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Abstract—Tracking technologies and location-acquisition have
led to the increase of the availability of trajectory data. Many
efforts are devoted to develop methods for mining and analysing
trajectories due to its importance in lots of applications such as
traffic control, urban planning etc. In this paper, we present a
new trajectory analysis and visualisation framework for massive
movement data. This framework leverages formal concepts,
sequential patterns, emerging patterns, and analyses the evolution
of mobility patterns through time. Tagged city maps are gener-
ated to display the resulting evolution analysis and directions
at different spatio-temporal granularity values. Experiments on
real-world dataset show the relevance of the proposition and the
usefulness of the resulting tagged city maps.

Index Terms—Sequential patterns, Concept lattice, Spatio-
temporal data, Trajectories, Visualisation.

I. INTRODUCTION

With the maturity of positioning and tracking technologies
in cities, global positioning system (GPS) sensors have been
deployed to collect citizen’s movement, where these move-
ments represent the moving objects spatio-temporal sequences
records. Analysing and visualising such information is very
important to understand the users behaviours. Moreover, vi-
sualising the direction of movements in geographical space
gives more detailed analysis. For example, direction describes
how moving objects redistribute when passing through an
intersection node in a traffic network. This analysis plays a
major role in smart city applications such as human mobility
understanding, vehicle and pedestrian traffic control, smart
transportation, and urban planning [1] [2]. Our research work
aims at finding a solution for mining and analysing movement
data. Trajectory Trj can be defined as a sequence of geograph-
ical points returned at specific time stamp t [3] [4]. Each Trj
contains a set of points {p1, p2, ..., pk−1, pki} in which each
point pk ∈ Trj is defined in a three-dimensional space, i.e.,
pk = (longitudepk

, latitudepk
, tpk

).
Sequential pattern mining technique [5] is one of the mining

tools applied to trajectories. It helps in discovering important
sequential ordering patterns and relationships between events
and elements in the dataset. Most of the proposed approaches
are based on two steps: Sequence transformation and pattern
mining. In the first step, trajectories are transformed into
sequences where each element of a sequence can represent
either grid ID [6], line segment [7], or cluster [8]. While

the second step focuses on how to mine patterns in the set
of generated sequences. A large amount of effort has been
devoted to mining patterns with a closeness constraint, which
significantly reduces the size of the output. Examples of such
algorithms are CloSpan [9] and Moving Trajectory CloSpan
Algorithm (MTCloSpan Algorithm) [10].

This paper presents a novel aspect of analysing and visual-
ising massive movement data, where we propose a new trajec-
tory analysis framework. Our main contribution corresponds
to leveraging formal concepts [11], sequential patterns [5],
and emerging patterns [12] for the purpose of understanding
the characteristics and the evolution of mobility movements
patterns through time and visualising their corresponding
directions. To the best of our knowledge, there is no research
work based on these three notions for analysing moving ob-
jects. This work extends our previous work [13] by considering
sequences and movement directions visualisation. We propose
a method to build a spatial-temporal trajectory discrete repre-
sentation in order to extract hidden closed sequential patterns
using uniform grids. We construct the sequential concept
lattice to encode the maximal correspondence between the
discovered closed sequential patterns (ordered visited spatial
regions) and trajectories that pass through these regions. This
usage will reduce the search space to reveal the underlying
movement patterns. We propose an algorithm that analyses
the evolution of the discovered sequential formal concepts
over time and define different evolution types (emerging,
decreasing, latent, jumping, and lost). Finally, we provide
a visual representation of the results in maps which are tagged
by different evolution types and show their corresponding
movement directions. One practical advantage of these maps
is that they can be generated in different spatio-temporal level
to provide a description of the movements in the city. We
evaluated the proposed method using a real-world dataset
composed of taxi movements in San Francisco. Let us remark
that the proposed method is generic and is not limited to taxi
data and a smart city context.

The rest of the paper is organised as follows. Section II
gives some definitions about sequential patterns and concept
lattice. The proposed method is detailed in Section III. The
experimental results are presented in Section IV. Finally, we
conclude in Section V.



