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Introduction

The Mach's principle, since its first formulation, has fascinated a great number of physicists because of its intuitive appeal. More stringent formulations, due mainly to Barbour ([3], [START_REF] Barbour | Relational Concepts of Space and Time[END_REF]), are implemented here through the use of the intrinsic dynamics: basically, what we do in intrinsic dynamics is to take a generating space and its configuration space, and see what happens when we partition that configuration space in a variety of ways. Changing the partitioning (= the filtering), changes the dynamics and the kinematics of the objects in the generating space. In recent years, the dynamical theory of Clifford-valued points has seen a moderate success, and it is studied mainly by Castro and Pavšič: in different ways, one developing the membrane theory, one developing the extended relativity, they have reached some success in solving open problems and in generalizing and connecting existent theoretical frameworks (see [START_REF] Castro | Developments of The Extended Relativity Theory in Clifford Spaces[END_REF], [START_REF] Castro Perelman | The extended relativity theory in Clifford Spaces[END_REF], [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]); what connects Pavšič membrane theory to the intrinsic dynamics is Mach's principle, though in the former it comes out naturally and in the latter it is imposed from the beginning. This seems to point toward a common framework based on the generalized space of orbits. Before talking more specifically about the features of this new framework, i.e. the intrinsic dynamics of Clifford-valued membranes, the author wants to stress some other interesting theoretical ideas coming out from extended relativity, membrane theory and intrinsic dynamics (in this order). The first, citing directly the introduction of [START_REF] Castro Perelman | The extended relativity theory in Clifford Spaces[END_REF], is about the following: "since points cannot be observed physically with an ultimate resolution, it is reasonable to postulate that they are smeared into fuzzy balls. [...] For this reason it was argued that one should construct a theory which includes all dimensions (and signatures) on the equal footing". We can agree with the fact that a theory that encompasses all dimensions is more appealing than a limited one, but remains the issue of consistency which is the foundation of most contemporary frameworks; an important result from Pavšič, which is the first important result reported on this paper, resolves specifically this theoretical urge. About the first part on the "fuzzy balls" (a very loose locution indeed), we will see that this is 1 not only a reasonable postulate, but ultimately it is a necessary postulate if we want to work within a grounding. In fact, what all those framework lack is a solid grounding, which has to be metaphysical in nature; an attempt in this direction is made here by requiring the kernel-degeneracy of a pseudo-metric space, which results in a self-dual background independent generating space that can be used as unique framework in which to place the dynamics of membranes. The same attempts also partially answers the question "why membranes?", by showing that such a space can be naturally considered as a stacking of membranes. Mach's principle in membrane dynamics comes out directly from a strong assumption, which is found in the following statement by Pavšič: "the famous Mach's principle states that the motion of matter at a given location is determined by the contribution of all the matter in the universe and this provides an explanation for inertia (and inertial mass). Such a situation is implemented in the model of a universe consisting of a system of membranes". We see that his enunciation of Mach's principle is quite rudimental; however, it is interesting because the model of a universe made of a membrane fluid is both compatible with the intrinsic dynamics and natural in the framework of our kernel-degenerate grounding. The former compatibility comes from the fact that a membrane fluid is imposed to be bounded, and (see [START_REF] Barbour | Mach's principle and the structure of dynamical theories[END_REF]) "the space of orbits cannot be meaningfully defined unless the universe is finite [...] and preferably closed". Some issues remain, such as to properly define what a "universe" is, to meaningfully define the "fuzzy balls" described above, to properly define "inertia". However, we rely on the reader's intuition to make sense of the propositions in which the momentarily ill-defined concepts are used. Another striking connection between the works of Castro, Pavšič and Barbour is the role of time (yes, this is another one of those momentarily ill-defined concepts): all the career of Barbour revolves around trying to formulate a dynamics which is independent from time intended as a continuous and objective parameter; he is somewhat successful, though many theoretical aspects remain unclear. Castro and Pavšič, on the other hand, rely heavily on the Stueckelberg unconstrained particle formalism, which we'll see soon it is a bridge between classical isometric intrinsic dynamics and relativity. This formalism allows us to consider not the parameterized evolution of a (e.g.) three-dimensional riemannian surface in a four-dimensional space in which the final object spanned by the membrane is fixed, but the unconstrained evolution of a four-manifold encoded in its configuration space (here lies the other connection with intrinsic dynamics). Here we are in a kind of an impasse, because on the one hand we have a Jacobi formulation in three dimensions (in k dimensions) in which the time parameter (i.e. the evolution) follows the second Mach's principle, on the other hand we have the parameterized unconstrained evolution of a four-manifold (a (k + 1)-manifold), so that it seems we end up with an infinite chain. Our proposed solution is to consider as fundamental entity the configuration space itself: this would be contradictory or, rather, inconsistent within an ungrounded framework, but the condition of kernel-degeneracy of the space H ξ assures that in some sense the configuration space coincides with the generating space:

{ µ ⊕ H µ } ξ . = (Q ε , ξ ν:ε ) (1) 
This equation will be explained in the proper section. This in turn allows for a well grounded modal (conterfactual) analysis of the subsystems of H ξ ; it's an interesting thing because it can be argued that the modal logic is the correct logical framework for the study of quantum systems. Another very important theoretical issue we try to analyse here is the fact that the Lebesgue dimension of a moving system is considered to be constant. This is always true if we work with riemannian surfaces and it is partially true if we work with finite particles: what it is meant here is that a riemannian surface cannot evolve into another system with different Lebesgue dimensionality, while in a sense finite particle system can. An obvious example is that of two particles initially constrained to a straight line, or, which is physically more relevant, central problems that are naturally constrained to a (hyper)plane, but that can "acquire" a dimension if properly perturbated. The connection between the two systems is that riemannian surfaces can be considered as an infinite collection of points: ( [START_REF] Barbour | Mach's principle and the structure of dynamical theories[END_REF]) "an infinite collection of points equipped with a metric can generate a metric of riemannian form". It is proposed here, though in a preliminary form, that the Lebesgue dimension is a constant of evolution that comes from the structure of H. Lastly, contemporary physics is mostly formulated in terms of gauge theories: the gauge symmetries can be recast as symmetries intrinsic to the configuration space, thus naturally implemented in our fundamental entity. An early example is given in 1982 by Barbour and Bertotti, that show that "Newtonian or Lorentzian dynamics can be made to satisfy Poincaré (= Mach)'s principle in exactly the same way that electrodynamics is gauge invariant". Usually, for sub-isometric partitionings of the configuration space, the general construction requires vanishing conditions that, however, disappear as soon as we consider hyperisometric partitionings. For example, geometrodynamics is machian without further assumptions and constraints. Some results in the statistical behaviour of membrane fluids are discussed in the last section, with the hope that this results will bring to consistent formulations (within our framework) of "wave-function collapse" and to the formulation of Boltzmann-type distributions for membrane fluids. The crucial concept is that membrane fluids are in membrane space exactly what a gas made of indistinguishable particles is in three-space.

