig. 12(a), |τ |

τmax
is plotted to evidence
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FIG. 12. (a) Normalized torque |τ |
τmax

is plotted as a function
of μ0Hmax for an assembly of 10 000 noninteracting MNPs with
randomly oriented anisotropy axes, with d varying from 20 to
50 nm at T = 300 K. The round dots display the T = 0 K result
for 70-nm MNPs. The vertical dashed lines show the μ0Hmax values
maximizing the torque calculated using Eq. (20). (b) τZ(φ) function
for a single MNP with its easy axis aligned along the X direction,
with μ0Hmax = 20 mT and T = 300 K. The function is averaged over
50000 cycles. (c) Average value of τZ extracted from (b), plotted as
a function of the diameter.

the influence of thermal activation only but that the torque
amplitude increases with the diameter because of the increase
of τmax. In this figure, it can be seen that there is still a range of
magnetic fields where the torque is greatly enhanced. However,
this range now depends on the diameter: for smaller diameter,
the magnetic field required to maximize the torque is smaller.
One could hypothesize that this increase is due to the increase
of the Z component of the torque, similar to what was observed
at T = 0 K [see Fig. 9(c)]. To check this hypothesis, the τZ(φ)
function was calculated for a single MNP, with an easy axis
along X and a given magnetic field μ0Hmax = 20 mT, as a
function of the diameter [see Fig. 12(b)]. The mean value of
τZ is shown as a function of the diameter in Fig. 12(c). There
is a very strong relationship between the three graphs in Fig.
12: in Fig. 12(a), for 20 mT, the torque is strongly enhanced
for diameters in the range 30–50 nm; it is also the range for
which 〈τZ〉 increases for a single particle [see Fig. 12(c)] and
for which time reversal symmetry is broken [see Fig. 12(b)].

The fact that the magnetic field maximizing the torque is
smaller for a smaller diameter can be understood qualitatively.
We have seen above that at T = 0 K, the torque is maximized
when the magnetization makes a large jump during the rotation
of the magnetic field. For a smaller diameter, this event occurs
for a smaller magnetic field, due to the influence of thermal
activation, which facilitates the jump. To check the validity
of this hypothesis, the magnetic field for which n ≈ 1 was
calculated using Eq. (19), leading to the equation

μ0Hmax =
KeffV + kBT ln

(
f

ν0

)
1.07MSV

. (20)

The results are shown in Fig. 12(a) as vertical dashed lines,
evidencing the very good agreement between the simulations
and Eq. (20).

V. INFLUENCE OF MAGNETIC INTERACTIONS

The influence of magnetic interactions on the torque
undergone by an assembly of MNPs is now presented. To avoid
an unnecessarily long presentation, the focus is directly on the
experimentally relevant case of an assembly with randomly
oriented anisotropy axes. The system under study is a sphere
containing N = 10000 particles; the volume concentration of
the particles inside the sphere is c. Technically, to generate
the position of the MNPs inside the sphere, they are first
placed on a cubic lattice and then displaced by a random value
in a random direction. The maximum value of the random
displacement is chosen so the MNPs cannot overlap with their
neighbors. As a consequence, the system under study is a
disordered assembly of MNPs. In a typical simulation, the
torque as a function of φ is calculated and the maximum value
of |τ | extracted. The dimensionless concentration, defined as
μ0M

2
S c

Keff
, is introduced. This parameter, representing the balance

between the MNP anisotropy and magnetic interactions, often
has been found to be important when dealing with an assembly
of interacting MNPs [24,26,27].
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A. Ferromagnetic particles in interaction

In Fig. 13, the properties of ferromagnetic NPs (T = 0 K)
are shown. It is interesting to present them by separating three
regimes depending on the anisotropy values: null anisotropy
(Keff = 0 J/m3), strong anisotropy (Keff � μ0HmaxMS),
and low anisotropy (Keff � μ0HmaxMS). Results on these
three regimes are shown in Figs. 13(a), 13(b), and 13(c),
respectively.