II. PRELIMINARIES

Sequential pattern mining [5] is an important data min-
ing task with a wide range of applications such as text
analysis, market basket analysis, and trajectory analysis. Let
I = {i1, ..., ik} be a set of items. A subset I ⊆ I is
called an itemset. |I| denotes the number of items of I . A
sequence is an ordered list of itemsets. It can be represented
as s =< (I1)(I2)...(Ik) > where each Ii is a subset of
I and Ii comes before Ij if i ≤ j. The aim is to find
all the frequent subsequences in a sequential database. Let
S =< s1, ..., sn > be a list of sequences in a database. A
sequence s1 =< a1, . . . , am > is a subsequence of another
sequence s2 =< b1, . . . , bn >, denoted by (s1 ⊆ s2 ), if
there are integers 1 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ n, such as
a1 ⊆ bi1 , a2 ⊆ bi2, . . . , and am ⊆ bim. s2 is called a super-
sequence of s1 (s2 contains s1). The support of a sequence
sn, noted support(s), is the number of occurrences of sn
in S. A sequence s is said to be a sequential pattern (also
called a frequent sequence) if support(s) ≥ minsup, where
minsup is the minimal support threshold value set by the user.
A sequential pattern s1 is closed if @s2 with s1 ⊂ s2 and
support(s1) = support(s2). Closed sequential patterns are
interesting for us because they represent the largest frequent
subsequences common to sets of sequences.

Formal concept analysis (FCA) [11] is a theory of data
analysis identifying the conceptual structures within datasets.
The closure properties and its capability of discovering in-
herent hierarchical structures give it the advantage to be used
to analyse the different pattern relationships and build better
mining algorithms [14]. A formal context is composed of a
set of objects O, a set of items I, and a binary relation R1

between O and I (i.e., R1 ⊆ O × I). While by dealing with
ordered data, each object represents a sequence in S. Thus,
items in each object are partially ordered through the time.
A sequential context (or order context) C [15] is defined as
(R,O, I), where R ⊆ O×I ×N. For an entry (o, i, k) ∈ R,
k represents the order of occurrence of i with respect to the
other attributes in the same object. Sequential context can be
represented by a cross table where rows are labeled by objects
and the columns are labeled by the items. The entry in row
j and column i corresponds to the order of item i in the
equivalent input sequence sj . Given a sequential context, there
is a unique ordered set which describes the inherent lattice
structure defining natural groupings and relationships among
the objects and their related sequences [15]. This structure is
called a sequence concept lattice. Each element of the lattice
is a couple (O,S) composed of a set of sequences (the intent)
and a set of objects (the extent). Each couple (called sequence
formal concept) must be a complete couple with respect to
R, which means that the following mappings (noted φ and ψ)
hold. For O ⊆ O and S ⊆ S, we have: (1) φ(O) = {s ∈ S | s
is maximally contained in si, ∀ i ∈ O} and (2) ψ(S) =
{i ∈ O | s ⊆ si,∀ s ∈ S}. φ(O) returns sequences common
to all objects o ∈ O, while ψ(S) returns objects that have at
least all sequences s ∈ S. The idea of maximally extending the

sets being formalised by the mathematical notion of closure
in ordered sets. φ and ψ form a Galois connection and the
compositions ∆̂ = ψ ◦φ and ∆ = φ◦ψ are the Galois closure
operators. Let S be a set of sequences if ∆(S) = S then
each sequence of S is a closed sequence. A sequence formal
concept is composed of a set of closed sequences and of the set
of objects containing this closed sequences. We call sequential
formal concepts, the sequence of formal concepts that have at
least minsup objects in their extent, and sequential concept
lattice, the lattice formed using the sequential formal concepts.

III. TRAJECTORY EVOLUTION TYPES DETECTION

In this section, we present a new trajectory analysis frame-
work based on sequential patterns, FCA, and emerging pat-
terns. The main steps are: (1) Spatio-temporal preprocessing
; (2) Sequential concept lattice and evolution type detection ;
and (3) Visualisation of geolocalised evolution type.