Clifford-valued metric spaces

In ordinary space, the Barbour-Bertotti model is based on a set of points and on a distance function defined on the set, or rather on an (initially) finite metric space; then, this space is usually considered as embedded in an "embedding" space of three dimensions, and the dynamics and the general covariance is built on an automatic symmetry of Poincaré type, which is called in this formalism Barbour-Bertotti gauge freedom. It is built such that the model satisfies at least the weak Mach's principle: Definition 2.1 (Weak Mach's principle). Once a physically meaningful partitioning of the configuration space has been selected, a point q in the quotiented configuration space and a tangent vector at q define a unique curve in Q, given the initial set of data (q 0 , d 0 ).

The strong version of the principle says that a direction in configuration space is sufficient for defining a unique curve. The difference is subtle, but it is shown by Barbour that the strong principle implies the weak principle (as the names already suggest). Since the only relevant properties (in this preliminary framework, though note that this is not true in general) are differences of position vectors in the embedding space E 3 , once the family (the metric space) "lives" in the euclidean embedding space, we can consider an affine structure on the affine space (E 3 , E 3 ) and work with that. However, the family of points with their distance function exists independently from any embedding target space. So, we are free to embed that specific family, whose points represent general vectors, in any space of dimension three or four, being it curved, flat, or anything else. In order to do so, the distance function defined on the metric space must have a series of bounds that makes it compatible with the specific dimension and with the specific target metric. The gauge freedom is (in three dimensions):

x = x + λ(τ ) + α(τ ) × x (2)
This is a standard form of a three dimensional rotation-translation group; however, the gauge freedom is more general, as it doesn't fix an origin and we are free to move around and rotate the coordinate system. It is called Leibniz group, together with the condition of positive reparametrizability of τ (second Mach principle) and with the general freedom under rescalings. We now proceed in Clifford algebra, at first by considering the direct generalization to higher dimensions of equation 2, then by considering the Clifford space equivalent of an euclidean embedded metric space. With a Clifford algebra Cl(p, q), we can write the gauge freedom in a spinorial way:

x = λ + e θ xe -θ (3) 
Here, x is a vector and θ is a bivector in the form i θ 2 . Since the invariance under this transformation is automatic in every isometric-invariant space (in every metric space intrinsically defined by the distances), it creates a symmetry group that we will call Leibniz E n -group. Now, let's extend our assumptions to the relative Clifford spaces. Those spaces are of dimension 2 n and their basis is given by polyvectors of the form γ µ ,γ ν , γ µ ∧ γ ν and so on, up to the relative pseudoscalar. The relative "space" interval is in the form:

dX 2 = dσ 2 + 1 2! dx µ dx µ + 1 3! dx µν dx µν + ... + 1 n! dx µ1µ2...µn dx µ1µ2...µn (4)
The Einstein convention on repeating covariant-contravariant indices is used. A position polyvector in Clifford spaces is in the form: [START_REF] Hestenes | Spacetime physics with geometric algebra[END_REF] Similarly to the three and four dimensional cases, each Clifford valued metric space retains an existence a priori with respect to any embedding space. To account for physical dimensions (meaning measure units), we have to introduce a lenght to make equation 4 coherent:

X = σ + x µ γ µ + ... + x µ1µ2...µn γ µ1µ2...µn
dX 2 = dσ 2 + L -2 1 2! dx µ dx µ + L -4 1 3! dx µν dx µν + ... + L -2D 1 n! dx µ1µ2...µn dx µ1µ2...µn (6) 
This is then a dimensionless quantity that, using powers of L, can be brought to having any power of a lenght dimension. Since the relevant measures are invariant under global rescalings, we can always, in every embeddable space, choose L = 1. To account for polyvector valued metric (pseudo-metric) spaces, a definition is given: Definition 2.2. An embedded metric (or pseudo-metric) space ρ is called an "endospace" if and only if its discrete elements are elements of the embedding space mapped by a endomorphism φ : ρ → ρ. An endospace is "complete" if and only if every transformation in the degrees of freedom of its discrete elements is identified by the parameterized action of elements of the embedding space.

The endospaces are basically a restricted Clifford map between a space and itself. For example, to obtain a constant (in general) polyvector valued field restricted to ∂ρ it's sufficient to map a single element of the embedding space inside the boundary of ρ to every element of ρ itself. What is peculiar about endospaces is their dynamical nature: since the mapping is between embedded elements evolving in the configuration space, the nature of the elements changes througout the path in Q. The endomorphism φ can be itself a dynamical entity, meaning that it evolves together with ρ. As an example, usual fields can be seen as unbounded continuous endospaces with a dynamical endomorphism.