Figure 13(a) illustrates the case of MNPs without
anisotropy. In the absence of magnetic interaction, the torque
is null but increases with magnetic interactions, displays
a maximum, and then decreases. This behavior can be
understood qualitatively in this way: (i) one first well-known
effect of magnetic interactions is to increase the effective
anisotropy of MNPs [28], which should in turn increase the
total torque of the assembly. (ii) A second effect is to decrease
the total magnetization of the assembly, because the MNPs
tend to form flux-closure configurations. We have checked this
second effect by analyzing data shown in Fig. 13(a): indeed,
the magnetization of the assembly decreases continuously
with c (not shown). (iii) The combination of these two
phenomena with opposite effects leads to the bell-shaped
curves displayed in Fig. 13(a). Quantitatively, by varying
MS,μ0Hmax, and d, it has been found that the value at which
the torque is maximal depends on the cMS

Hmax
ratio only. The

maximum occurs when cMS

Hmax
≈ 1, as shown in Fig. 13(a).

The numerator of this ratio represents physically the average
volume magnetization of the sphere full of MNPs when they
are saturated. So far, we do not have a simple explanation to
propose to the fact that this dimensionless parameter is the
one governing the decrease of the torque for null anisotropy
MNPs. It can also be observed on this figure that the
normalized torque |τ |

τmax
slightly decreases with μ0Hmax, but the

nonnormalized torque |τ | increases with μ0Hmax (not shown).
Figure 13(b) illustrates the most interesting regime,

i.e. where Keff � μ0HmaxMS . Recall that, for independent
MNPs, the torque strongly increases when μ0HmaxMS

2 <

Keff < μ0HmaxMS and is maximized for Keff just below
μ0HmaxMS [see Fig. 9(b)]. With the parameters of Fig. 13(b),
μ0HmaxMS = 5 kJ/m3 so that, in Fig. 13(b), MNPs displaying
the largest torque are those with Keff = 4 kJ/m3. Magnetic
interactions for these already optimized MNPs reduce the
torque. However, when the anisotropy is smaller than the
optimal anisotropy, magnetic interactions increase the torque.
In all cases, torque decreases for the largest values of c. This
figure can thus be explained with arguments similar to those
cited above for the null anisotropy regime: a moderate amount
of magnetic interactions increases the anisotropy of MNPs so
that MNPs with an anisotropy below the optimum see their
torque increased. For a large amount of magnetic interactions,
the drop of magnetization of the assembly or the fact that the
optimal anisotropy is exceeded decreases the torque.

For MNPs with an anisotropy larger than the optimum,
shown in Fig. 13(c), the presence of magnetic interactions
cannot bring them closer to optimum: the torque only decreases
monotonously with increasing concentration, and its amplitude
depends on the dimensionless concentration only. At low
concentration, |τ |

τmax
= 1√

N
and decreases progressively when

FIG. 13. Influence of volume concentration c on the maximum
value of the normalized torque per particle |τ |

τmax
undergone in an as-

sembly of N = 10 000 ferromagnetic particles (T = 0 K) in magnetic
interaction. The anisotropy axes are randomly oriented. Calculations
have been performed for c = 0.01%, 0.05%, 0.1%, 0.3%, 0.6%, 1%,
2%, 3%, 6%, 10%, 20%, and 30%. Unless otherwise specified in
the legend, d = 10 nm, μ0Hmax = 10 mT, and MS = 0.5 × 106A/m.
(a) Null anisotropy study (Keff = 0 J/m3). |τ |

τmax
is plotted as a

function of cMS

Hmax
for various values of μ0Hmax, MS , and d . (b)

Low anisotropy study: Keff � μ0Hmax MS (5 kJ/m3). |τ |
τmax

is plotted
as a function of c for various values of Keff . (b, c) The horizontal
dashed line represents the function |τ |

τmax
= 1√

N
. (c) High anisotropy

study: Keff � μ0HmaxMS (5 kJ/m3). |τ |
τmax

is plotted as a function of

the dimensionless concentration
μ0M2

S
c

Keff
for various values of Keff

and μ0Hmax.
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the dimensionless concentration exceeds approximately 10,
vanishing toward zero at large concentrations.