In step 1, trajectories are segmented by time value ∆t, la-
beled by time granularity value τ , and mapped on a raster area
G using local georeference according to spatial granularity
value α. These discretised data are then used to extract hidden
sequential patterns and the corresponding evolution types in
the next step. In step 2, For each time windows T (i.e., a pair of
time granularity values (ti−1, ti)), we compute the sequential
concept lattice L according to the minimal support threshold
value minsup. Each node of L, i.e., sequential formal concept,
encodes the maximal correspondence between a set of closed
sequential patterns (where each sequence contains an ordered
set of grids), and the set of trajectories passing through these
grids. For each sequential formal concept, we analyse the
evolution of the closed sequential pattern by computing an
indicative value K. By given K, minimal threshold value
of emergence θ, and an error tolerance value ε, we detect
the evolution type and the corresponding movement direction
for each grid included in the closed sequential pattern. Let
us remark that evolution type belongs to a predefined set:
{latent, emerging, decreasing, jumping, lost}. Finally, in
step 3 we automatically generate maps which are tagged by
the detected evolution types.

A. Spatio-Temporal Preprocessing

Preprocessing is an important step in our framework. This
step aims at simplifying and reducing the number of points
processed with a negligible error for the purpose of mining
trajectories. The main steps are (1) Trajectory segmentation
according to time values ; (2) Mapping trajectories on a raster
area according to spatial granularity value.

1) Segmenting and Labeling Trajectories: GPS data is huge
in size to be analysed directly. Therefore, we perform two
level of trajectory time segmentation. First step is to segment
trajectories by ∆t value. ∆t is a given value that compared the
time difference between two cleaned ordered GPS points. We
perform this step to get an equal intervals of moving objects
sequences. This value is in minutes. In the second step, we
segment and label trajectories by a given time granularity τ ,
(can be minutes, hours, days, etc.) specified according to the



Fig. 1: Example of trajectory mapping.

type of analysis required. Each value of granularity is called
a label. We note La = {l1, l2, ...., lk−1, lk} as the set of time
granularity values where lj < lj+1 for 1 ≤ j ≤ k − 1. Each
trajectory is segmented according to the defined labels. The
trajectory of object n after segmentation by La can be defined
as follow: Trj = {Trjl1n , T rjl2n , ..., T rjlkn }. If Trjljn is empty
then this trajectory is deleted.

2) Mapping Trajectories on a Raster Area: Location co-
ordinates in a spatio-temporal series are real numbers, which
do not repeat themselves exactly in every pattern instance [7].
We proposed to use a solution that represents the continuous
movement of an object as a sequence of traversed grid cells
along with its respective traversal times. To achieve this, we
split the geographical region as a raster area G where grid
width and height dimension has an equal size spatial granular-
ity α in kilometers. Then, we map trajectories using local geo-
reference technique on G. This mapping includes conversion
of the geographic coordinates (latitude, longitude) values in
trajectories to grid index that represents these points. For each
trajectory trj we obtain Gtrj , the set of grids corresponding
to trj traversal points. Figure 1 and Table I show an example
of 4 taxi trajectories after mapping using local georeferenced
system, within the corresponding time label (Day1,Day2).

B. Sequential Concept Lattice and Evolution Type Detection

Evolution type detection associated to trajectories over time
windows is performed in two steps presented next.

1) Sequential Concept Lattice Computation: The compu-
tation of the sequential lattice allows to obtain the closed
sequential patterns of grids (in our case here it maybe spatial
zones, routes, etc.) and their corresponding sets of trajectories.
The first step to compute this lattice is to create the ordered
formal context C = (R,O, I) for a specified time window.
O is the set of trajectories for the studied time window. I is
the set of grid indexes. Then, the sequential concept lattice is
computed according to the specified minimal threshold value
minsup. For example, Table I represents a sequence dataset
of 4 taxis trajectories. Each trajectory has been segmented by
∆t, and labeled by the corresponding time granularity value
(see Table II). Some sequential formal concepts computed
with minsup = 2 are presented in Table III.