Definition of configuration space, membrane space and Hausdorff decomposition

Given a metric space ρ of cardinality |ρ|, embedded in a space of dimension n, its configuration space is the space isomorphic to R (n * |ρ|) that spans all the possible combinations inside the field of variation of the distance function associated with φ. More generally, in an arbitrary metric set, every element of the metric space has multiple indices attached to it and each discrete element of those indices is mapped into R; the configuration space is generated by the span of all the possible values taken in the mapping, with suitable constraints. This is just a change of perspective, since the span of d indices mapped into the same number of constrained R d is equal to a suitably constrained span of a single particle mapped into R n * d . A very important and special case of configuration space is the hyper-isometric intrinsic configuration space; each one of its elements represents a couple of points in the generating metric space and it is mapped into the R + , with constraints given by an auxiliary embedding. As an example of constrained configuration space, we now follow the construction of membrane space portrayed in [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]. The basic kinematically possible objects in the membrane space M are n-dimensional, arbitrarily deformable membranes V n living in an N -dimensional space V N . A membrane V n is represented by the embedding functions X µ (γ a ), µ = 0, 1, 2, ..., (N -1) and a = 0, 1, 2, ..., (n -1). The γ a are local coordinates on V n . This construction allows and considers as distinct tangentially deformed membranes. The set of all possible membranes V n forms an infinite dimensional space M called membrane space. A closed and orientable element of the n-dimensional subset of M can also be considered as the projection of an (n+1)-vector living in C N into a subspace V N with metric compatible with γ a . A distance is defined in M:

dl 2 = dγdχg µν (γ, χ)dX µ (γ)dX ν (χ) = dX µ(γ) dX µ(γ) (7) 
Integration is performed over repeated continuous indices, identified by parentheses. All the differential operators in the membrane space are functional operators (e.g. the derivative is a functional derivative). For the many important features of membrane space and for a rigorous construction, the author refers the reader to [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]. What is important for our purpose, momentarily, is the following: Lemma 2.1. Any pair of distinct elements in a single-dimensional slice of the membrane space M is connected by a configuration morphism.

Proof. On any membrane is defined a continuous metric (not necessarily smooth, at the moment), and a membrane is thus, in our formalism, a continuous bounded metric space. Any two continuous bounded metric spaces with same topological dimension are trivially connected by a morphism in configuration space, as it is sufficient to define an isomorphism between them. This lemma ensures that a single-dimensional slice of the membrane space "saturates" continuous boundaries of appropriate dimension; or rather, continuous metric spaces "fill up" completely a continuous boundary of suitable dimension. What happens if, by our construction, we add points to a membrane that already "fills up" a loop? The metric space becomes in general a pseudo-metric space. The machinery called Hausdorff decomposition serves precisely the purpose of analyzing continuous pseudo-metric (embedded) spaces:

Definition 2.3. A "Hausdorff decomposition" { µ ⊕ M µ } of
an embedded pseudo-metric space M p with boundary ∂M p is a topological cover of M p whose only elements are elements of M properly restricted to the dimension and boundary of M p . For a decomposition to be "maximal", every other Hausdorff decomposition of M p has to be a refinement with respect to it. A space that has at least one non-trivial maximal Hausdorff decomposition is called "reducible". This definition and the structure of the membrane space, together, imply some very non intuitive facts. For example, let's consider a closed continuous manifold (a particular boundary) embedded in an euclidean space, in which lives an element of M restricted to that boundary; if we take two non discrete subsets of that element, of one dimension higher than the boundary, by lemma 2.1 those subsets are connected by a configuration morphism. So, an initially non-reducible element of M can always be evolved into a reducible space. Of course, the cardinality of the decomposition is less than or equal to the cardinality of the membrane, considered as a metric space. This happens only if we consider the unconstrained membrane space, in which the elements are allowed to evolve according to an arbitrary configuration morphism. In the standard membrane space, reducibility is an invariant property.

Generalized Barbour gauge freedom as the affine extension of global Clifford-Lorentz symmetry

In the Barbour-Bertotti E 3 construction, each pair of points has an associated distance and all the relative physical properties are constructed from the norm and orientation of that distance. Relative directions can be more easily seen by embedding the family into a target Clifford space of suitable dimension.

In the E 3 model, the relevant properties are automatically invariant under translations and rotations in the target embedding space. The same is true for the Clifford extension, if we take for granted the hypothesis that the only relevant properties are the distances between points (which is equal to considering a configuration space quotiented by isometries, as we'll see):

Proposition 2.1. Given a metric space β embedded in an euclidean space, if it is compatible with a dimension d ≤ n ≤ 2 d (where n is given such that 2 n is the nearest power of 2 with respect to d), then it is automatically invariant under the Clifford-Leibniz group that induces transformations of the form X = λ(τ ) + e θ(τ ) Xe -θ(τ ) , where λ, X and θ are polyvectors (parameterized to include global rescalings) of a suitable embedding Clifford space of dimension 2 D , D ≥ d, that represent a translation, the position polyvector of an element of β with respect to the origin of the euclidean embedding space and the rotation operator.

Proof. We know that an embeddable family has well defined properties for each pair of elements.

The physically relevant quantities are relative directions and the relative norm of each angle-like and distance-like Clifford operators. If the family is compatible with the above mentioned dimension n, then, by embedding the metric space in a Clifford valued space of dimension 2 D , we immediately see that by translating the whole "block" the relative norms and relative directions remain invariant. Now, as seen in [START_REF] Castro Perelman | The extended relativity theory in Clifford Spaces[END_REF], since a Clifford algebra admits a matrix representation, one can write the norm of a polyvector in terms of the trace operation as ||X|| 2 = T r(X 2 ). Let us take the trace of both sides in the Clifford-Leibniz transformation of an element in the affine space (C D , C D ) in the form (X 1 -X 2 ):

T r[(X 1 -X 2 ) 2 ] = T r[(e θ X 1 e -θ -e θ X 2 e -θ + λ -λ)] 2 (8) 
Then:

T r[(e θ (X 1 -X 2 )e -θ ) 2 ] = T r[(e θ e -θ (X 1 -X 2 )) 2 ] = T r[(X 1 -X 2 ) 2 ] ( 9 
)
So the relative norms are invariant due to the cyclic properties of the trace operator. It remains to discuss how the relative directions and the relative angles transform. However, since each of those degrees of freedom is effectively represented by the norm of an operator-like Clifford element in the family, which is translated to a distance-like polyvector in the embedding Clifford space, then everything remains unchanged by the same argument based on the cyclicity of the trace operator. The restrictions to the polyvector θ are studied in [START_REF] Castro Perelman | The extended relativity theory in Clifford Spaces[END_REF] and are based on an equivalent norm called reversal norm. In particular, given R = e θ , a necessary condition is that R † = R -1 . Stronger constraints, like the necessity of it being unitary, arise from constructions similar to Penrose twistor space ([2], [START_REF] Castro | Developments of The Extended Relativity Theory in Clifford Spaces[END_REF]). A Clifford valued metric space is automatically compatible with any Clifford space of dimension 2 D , D ≥ d. So, without changing physical meaning, we are free to embed our family in a Clifford space of every superior dimension and operate reshufflings thanks to the automatic invariance under the Clifford-Poincaré group, thus creating an extended equivalence class in arbitrary dimensions, that makes the intrinsic dynamics of Q 0 (see [START_REF] Barbour | Mach's principle and the structure of dynamical theories[END_REF]) arise naturally.