B. Superparamagnetic particles in interaction

The behavior of superparamagnetic NPs is now presented,
starting with a detailed study of an example. In Fig. 14(a),
the comparison between the evolution of the normalized
torque |τ |

τmax
as a function of the concentration for an as-

sembly of ferromagnetic (T = 0 K) and superparamagnetic
(T = 300 K) is shown, the other parameters being equal
(Keff = 13 kJ/m3, μ0Hmax = 10 mT, d = 10 nm). The case of
ferromagnetic particles has been studied just above: in this
regime, the torque is constant at low concentration and then
decreases when c > 1%. In superparamagnetic particles, the
torque is more or less constant up to c = 1% and then
abruptly increases. Interestingly, its value for c = 3% is
approximately four times larger than that for ferromagnetic
NPs. For larger values of c, the torque decreases sharply
and becomes similar to the torque of ferromagnetic NPs

for c ≈ 10%. Typical shapes for the |τ |(φ) function for c

values of interest are displayed in Figs. 14(b)–14(d). It can
be observed in Fig. 14(c) that, when the concentration is such
that the torque of superparamagnetic NPs is maximized, their
|τ |(φ) function is similar to that observed for noninteracting
ferromagnetic NPs with an optimized anisotropy [see Fig. 9(a)
for Keff = 25 kJ/m3]. For a larger concentration, their |τ |(φ)
function is similar to that of interacting ferromagnetic NPs
[see Figs. 14(b) and 14(d)].

At first sight, the fact that superparamagnetic NPs present a
larger torque than otherwise identical ferromagnetic particles
in a given range of parameters could seem counterintuitive.
As a matter of fact, data in Fig. 14 are coherent with the
fact that superparamagnetic MNPs, when c increases above
1%, become progressively equivalent to ferromagnetic MNPs,
but with an anisotropy which is at the beginning smaller
than the real value of 13 kJ/m3. An analysis of these data
using the simulations obtained for noninteracting MNPs [see
Fig. 9(b)] permits one to quantify this point: when their
torque is maximized for c = 3%, the superparamagnetic NPs

FIG. 14. Influence of volume concentration c on the torque per particle undergone by an assembly of N = 10 000 particles in magnetic
interaction; μ0Hmax = 10 mT, Keff = 13 kJ/m3, and d = 10 nm. The anisotropy axes are randomly oriented. c values used in the simulations
are the same as in Fig. 13. (a) Normalized torque |τ |

τmax
as a function of c for (•) superparamagnetic particles, T = 300 K, and (�) ferromagnetic

particles, T = 0 K. The labels 1, 2, 3, 4, and 5 represent points of interest corresponding to c = 1%, 2%, 3%, 6%, and 30%. The horizontal
dashed line represents the function |τ |

τmax
= 1√

N
. (b) Typical evolution of |τ | with φ obtained for the points of interests labeled in (a). (c, d)

Evolution of |τ | with φ for five different configurations of the easy axes at T = 300 K for (c) c = 3% and (d) c = 30%. This corresponds to the
data points labeled 3 and 5 in (a). (b–d) Data at 300 K have been smoothed with 50-point averaging to reduce the noise amplitude and enhance
the clarity of the figure.

184420-15



J. CARREY AND N. HALLALI PHYSICAL REVIEW B 94, 184420 (2016)

FIG. 15. Influence of c on the torque undergone by an assembly of N = 10 000 interacting superparamagnetic particles with randomly
oriented axes; T = 300 K. Unless otherwise specified, μ0Hmax = 10 mT,Keff = 13 kJ/m3, and d = 10 nm. (a, c) τ/τmax as a function of
concentration or dimensionless concentration for various values of Keff for the (a) low anisotropy regime, with Keff < μ0HmaxMS and (c) high
anisotropy regimes, with Keff > μ0HmaxMS . (a) Data for T = 0 K are recalled for comparison. (b) τ/τmax as a function of c for d varying
between 5 and 30 nm. (d) |τ |√N

τmax
as a function of c for various values of N . (a–d) The horizontal dashed line represents (a–c) the function

|τ |
τmax

= 1√
N

(d) the function |τ |√N

τmax
= 1.

in Fig. 14(a) undergo a torque which is equivalent to that
of noninteracting ferromagnetic NPs, with a Keff value in
the 3–5 kJ/m3 range. Then, for a larger value of c, the
properties are identical to those of ferromagnetic NPs with
Keff = 13 kJ/m3.