2) Detection of Evolution Types: We detect the evolution
type of each sequence in sequential concept lattice by studying

TABLE I: Example of taxis data represented by their grid
sequences and corresponding time labels

trajseq-Id Sequence label

Taxi1
< (13)(17)(21)(25)(26)(27)(28)(24) > < (20)(16)(15) >
< (19)(23)(22)(18) > < (14)(10)(6) > < (5)(9)(13)(17) >

Day1

Taxi2 < (9)(10)(11)(15) >< (19)(23)(22)(26) > Day1

Taxi3
< (20) (16) > < (15) (11) (10) (9) (13) > < (14) (15) (19) (23)

(27) > Day2

Taxi4 < (5) (6) (7) (11) (15) > < (14) (13) (9) (10) > Day2

TABLE II: Trajectory data sequences in different days repre-
sented by grids

seq-Id Sequence label
s1 < (13)(17)(21)(25)(26)(27)(28)(24)> Day1
s2 <(20)(16)(15) > Day1
s3 <(19)(23)(22)(18)> Day1
s4 < (14)(10)(6) > Day1
s5 <(5)(9)(13)(17)> Day1
s6 < (9)(10)(11)(15) > Day1
s7 <(19)(23)(22)(26)> Day1
s8 < (20)(16) > Day2
s9 < (15)(11)(10)(9)(13) > Day2
s10 < (14)(15)(19)(23)(27)> Day2
s11 < (5)(6)(7)(11)(15)> Day2
s12 < (14)(13)(9)(10) > Day2

the support variation through a pair of time windows (ti−1,ti).
Let us remark that the evolution type belongs to a predefined
set of labels: {latent, emerging, decreasing, jumping,
lost}. Emerging label means that the presence of the pattern
increased in ti compared to ti−1; Decreasing means that the
presence of the pattern decreased in ti compared to ti−1;
Latent means that the presence of the pattern is quite similar
in both time. Jumping means the pattern which was absent in
ti−1 , appeared in ti . Lost means that the pattern disappeared
in ti.

Let FC = (O,S) be a sequential formal concept, θ be
the minimal threshold value of emergence, and ε be the error
tolerance. The evolution type of each sequence contained in
S is detected by computing Ki as follow:

Ki(O,S) =
count(O, ti)

count(O, ti−1)

Where count(O, tj) is the number of trajectories of O labeled
by the corresponding tj . We apply the following rules based
on Ki value. If Ki(O,S) = 0± ε , then the type of S is lost.
If ((Ki(O,S) > θ) ∧ (θ = 1)) ∨ ((Ki(O,S) ≥ θ) ∧ (θ >
1))) then the type of S is emerging. If Ki(O,S) < θ, then
the type of S is decreasing. If Ki(O,S) = 1 ± ε, then the
type of S is latent. If Ki(O,S) = +∞, then the type of S
is jumping. Table III presents some results of computing Ki

and the detected evolution types from the sequential dataset
presented in Table II.

C. Visualisation

In this step, we present two methods for visualising the
detected evolution types in tagged city maps. The first method
generates maps tagged by different colors, whereas each color
represents a given evolution type. The second method is to
represent the results using colors and arrows, where arrows
represent the flow directions (North, South, East, etc.) and the



TABLE III: Some sequential formal concepts and their types obtained with minsup = 2, θ = 1, ε = 0

Extent Intent day1 day2 K Evolution type
{s2, s6, s9, s10, s11} {< (15) >} 2 3 1.5 emerging

{s2, s8} {< (20)(16) >} 1 1 1 latent
{s3, s7} {< (19)(23)(22) >} 2 0 0 lost

{s3, s7, s10} {< (19)(23) >} 2 1 0.5 decreasing

color of the arrow represents the corresponding type detected.
This representation is important because trajectories of mov-
ing objects are directed by nature. Therefore, the direction
information is highly relevant and important to display in
interactive visualisation systems to provide a fine analysis.

Given a sequential concept lattice and the corresponding
type values. For each sequence in the intents, we extract the
real coordinates of the ordered grids. Each detected type is
assigned to a specific color. Hence, when reading the grid
index and the type, the color is given to the mapped grid area
in the real map. The type of each grid item is chosen according
to the majority vote value, which is computed by considering
all the sequential formal concepts that contain this grid in its
intent. The second method is a variant of the previous method
where we detect the direction of a grid in a sequence. For that,
we consider the real coordinates of the grid and of the next
grid in the sequence. Let us note that if there is no next grid,
there is no detected direction. The type of each direction (or
none) for a grid item is chosen according to the majority vote
value, which is computed by considering all the sequential
formal concepts that contain this grid with this direction in its
intent.