We see, now, that the Clifford-Barbour-Bertotti gauge freedom is really the affine extension, acting on an arbitrary grid overlapping the embedding space, of the global Clifford-Leibniz symmetry. This allows for a general reshuffling of p-loops in the target spacetime slices (it reshuffles branes for strings, volumes for branes, and so on; see [START_REF] Castro | Developments of The Extended Relativity Theory in Clifford Spaces[END_REF], [START_REF] Castro Perelman | The extended relativity theory in Clifford Spaces[END_REF] for a more detailed discussion). Since the Clifford metric naturally includes an invariant lenght parameter, the Clifford-Leibniz group also includes naturaly the affine extension of the Newton-Hooke group. So, in general, an embedded manifold, without interactions, moves freely in a Clifford space with non vanishing cosmological constant.

Clifford generalization of the space of orbits Q 0

In the E 3 Barbour-Bertotti theory, the space of orbits Q 0 is defined as the quotient space (Q, ξ 0 ), where Q is the configuration space of an embedded family, and ξ 0 is the filtration based on the equivalence class of families connected by a Leibniz transformation. The orbit is then just the equivalence class associated to each element of Q. Other general examples are the shape space, in which the configuration space is quotiented by a global rescaling, and the two related superspaces: the standard superspace and the conformal superspace. The standard superspace (Q, ξ g ) is obtained when the configuration space of a Barbour-Bertotti manifold is quotiented by diffeomorphisms, and the conformal superspace (Q, ξ c ) is obtained when the configuration space of a manifold is quotiented by conformal transformations. The Clifford generalization of the concept of space of orbits, given by proposition 2.1, is obtained by considering all possible reshufflings, "moving arbitrarily the grid" (see [START_REF] Barbour | Mach's principle and the structure of dynamical theories[END_REF], [START_REF] Barbour | Relational Concepts of Space and Time[END_REF]), each time with a fixed dimension 2 D . The other partitionings are translated directly to the Clifford language using the same method: we then talk of a polydimensional conformal superspace (Q, ξ c ), of a polydimensional shape space (Q, ξ r ), and so on. So, while the infinite dimensional configuration space of a manifold is bounded to a given dimension 2 D in the study of variational principles, the polydimensional quotiented space (Q, ξ) is generally well defined in arbitrary dimensions, all at once and equally treated, and the orbits are polydimensional. "Evolution" of systems is equivalent to going from a member of the quotiented configuration space to another; the best matching technique is then a way of encoding an ordering in the space of orbits. As an example, let's consider two embedded riemannian manifolds φ 1 and φ 2 , and compute the difference dφ = φ 2 -φ 1 : then, the operation of best matching (or stacking) is equivalent to finding the infimum of the following integral:

ds 2 = [dΣ] (dφ) 2 (10)
Where dΣ is the hypervolume element of the embedding space. This integral must give the same configurations independently from reshapings of the arbitrary grids we use to compute it, given they are compatible with the symmetries (as we will see, they must be ξ-compatible). This operation of best matching defines a metric in the quotiented configuration space, with which we shall work from now on; one could take as dynamical variable, for example, the metric tensor g ij of a Riemannian space and consider it as an embedded manifold dynamically evolving given a parameter τ , and taking as quotiented space the standard superspace (Q, ξ g ). Thus, there is a direct correspondence between arbitrary changes in grids and different partitions of the configuration space, and we are free to work only with active transformations as long as we limit ourselves to active transformations that operate on the whole spectre of every Hausdorff decomposition of the manifolds. E.g. one could fix, in an embedded finite metric space, a euclidean grid; in this case the general Leibniz group would reduce to the Poincaré group, but the correspondence with the affine situation is given by expanding the Poincaré group to include affine rotations, or rather to the set of all possible intrinsic transformations in the Leibniz group described in the coordinate system of the euclidean grid; the expansion of the symmetry group, when it is possible, from the fixed-grid situation to the general affine symmetry is called affine extension. We conclude that all the relevant information is given by the partitioning of the configuration space, if the class of possible embedding spaces is compatible with the affine extension; such a class is called ξ-compatible. Definition 2.4. Given a partitioning (Q, ξ) generated by an unbounded element of the membrane space, a set of unbounded continuous metric spaces S ξ is called ξ-compatible if and only if S ξ = {S j }| λ , S j ∈ S ξ , and the external transformations induced by S ξ are invariant with respect to any embedded pseudo-metric space.

Here, {S j }| λ means the orbit of an element of S ξ restricted to continuous spaces. Working inside the set of ξ-compatible membranes allows for an easier application and understanding of symmetries. Of course (as we have defined them with this in mind) the affine extensions are always operable in S ξ . We are now going to define a specific class of complete endospaces: Definition 2.5. Given an endospace ρ and a quotiented configuration space (Q, ξ), the space is called "self-dual" if it is complete in at least one element of S ξ restricted to {∂ρ| ξ }.

As we'll see, this kind of spaces are very important as a grounding on which to build a proper dynamics. For every manifold, it's important to note that in the associated configuration space there are infinitely many states in which the (pseudo) metric space is not a manifold; it is sufficient to break the Dedekind continuity of a single element of the family, and this is always possible by arbitrarily changing the configuration values of the elements in a neighborhood. If we are dealing with a symmetry defined only on manifolds, the relevant partitioning is a subfiltering of the whole configuration space; the complementary subfiltering is arbitrary, if we don't extend the statement of the symmetry to generic families. However, the extension is always possible, and it is often useful since we want to be equipped with a complete disjoint covering of the polydimensional collection of configuration spaces. We recall a general result that can be found explicitly in [START_REF] Barbour | Mach's principle and the structure of dynamical theories[END_REF], though presented here in a slightly stronger form (due entirely to our geometric extension):

Claim 2.1. The distinct solutions to the C n variational stacked problem for finite families in (Q, ξ 0 ) are the geodesics of the associated variational problem in configuration space that cut the orbits orthogonally with respect to the intrinsic metric.