A more systematic study of the properties of superparamag-
netic NPs as a function of several parameters (Keff, d, μ0Hmax)
is shown in Fig. 15. Similar to the case of ferromagnetic
NPs presented above, it is convenient to present the data
by distinguishing two regimes, depending on whether Keff

is smaller than or greater than μ0HmaxMS . Figures 15(a) and
15(c) display the data obtained in the low and high anisotropy
regime, respectively. In all cases, at 300 K, the MNPs see their
torque increased by the presence of magnetic interactions.
The only exception is when Keff > 200 kJ/m3, but, in this
case, the MNPs are not superparamagnetic at 300 K. In the
low anisotropy regime, MNPs at 300 K reach, for a given

concentration range, a torque similar to that of equivalent
MNPs at T = 0 K. In the high anisotropy regime, there is
always a concentration range where superparamagnetic NPs
undergo a torque larger—and sometimes much larger, up to one
order of magnitude—than equivalent MNPs at T = 0 K. This
is equivalent to what was observed in Fig. 14(a) and was qual-
itatively explained above. For a large degree of interactions,
the torque decreases; in the low (high) anisotropy regime,
this decrease depends on the concentration (dimensionless
concentration) value. This was already the case at T = 0 K
[see Figs. 13(b) and 13(c)].

Figure 15(b) displays the concentration dependence of the
torque as a function of the diameter. This figure is very relevant
with respect to experiments, because it provides the conditions
needed to optimize the torque of magnetite NPs in a small
rotating field. These are precisely the conditions which are
often used in biology experiments. With the parameter used

184420-16



TORQUE UNDERGONE BY ASSEMBLIES OF SINGLE- . . . PHYSICAL REVIEW B 94, 184420 (2016)

here, MNPs with a diameter of 20–25 nm are those that permit
a maximized normalized torque amplitude. However, a final
concentration c ≈ 0.3% must be targeted to get this large
output. In the case where the final concentration is a fixed pa-
rameter, this graph illustrates also that there is a concentration-
dependant MNP diameter maximizing the torque.

Of course, the strength of magnetic interactions is expected
to depend on the size of the assembly. The results presented
so far were obtained in an assembly of 10000 MNPs. As an
illustration, the influence of N on the torque properties of
superparamagnetic NPs is shown in Fig. 15(d). In the ordinate

of this graph, |τ |√N

τmax
is plotted, so the direct effect of N on the

torque per particle is cancelled (see Fig. 11). It illustrates the
consequences of the interaction strength attenuation only. A
natural consequence of this attenuation is that the maximum
of the torque is shifted toward a larger concentration when
decreasing N : a larger concentration is required to generate
an equivalent dipolar field in an assembly of reduced size.
Globally, both the beneficial effect of interactions at moderate
concentration and the detrimental effect at large concentration
progressively disappear when N decreases, so the torque
amplitude becomes progressively concentration independent.

VI. SUMMARY AND CONCLUSION

Our paper based on kinetic Monte Carlo simulations has
permitted us to elucidate several properties of interest on the
torque undergone by assemblies of MNPs. Basic properties of
isolated ferromagnetic MNPs were first recalled. In this case,
as illustrated in Figs. 2 and 3, maximizing the torque only
requires maximizing the MNP anisotropy and the magnetic
field. The value of the torque then equals the smaller of
KeffV or τmax, which depends on whether μ0Hmax is greater
or smaller than Keff

MS
. Although this is strictly true for an easy

axis in the plane of the field only, the fact that a single MNP
is randomly oriented does not change this result drastically
(see Fig. 4). When thermal activation enters into play, its
effect is to switch the magnetization at high frequency, so
the torque also changes sign at high frequency (see Fig. 6),
leading to a decrease of the average torque felt by the
MNP. However, it might be interesting not to forget that the
instantaneous torque undergone by a superparamagnetic NP
is the same as that of an otherwise equivalent ferromagnetic
NP (see Fig. 6). An equation that calculates this average
torque, as well as its domain of validity, has been proposed
and compared with simulations [see Figs. 7 and 8 and
Eq. (18)].