IV. EXPERIMENTS

A. Data and Protocol

We analysed the data collected from the CRAWDAD web-
site [16]. This dataset consists of a 500 taxis trajectories in
San Francisco which was collected during the period from
17 May 2008 to 10 June 2008 (24 days). We selected 455
taxis during 23 days. Several experiments were performed by
varying time granularity τ (24, 12, 6 hours), spatial granularity
α (20, 40, 60 meters), and minsup (0.03, 0.05, 0.07). We set
∆t to 60 minutes, ε to 0 and θ to 1. Let us note that the
chosen ∆t value does not segment again the data. We also
conducted a comparative study between the results obtained
from sequential concept lattice (noted here as "sequences")
with directions or without, and the ones obtained from fre-
quent concept lattice (noted here as "itemsets"). We calculated
the similarity between the results by using Jaccard measure
(Sim(A,B) = |A∩B|

|A∪B| ). The intersection of two results A and
B is the set of grids having the same detected type in the two
results A and B. In the case of using directions, if the type of
a grid corresponds to the type of one direction or more, then
the result is considered as the same. The more the value is
closer to 1, the more the compared results are similar. All the
algorithms were implemented in Java, and all the experiments
were performed on an Intel Xeon X5560 2.8GHz with 16GB
of memory.

B. Results

Table IV presents the characteristics of the computed se-
quential datasets. In the tables, May17 corresponds to Sat-
urday (Armed Forces Day), May18 to Sunday, . . . , May26
to Monday (Memorial Day). The types are: LA (latent), E
(emerging), D (decreasing), J (jumping), and LO (lost).

1) Quantitative Results: Tables V, VIII, and VII show
part of statistical analysis for the results obtained from using
different spatial granularities 20, 40, 60 meters respectively
(minsup = 0.05 and time granularity = one day). We can
observe that the total number of patterns increases whenever
we have a high spatial granularity value. Thus, if the spatial
granularity value increases, the total number of grids decreases
and the data density increases. Consequently, there are more
possible common grids between the trajectories, so the prob-
ability to find a sequential formal concept increases. We can
conclude that there is a relation between spatial granularity
and the total number of generated sequential formal concepts.
Moreover, we observe that the number of lost and jumping
types are low compared to those of the other types. This is due
to the time granularity which is coarse and does not allow to
capture fast evolution. A set of patterns is lost or jumping if it
is not detected during both the two compared time windows.
We have also applied the same protocol by changing time
granularity value. Instead of using 24 hours, we have set the
time granularity value to 12 hours and 6 hours, while keeping
spatial granularity value of 60 meters and minsup value as
0.05. Tables VI and IX show the statistical results for 12 hours
and 6 hours, respectively for May17, May18, and May19. If
we compare these statistics with the ones in Table VII, we
can conclude that whenever we decrease the time granularity
we get less total number of sequential formal concepts. For
example, in time window (May18,May19) Table VII, the total
number of sequential formal concepts is equal to 156,138
while for the same period of time on Table VI it is equal to
12,502 and to 3,597 in Table IX. The decreasing of the number
of sequential concept lattice occurs because the data density
is lower. Finally, we have applied the protocol by changing
the minsup value, for the same spatial granularity and time
as presented in Tables VII, X and XI. We note from these
results that whenever the minsup value increases the number
of generated sequential formal concepts decreases, and some
evolution types may disappear. For example, if we compare
the results in Table X with those in Table XI, we can notice
that with minsup=0.07 we have no jumping or lost types.

2) Qualitative Results: Emerging sequential formal con-
cepts have been captured in the Mission District area (see
Figure 2) during the period of (May24, May25). This indicates



TABLE IV: Computed sequential datasets

Exp. Parameters #Sequences #Items
No. (avg.) (avg.)
1 α = 0.02 km, τ = 24 h, minsup =0.05 895 34,475
2 α = 0.04 km, τ = 24 h, minsup = 0.05 895 14,255
3 α = 0.06 km, τ = 24 h, minsup = 0.05 895 8,074
4 α = 0.06 km, τ = 12 h, minsup = 0.05 865 7,198
5 α = 0.06 km, τ = 6 h, minsup = 0.05 820 6,122
6 α = 0.06 km, τ = 24 h, minsup = 0.03 895 8,074
7 α = 0.06 km, τ = 24 h, minsup = 0.07 895 8,074 Fig. 2: Tagged map for Mission District

(May24,May25).