Proof. The proof is identical to that found in [START_REF] Barbour | Mach's principle and the structure of dynamical theories[END_REF]. This allows us to solve our problems in the non quotiented configuration space if, given the set of all possible solutions, we take only those perpendicular to the orbits. It also allows us to greatly restrict the set of possible solutions from geometric principles alone. In other words, from the lagrangian given by the parameter derivative of the metric form, we consider the Finsler metric generated by such lagrangian in Q and we intersect it with the space of orbits, to see where it cuts orthogonally. The generalization of configuration coordinates to manifolds is straightforward, given the metric equivalent to that of equation 10; the resulting configuration space is infinite dimensional and can be considered a function space or, rather, a Hilbert space given a complete set of functions (with that metric, it is isomorphic to the Lebesgue L 2 space). Claim 2.1 gives a necessary condition for a model to be machian: in fact, by definition, a point and a tangent vector ar a point in configuration space must be enough to fix a dynamical path; claim 2.1 assures that, if a tangent vector is given and if it is perpendicular to the local orbits, the path is unique and determined by the partitioning of the configuration space. As we have already seen, the polydimensional configuration space (Q, ξ) is in general quotiented in arbitrary dimensions, all at once. Now, how is the polydimensional partitioning (Q, ξ) built? We need both a natural way to identify the "sameness" of embedded spaces in multiple dimensions, and a way to partition the configuration space. The former is given by considering a space, as defined a priori by its distance function, so that we can proceed by embedding it in any suitable unbounded smooth metric space; however natural this identification may seem, it restricts the partitioning to filterings that have as refinements at least the isometry partitioning. The latter is given by extending the configuration space with which we begin to any other compatible arbitrary dimension greater or equal to the dimensionality of the space we want to embed. If the single-dimension partitioning is the action of a group ξ, then we simply build the orbits in each dimension by acting with the group itself; otherwise, more generally, each smaller configuration space is extended to higher dimensions by mapping equal configurations between each other and by extending the equivalence classes in higher dimensions "by hand" (effectively choosing, or rather using the axiom of choice). We can consider configuration spaces in lower dimensions to be contained in configuration spaces of higher dimension; for example, all the configurations of a discrete element in dimension n can be recovered in dimension n + 1 by keeping constant a coordinate. The quotiented configuration space, given the coordinates x µ of each discrete elements with µ mapped into N [1,b] , contains the equivalence classes computed for every interval [1, b] ∈ N; but, as we have seen, every configuration space built on an interval contains also the configuration space built in [1, b ], b < b. So, if there exists a supremum for the interval restricted to the arbitrary set of variation, the polydimensional configuration space can be built by the configuration space with discrete coordinates x sup (µ) . However, our arbitrary set of variation is usually N, so µ, in order to be a supremum for the intervals in the natural numbers, has to be mapped at least in R. If we take the continuum hypotheses for granted, then the following is true: Claim 2.2. The Wheeler-Hochberg construction is exactly the construction that maps µ in R so that the associated configuration space is the supremum for the configuration space with discrete coordinates mapped into intervals of the natural numbers.

Proof. Trivial, by definition and by the continuum hypothesis.

In fact, in the Wheeler-Hochberg construction, the coordinates are bijectively mapped into a subset of the positive real numbers:

x sup(µ) : x µ → x(z) (11)
Even in this case, the construction of the quotiented configuration space is consistent with each discrete element being mapped into a non-numerable subset of varying parameters. The dimensionality of the spaces, when embeddable, is recovered as the minimum natural number compatible with the metric bounds of the Wheeler-Hochberg configuration space. Good convergence properties of the Wheeler-Hochberg coordinates are obviously assumed.

Relativity from the generalized space of orbits

Since we are dealing with the evolution of states, we usually work with spaces and not with spacetimes; in fact, recovering the symmetries of spacetime in an approach based only on space is one of the main results of Barbour ([25]). So, to define manifolds in spacetime we need to define an intrinsic map between manifolds with finite decomposition in the E d projection of Clifford spaces, so that we obtain a final manifold of one dimension greater (i.e. d + 1) than the original one. The condition of finiteness of the decomposition is to ensure that each transverse leaf of the spacetime manifold is isomorphic to every element of the initial quotiented configuration space. So, if we consider the quotiented configuration space (Q, ξ)| n of the manifold in Clifford space, we can initially choose (for example) to use as ξ-filtering the Clifford-Leibniz group (which does not include relativistic effects, we are now in a stereographic Newton-Hooke space). After that, once we have assembled the (d + 1)-manifold using general functorial maps based on intrinsic differentials, we consider a "virtual evolution" so that we can partition the (d + 1)-configuration space using once again as ξ-filtering the Clifford-Leibniz group (this is identical to considering an unconstrained evolution in V 4 ); then, we take the equivalence class of our spacetime manifold under this partition and project all the resulting manifolds in the d-slices, in order to extend the original d-dimensional configuration space by including in its equivalence classes also the set of projected forms of the spacetime manifold, which is a proper subset of the initial configuration space. In fact, the dynamics of the space manifolds can be seen as a particular foliation of the spacetime associated manifold, which turns out to be regular. The spacetime, to have an algebra of Minkowski tipe, must be "complexified" if its dimension (d + 1) is in the form:

(d + 1) = 4n; 4n + 1 (12) 
Where n ∈ N. To complexify a Clifford space means that its algebra is imposed to have a form in which the squared norm of the pseudoscalar is ||I|| 2 = -1. To obtain this, the signature of the space must contain an odd number of negative signs. This usually implies that the "equivalent complexified signatures" contain a series of lower dimensional subalgebras that can, or cannot, be themselves complexified. The ambiguity in the signature can be fixed from general considerations that embed spacetime into a larger sequence of nested subalgebras (see [START_REF] Dressel | Spacetime algebra as a powerful tool for electromagnetism[END_REF]). Anyway, it is a known Clifford algebra result that the spacetime slices inside Cl 4 can be chosen to have an arbitrary signature. This has far reaching consequences, as it is shown by Pavšič: Theorem 2.1 (Pavšič). An even-dimensional subspace of the Clifford manifold in which live elements of M f can always be chosen such that there are no central terms and anomalies in the associated membrane theory.