The case of an assembly of MNPs is more complex. First,
one can note that a reminiscence of single MNP properties
appears in the angle dependence of the torque: the sin2(2φ)
or the sin2(φ) signature of the torque in single MNPs is still
visible in the angle dependence of the torque of an assembly of
10 000 MNPs [see Fig. 9(a)]. Interestingly, simulations clearly
show that there is a way to enhance the torque in an assembly
of MNPs: the time reversal symmetry must be broken. In this
case, the torque undergone by the assembly can become very
large due to an increase in the Z component of the torque. This
enhancement is possible only if the magnetic field rotates, not
if it oscillates [see Fig. 10(a)], and occurs for ferromagnetic
particles when the condition μ0HmaxMS

2 < Keff < μ0HmaxMS is

fulfilled. For ferromagnetic particles, the torque is maximized
when Keff is just below μ0HmaxMS . When thermally activated
switches are possible, the torque is maximized when there is
one or two switches during the magnetic field rotation. An
equation has been proposed which estimates when this occurs,
and good agreement with the simulations has been found [see
Fig. 12 and Eq. (20)].

In assemblies of N MNPs, in most cases, the total torque
increases as

√
N, and the torque per unit volume thus decreases

as 1√
N

. However, this rule suffers two noticeable exceptions:
(i) if all the easy axes are aligned, the total torque scales as N

and the torque per unit volume is constant. This means that,
whenever it is possible experimentally, this situation should be
favored. For instance, it could be useful to synthesize beads
in which MNPs have aligned anisotropy axes. Also, it might
be interesting to apply a constant magnetic field during MNP
accumulation at the cell membrane or inside cells to favor
the alignment of easy axes during biological experiments.
(ii) When time reversal symmetry is broken, the total torque
grows more rapidly than

√
N ; an increase following N0.78

was extracted from simulations in optimized conditions for
noninteracting ferromagnetic NPs (see Fig. 11).

The presence of magnetic interactions makes the problem
more complex. First, the study of ferromagnetic NPs without
anisotropy show that magnetic interactions have a tendency
to increase anisotropy but also to decrease magnetization
of the assembly, giving a bell-shaped dependence to the
concentration dependence of the torque [see Fig. 13(a)]. The
latter is maximized when μ0Hmax ≈ cμ0MS . The decrease in
magnetization, and thus of the torque at large concentration,
is a general feature observed in all cases.

The fact that the interactions increase anisotropy has
a consequence for ferromagnetic MNPs for which Keff <

μ0HmaxMS : magnetic interactions of moderate intensity in-
crease their torque [see Fig. 13(b)]. For ferromagnetic particles
with a larger anisotropy, only the decrease of torque at large
concentration is observed [see Fig. 13(c)].

Finally, the presence of magnetic interactions on superpara-
magnetic NPs, which is the most relevant for applications,
is very interesting. In almost all cases, interactions strongly
increase the torque above the value τ = τmax√

N
. This means that,

for a given concentration, which depends on several parameters
(d, Keff , N , μ0Hmax; see Fig. 15), break of the time reversal
symmetry and increase of the Z component of the torque occur.
Interestingly, it occurs even for particles with Keff > μ0HMS ,
which do not display any breaking of time reversal at T = 0 K
when they are ferromagnetic. Everything happens as if high-
anisotropy NPs in the superparamagnetic regime, in a given
range of concentrations, behave exactly as low-anisotropy,
noninteracting ferromagnetic NPs. It is thus possible to
enhance greatly the torque generated by superparamagnetic
NPs by adjusting their structural characteristics.

In conclusion, the kinetic Monte Carlo simulations that we
have developed have permitted us to get an insight into the
microscopic phenomena responsible for the torque amplitude
in assemblies of MNPs. The problem is much more complex
than one would have thought initially, but we have shown
evidence of trends and provided analytical formulas that permit
calculations when simulations are not available. The concepts
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presented in this article should help chemists and biologists
synthesize nano-objects with optimized torque properties. For
physicists, it would be interesting to test experimentally the
results described in this article. For this purpose, torque
measurements on well-characterized assemblies of nanopar-
ticles should be performed and compared with numerical
simulations.
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