TABLE V: Number of sequential formal concepts
α = 0.02 km, τ = 24 h, minsup = 0.05

Time windows #E #D #LA #LO #J Total
(May17,May18) 1,390 35 3 0 0 1,428
(May18,May19) 751 1,854 71 0 0 2,676
(May19,May20) 760 1,075 78 0 0 1,913
(May20,May21) 905 825 86 0 0 1,816
(May21,May22) 1,300 727 110 0 0 2,137
(May22,May23) 1,434 938 132 0 0 2,504
(May23,May24) 1,157 1,273 107 0 0 2,537
(May24,May25) 1,430 1,197 131 0 0 2,758
(May25,May26) 1,548 864 100 0 0 2,512

TABLE VI: Number of sequential formal concepts
α = 0.06 km, τ = 12 h, minsup=0.05

Time windows #E #D #LA #LO #J Total
May17(am),May17(pm) 856 1 0 0 137 994
May17(pm),May18(am) 4,600 1,384 85 0 1 6,070
May18(am),May18(pm) 1,376 4,945 126 0 0 6,447
May18(pm),May19(am) 1,483 1,817 105 0 0 3,405
May19(am),May19(pm) 1,306 1,291 53 0 0 2,650

TABLE VII: Number of sequential formal concepts
α = 0.06 km, τ = 24 h, minsup = 0.05

Time windows #E #D #LA #LO #J Total
(May17,May18) 53,956 271 55 0 35 54,317
(May18,May19) 29,644 122,901 3,593 0 0 156,138
(May19,May20) 26,263 48,478 3,524 0 0 78,265
(May20,May21) 32,515 30,648 3,517 0 0 66,680
(May21,May22) 53,050 25,736 4,010 0 0 82,796
(May22,May23) 75,987 33,585 5,753 0 0 115,325
(May23,May24) 69,702 62,714 6,175 0 0 138,591
(May24,May25) 115,022 65,441 8,935 0 0 189,398
(May25,May26) 114,786 50,599 6,551 0 0 171,936

TABLE VIII: Number of sequential formal concepts
α = 0.04 km, τ = 24 h, minsup = 0.05

Time windows #E #D #LA #LO #J Total
(May17,May18) 9,817 125 19 0 2 9,963
(May18,May19) 5,046 19,738 606 0 0 25,390
(May19,May20) 5,258 7,991 642 0 0 13,891
(May20,May21) 5,827 5,956 644 0 0 12,427
(May21,May22) 10,287 4,548 688 0 0 15,523
(May22,May23) 12,031 7,247 1,044 0 0 20,322
(May23,May24) 11,031 10,674 1,026 0 0 22,731
(May24,May25) 16,952 11,299 1,424 0 0 29,675
(May25,May26) 16,847 8,016 954 0 0 25,817

that those regions face a higher taxi movement on the second
day compared to the first day. This results can be clarified by
the fact that these days are part of Memorial Day weekend.
In fact, there was a parade in May25 morning which runs
along Mission Street for three hours or more. For that reason
traffic in May25 was higher in this area compared to May24.
Figure 4 shows a decreasing evolution type in the crossroad of
Townsend street and 7th street, within a majority of emerging
direction flow to North East and North West, while a majority
of decreasing to South East. This precise information gives
a detailed analysis compared to the decreasing type without
direction captured in Figure 3. This example is typic and shows
that the proposed visualisation method using evolution type
with directions provides a more fine analysis of movements,
a precise description for each region in the city, and a better
understanding of traffic flow at street levels.

3) Comparative Results: Table XII presents the similarity
values obtained from comparing (1) Itemsets and sequences
without direction, Sim(it,seqnod) ; (2) Itemsets and sequences
with direction, Sim(it,seqd) ; (3) Sequences with direction
and without direction, Sim(seqnod,seqd). The purpose of this

comparison is to examine if our extension to direction and
the use of majority voting affects the obtained results. As we
can see, Sim(seqnod,seqd) has the maximum value among all
the other. Hence the results obtained from sequential concept
lattice with direction covered the results without direction.
Furthermore, this validates that the extension to directions
provides more details to the model without affecting the
final results. Additionally, we can conclude that the results
obtained from our proposed method do not vary a lot from
the results obtained from frequent concept lattice, which prove
the correctness of both methods. In order to study the effect of
different parameters in our framework, we have used different
parameter values (see Exp. No. in Table IV). We can observe
the following relation, spatial and temporal granularities and
minsup values do not affect the comparative results. The
proposed method is robust. We always have high similarity
values between the two results.