Proof. The whole proof can be found in [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]. It is based on the fact that inside the same Clifford space, the slice of dimension equal to its vector subalgebra can be chosen with an arbitrary signature. Then, it is shown by Cangemi, Jackiw and Zwiebach that a harmonic oscillator in a space with evenly mixed signature has vanishing zero point energy.

This somewhat justifies the research of dynamical principles that encompass all dimensions.

Claim 2.3. There is at least one ξ-filtering of the configuration space that recovers the spacetime symmetries. It can always be canonically rearranged into a complete disjoint covering.

Proof. The first part follows directly from the above discussion. For the second part, it's sufficient to say that every member that is in more than one class is considered only in the equivalence class to which it belonged in the initial spatial foliation.

The resulting quotiented configuration space is (Q, ξ + 0 ). The generalization of the above argument to the diffeomorphic partitioning is enough to build the geometrodynamics of riemannian manifolds and in general to build a framework equivalent to general relativity, as shown in [START_REF] Barbour | Relativity without relativity[END_REF], [START_REF] Hojman | Geometrodynamics regained[END_REF]. In particular the Einstein-Hamilton-Jacobi equation has its starting point in the dynamics of space manifolds, unlike the usual Einstein-Hilbert formulation on spacetime. However, probably the most suited formulation based on (Q, ξ g ) is the Baierlein-Sharp-Wheeler formulation ( [START_REF] Barbour | Relativity without relativity[END_REF]), which does not use at all the notion of spacetime and recovers all the information from the geometrodynamics of spatial riemannian manifolds. What the author wants to stress here is that the Stueckelberg method creates a bridge between standard E 3 intrinsic dynamics and the relativistic M 4 formulation, through the unconstrained evolution of 4-manifolds or, more generally, 4-points (see [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]). We will now show the construction of General Relativity in intrinsic dynamics, by considering stacked riemannian membranes. We begin by defining the covariant derivative in a riemannian manifold of dimension k with tangent k-blade B:

τ • ∂F = P B (τ • P B (∇F )) ( 13 
)
Where it is defined the operation of projection onto the manifold identified by the tangent blade B. This is a very useful notation, and the proof of the fact that it is parametrization-invariant (and thus well defined as operator) comes directly from the fundamental theorem of geometric calculus:

P B (∇) F (x i ) = lim |Mi|→ 0 B -1 xi |M i | ∂Mi d k-1 x (F (x)) (14) 
Here, |M i | is a sufficiently small and closed k-dimensional part of the riemannian manifold. This equation, which is basically equivalent to the fundamental theorem of geometric calculus, gives a coordinate free definition to the first projection of the differential operator, which is called intrinsic derivative. This also shows that the covariant derivative is independent from the parametrization of the riemannian surface. In other words, it is unaffected by the choice of the surface in the same equivalence class of the standard superspace. Now we consider a polyvector-valued function ḡ defined on the riemannian surfaces, that maps tangent blades into polyvectors, and we define also the shift function N that gives as output the distance between successive riemannian surfaces. The transformation that generates the partitioning is:

ḡ = ḡ + ∂χ + [∂χ] t (15)
Here. χ is an arbitrary three-vector valued function defined on the riemannian surfaces. Given the DeWitt's metric Ḡ, the action for the evolution of riemannian surfaces is:

S[ḡ, N ] = [DΣ] R[ḡ]T r Ḡ(d I ḡ -2∂ N ) 2 1 2 (16)
There are a few things to notice. The first is that, unlike the standard covariant formulation of the action, also the argument of the trace is invariant. So, it would be interesting to consider the action consisting of that argument. Another interesting thing to notice is that Hojman et al. (see [START_REF] Hojman | Geometrodynamics regained[END_REF]) show that this action is almost uniquely determined by the request that the evolving threesurfaces can be stacked to make a four-dimensional riemannian spacetime. We now recast equation 16 in index notation and in a standard time parametrization:

S[g ij , N k ] = dt d 3 x R[g]G ijkl [g] ġij -2N (i;j) ġkl -2N (k;l) 1 2 (17) 
This action sheds light on an important topic: ([?]) "the difference between the formal structure of general relativity and newtonian mechanics is reflected in the fact that the latter can be represented in a form analogous to the above equation only for the solutions with vanishing energy and angular momentum, whereas no such restriction must be made for general relativity: it is already in intrinsic form". In our framework, we might conclude that hyper-isometric filterings naturally include Poincaré's principle, as equation 16.

3 Field actions and membrane dynamics

Action for hyper-isometric spaces and Stueckelberg unconstrained particle

We shall begin with the analysis of finite metric spaces, with the dynamics intended as evolution of point-like particles in fixed dimensions. The usual construction of a Barbour-Bertotti action starts from trying to make the derivative covariant with respect to the Leibniz group (as done before with the intrinsic differential). Note that there is here an apparent ambiguity in the notation: what was before the symbol for the general covariant derivative, becomes here, only when paired with an index, an usual partial derivative.

D τ x = ∂ τ x + ∂ τ λ + ∂ τ α × x ( 18 
)
This derivative is not yet gauge covariant, and the condition on horizontal stacking must be imposed:

δ (D τ x µ D τ x µ ) = 0 (19) 
Where here the δ represents a variation vith respect to λ, α. If one imposes the horizontal stacking (see [START_REF] Barbour | Leibnizian time, Machian dynamics and quantum gravity[END_REF]) in order to obtain the covariance for the derivative of vectors X = λ + e θ Xe -θ with respect to a parameter, namely τ , one obtains an action principle of the form: [START_REF] Castro Perelman | The extended relativity theory in Clifford Spaces[END_REF] 

S = m dτ (D τ X µ D τ X µ ) 1 2 (20)
The resulting equation of motion reduces to the free state Barbour-Bertotti equation of motion in an euclidean target space (as in [START_REF] Kiefer | Quantum Gravity[END_REF]). The integral is proportional to the lenght of the particle's trajectory in the configuration space, so the resulting variation corresponds to a geodesic principle. As we will see later, this action is a particular case of the more general Stueckelberg unconstrained action, in which the fixed quantities (e.g. H ξ ) are constant not from an a priori assumption, but because they are constants of motion. The associated horizontal stacking constraint is formally equivalent to the E 3 version:

δ (D τ X µ D τ X µ ) = 0 (21) 
Now, we need to consider what happens before we apply the constraints: the equation of motion that results from considering the non horizontally-stacked action is:

D τ D τ X ν D τ X µ D τ X µ = 0 (22) 
By applying the horizontal stacking, and thus by imposing that the denominator is a costant number, this equation reduces naturally to the Pavšič-Castro dilaton equation (that they derived by imposing this condition by hand):

D 2 τ X ν = 0 ( 23 
)
The solution to the dilaton equation is a straight Clifford worldline that, when properly projected (e.g. in E n ), gives a total dilational motion. In the next section we will see another approach to the intrinsic constrained dynamics in Clifford spaces, but now let's generalize the above action to polyvectors:

I[X, Λ] = 1 2 dτ D τ X µ D τ X µ Λ(τ ) + Λ(τ )κ 2 (24) 
Here the term Λ(τ ) is an arbitrary polyvector field that in particular can be chosen to be a constant. It turns out ( [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]) that it is connected with the scalar part of the polyvector velocity. If we arbitrarily choose Λ to fulfill the following constraint:

Λm = D τ X µ D τ X µ ( 25 
)
With m = κ, then the unconstrained Stueckelber action becomes exactly the constrained action that, by applying the horizontal stacking, gives the Clifford geodesic equation. In particular, it encompasses naturally, when considered in four dimensions, relativistic effects that cannot be recovered from the constrained action in three dimensions. Other very interesting consequences arise when we consider the constant term κ to be a polyvector associated with the moving particle; in this case, in fact, since the term contains in general directed blades, it cannot be compatible with general Lorentz covariance and in a fundamental action it must vanish (or rather not be present). This points toward a five-dimensional action of de Sitter type ( [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]).

Jacobi's variational principle and intrinsic dynamics for fields

Jacobi's variational principle tells us that the path in (Q, ξ 0 ), for a fixed dimension, is the path for which the following variation vanishes:

δ ([W + V (q)]d I q µ d I q µ ) 1 2 = 0 ( 26 
)
Where W is a constant kinetic term similar in role to the de Sitter cosmological constant and V is a conformal factor that serves the purpose of extending the Finsler metric to yield non-trivial results, and finally d I is the intrinsic differential identical (for configurative quantities) to that defined in the previous section. For short enough trajectories, the motion follows the path in (Q, ξ 0 ) which is a geodesic under the Jacobi metric defined by equation 26. In those short segments of trajectory, the variational principle does not include the arbitrary parameter τ , and is thus a timeless formulation. Now, to extend this action to (for the moment scalar) fields embedded in euclidean spaces, it's sufficient to impose a metric of the form of equation 10 in the Jacobi's action:

S = W -[d n r](∇φ) 2 [d n r](d I φ) 2 1 2 (27) 
Remember that the intrinsic differential is built with the Lie parameters induced by the symmetry group that generates the partitioning ξ. Extending this principle to polyvector fields and to arbitrary riemannian embedding spaces (given that they are ξ-compatible), we obtain a general Jacobi's variational principle applied to arbitrary unbounded smooth endospaces:

S = W -[DΣ] (|ρ|) (∇P ) 2 [DΣ] (|ρ|) (d I P ) 2 1 2 (28) 
This equation is complex, and requires some analysis. The element |ρ| is the square root of the determinant of the Clifford metric tensor, and it serves the purpose of generating an invariant hypervolume element. If the endospace is analytic, the action reduces to the generalized Polyakov-Howe-Tucker action with vanshing cosmological constant (see [START_REF] Castro | Developments of The Extended Relativity Theory in Clifford Spaces[END_REF]). Up to this moment, we have considered in the intrinsic differential only the Leibniz group. In the case of the Leibniz group, by our definition the only ξ-compatible spaces are the euclidean unbounded manifolds. If, for example, we consider the case of a vector field A in three dimensions, the general principle reduces to:

S = dτ W -[d 3 r](∇ A) 2 [d 3 r](∂ τ A + a α O α A) 2 1 2 (29) 
Now, what if we consider other symmetries that are peculiar to unbounded continuous endospaces (from now on, we shall use the standard terminology of fields)? For example, the following:

P → P + ∇ ∧ F ( 30 
)
Where F is a polyvector field such that the gauge shifting preserves the grade of P . The set of ξcompatible spaces remains unchanged by adding only this symmetry. This is true in general: internal transformations that change only the endomorphisms of the endospaces leave S ξ unchanged. When restricting this new symmetry to vector fields in three dimensions, the resulting action principle is simply:

S = dτ W -[d 3 r](∇ A) 2 [d 3 r](∂ τ A + ∇f + a α O α A) 2 1 2 (31) 
Here, f is a scalar field. This, with the stacking conditions, reproduces exactly the equation of motions of the free electromagnetic field, given that f = -A 0 where A 0 is the scalar potential in Maxwell's electrodynamics.

M-grounding

The extended membrane space M f is a restricted polyvectorial configuration space (Q, ξ f ), equipped with a metric, in which the generating element is a continuous metric endospace and in which the partitioning ξ f has to have as refinement the identity partitioning. In order to have a kinematical evolution for every dimension, or rather a configuration space with generating elements of all dimensions, the discrete elements of the metric spaces have to be unconstrained, and so has to be the action describing the general dynamics of polyparticles. Since the boundary of every polyparticle, when projected, can be seen as an element of M, every Clifford-valued continuous endospace, which is an element of M in and on itself, is made of extended objects which are once again points in the membrane space. The discrete elements in S ξ , for each filtering, can be seen as unconstrained elements of M f . We now need a lemma:

Lemma 3.1. The cardinality of the configuration space of a membrane is the fixed point of the succession of cardinalities of configuration spaces with metric generators.

Proof. Trivial: by lemma 2.1 and using the fact that the configuration space of a membrane has the cardinality of the functional configuration space.