V. CONCLUSION

We have proposed a new trajectory analysis framework
based on sequential patterns, emerging patterns and formal
concept analysis. It allows to detect and characterise the



TABLE IX: Number of sequential formal concepts
α = 0.06 km, τ = 6 h, minsup = 0.05

Time windows #E #D #LA #LO #J Total
May17(0:00-6:00)-May17(6:00-12:00) 0 0 0 0 54 54

May17(6:00-12:00)-May17(12:00-18:00) 184 6 0 0 2 192
May17(12:00-18:00)-May17(18:00-23:59) 312 152 2 0 1 467

May17(18:00-23:59)-May18(0:00-6:00) 493 155 13 0 0 661
May18(0:00-6:00)-May18(6:00-12:00) 367 398 25 1 0 791

May18(6:00-12:00)-May18(12:00-18:00) 142 435 8 3 0 588
May18(12:00-18:00)-May18(18:00-23:59) 310 188 12 0 2 512

May18(18:00-23:59)-May19(0:00-6:00) 263 290 15 0 0 568
May19(0:00-6:00)-May19(6:00-12:00) 312 120 8 0 0 440

May19(6:00-12:00)-May19(12:00-18:00) 143 160 6 1 0 310
May19(12:00-18:00)- May19(18:00-23:59) 281 94 9 0 4 388

Fig. 3: Tagged map for Townsend street without
direction.

TABLE X: Number of sequential formal concepts
α = 0.06 km, τ = 24 h, minsup = 0.03

Time windows #E #D #LA #LO #J Total
(May17,May18) 320,457 2,097 508 0 3998 327,060
(May18,May19) 187,308 748,810 31,919 44 0 968,081
(May19,May20) 152,627 272,393 25,594 1 0 450,615
(May20,May21) 176,022 171,445 23,406 0 0 370,873
(May21,May22) 288,536 150,320 28,110 0 0 466,966
(May22,May23) 404,990 196,577 42,724 0 0 644,291
(May23,May24) 397,210 353,401 48,511 0 0 799,122
(May24,May25) 728,667 421,345 71,019 0 0 1,221,031
(May25,May26) 714,969 359,008 58,396 0 0 1,132,373

Fig. 4: Tagged map for Townsend street with
direction.

TABLE XI: Number of sequential formal concepts
α = 0.06 km, τ = 24 h, minsup = 0.07

Time windows #E #D #LA #LO #J Total
(May17,May18) 16,049 73 10 0 1 16,133
(May18,May19) 8,894 36,883 836 0 0 46,613
(May19,May20) 8,041 15,140 914 0 0 24,095
(May20,May21) 10,395 9,708 940 0 0 21,043
(May21,May22) 15,934 7,434 1,061 0 0 24,429
(May22,May23) 24,270 9,969 1,594 0 0 35,833
(May23,May24) 21,702 19,544 1,560 0 0 42,806
(May24,May25) 34,439 19,396 2,205 0 0 56,040
(May25,May26) 36,879 14,508 1,831 0 0 53,218

TABLE XII: Comparative study between itemsets and se-
quences experiments

Exp. No. Sim(it,seqnod) Sim(it,seqd) Sim(seqnod,seqd)
1 0.8875 0.9040 0.9467
2 0.8147 0.8530 0.8755
3 0.8232 0.8515 0.8813
4 0.8802 0.8896 0.9387
5 0.8515 0.8550 0.9837
7 0.8274 0.8564 0.8943

Average 0.8474 0.8682 0.9200

evolution of patterns through time, and to visualise the results
in tagged city maps at different spatio-temporal granularities.
Experiments on real-world data have shown the applicability
of the proposed method and its relevance. Moreover, we have
shown that the use of sequential patterns compared to frequent
itemsets provides more precise analysis with the direction
information. In future work, we will extend our system to build
a probabilistic model to predict the pattern evolution during
the next time window.
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