We are now going to introduce the concept of cardinality of equivalence classes; the cardinality of an equivalence class is the number of subsets of the decomposition of a generic reducible space, which must be arranged in a disjoint partitioning, that are in that equivalence class. The cardinality of the equivalent classes is not to be confused with the configuration space itself; in fact, the configuration space Q p of a single membrane with fixed boundary (which is unique and equal for all membranes with the same boundary, as in lemma 2.1) is equal to the Hausdorff decomposition of a pseudo-metric space such that, in its respect, the cardinality of every equivalence class of the identity partition ξ p of Q p is one. Every variation of every quotiented configuration space can be encoded in the cardinality map of the quotiented configuration space (Q p , ξ p ). This encoding shall be called binary encoding. The binary kernel of a configuration space is a subset of that configuration space whose elements are connected by a morphism such that the cardinality of the morphed elements in the binary encoding is strictly less than the cardinality of the configuration space of a maximal Kolmogorov metric space (if ∂H = ∅, it is a membrane) and such that it contains at least one of the maximally uniform states of the generating space. Of all the possible generating spaces and of all possible configurative evolutions, the restriction of our study to the extended membrane space M f is due to the following: Theorem 3.1. It exists a kernel-degenerate supremum, independent from the choices of the partitioning of the unrestricted M f and unique up to ξ-isomorphisms, of at least some unbounded refinement-ordered sequences of the quotiented configuration spaces r µ,ν = (Q µ , ξ ν:µ ), each generated by a subset of the necessarily self-dual endospace H ξ , if and only if there is a maximal Hausdorff decomposition of H ξ , and at least an arbitrarily M-quotiented subset

{ µ ⊕ H µ } ξ of the power set of that decomposition, such that { µ ⊕ H µ } ξ . = (Q ε , ξ ν:ε ), where Q ε and ξ ν:ε are suitable suprema.
Proof. We shall begin by defining the new terms and symbols in the statement of the theorem. The dot equality means that the equality does not distinguish between elements in the same Mequivalence class, and it is computed for each element of S ξ and for each (Lebesgue) dimension of its elements. A configuration space is said to be kernel-degenerate if and only if its binary kernel is unitary, i.e. if it consists of only one element. The elements in the succession are trivially connected with their following elements, of which they are a refinement, via inclusion maps. By unrestricted M f it is meant the quotiented configuration space of a membrane not limited to continuous transformations. The filterings have an additional index, which is in function of the index of the configuration spaces, because each configuration space that is in the sequence can have more than one filtering: those filterings can have different subfilterings, or can be totally different. Why do we use a Hausdorff decomposition and not any other matemathical machinery that accounts for pseudo-metric spaces? The answer is that every non-hyperbolic and non-totally continuous metric space is a refinement of at least a membrane. Moreover, an arbitrary decomposition wouldn't allow to apply an arbitrary partitioning to each one of its elements, while a membrane is completely filtrable and so a Hausdorff decomposition is totally analysable. Let's assume as a working hypothesis that a Hausdorff decomposition is sufficient to build the configuration space, and then we will prove this statement explicitly using the binary encoding. Another question comes to mind: how is it possible that an obviously infinite dimensional space such as any kernel-degenerate supremum is degenerate? The fact is that distinct mathematical points can represent the same element. For example (as in our case) if in the embedding space the generating spaces are stacked, any permutation of configurations in the associated configuration space results in the same element. The indices of the sequences need not be mapped into the natural numbers: some examples of sequences are any refinement-ordered sequence of elements of the power set of H ξ ; if any of these sequences is unbounded, then its supremum is the whole space, or a space isomorphic to it. Notice that the kernel-degeneracy is totally independent from the choice of partitionings and subpartitionings in the sequences, because the kernel has by definition only one element and it does not matter in which equivalence class it is. We are now going to prove that if the quotiented decomposition differs from the quotiented configuration space of a kernel-degenerate supremum, then the configuration space has more than one element. Our assumption implies that there are some combination of metric spaces in (Q ε , ξ ν:ε ) that are not included in the decomposition of the generating space. So, to prove the assumption, it is sufficient to evolve the generating space in a configuration such that the subspace of the power set of its decomposition with a number of elements equal to the number of elements of each point in (Q ε , ξ ν:ε ) is exactly in one of those states. The reasoning is the same even if we consider endospaces, as the degrees of freedom added by the endomorphism φ just add dimensions to the configuration space. There are a few things to say about the binary encoding that will be usfeul here: the first is that the map containing k elements as generators is saturated by the uniform map filled with k elements in each equivalence class. This means that it always exists a subset of the powerset of the k-uniform binary map that contains the quotiented configuration space generated by k elements. Then, it can be formulated a general equality between the cardinality of the binary configuration space (that is, the set whose binary encoding saturates the set generated by the kinetic elements) and the cardinality of the configuration space of each element:

N Q = N e * N Q | e (32)
Here, N Q is the cardinality of the binary configuration space, N e is the cardinality of the set of generators and the last term is the cardinality of the configuration space of a generator, which has to be connected by a configuration morphism to a maximal Kolmogorov metric space. We know by lemma 3.1 that it makes no difference whatsoever if we use as basic generator a point or a membrane. Thanks to this relationship, we see that a necessary condition for a space to be kernel-degenerate is the equicardinality of the Hausdorff decomposition and of the binary configuration space, N Q = N e . This condition is also sufficient if we require the space to be uniform in the binary encoding. Let's see why: say, for example, that the space we are considering is not kernel-degenerate. This means that the M-filtering consists of at least two equivalence classes, and that every element of those equivalence classes is reachable with morphings inside the binary kernel; this, in turn, means that in one of those two classes ther is a totally non-uniform configuration (i.e. a configuration with an empty equivalence class), and it is trivial that in a totally non-uniform configuration it can't be that

{ µ ⊕ H µ } ξ . = (Q ε ,
ξ ν:ε ); this also means that to fulfill the condition every element of the binary kernel must be totally uniform, and if we have a totally uniform configuration which fulfills our request, we are done. This also explains why the supremum is unique up to ξ-isomorphisms: let's say that we take a supremum of an unbounded sequence in which the filled equivalence class is just one; now, that space is isomorphic to a kernel-degenerate supremum by the above cardinality argument, but it also exists an M-partitioning in which the two spaces are dot-equal: the trivial partitioning. This is an example, but it always exists a partitioning such that an isomorphic space can be morphed into the kernel-degenerate one, and viceversa, without changing equivalence classes. Now, let's deal with the issue of "why the Hausdorff decomposition and not another one": the main fact was already stated at the beginning of the proof, but we are going to see it from another perspective. In the binary encoding there are some very counterintuitive correspondences; for example, a set of membranes of cardinality less than the number of points in a single membrane shares the configuration space with any other such set with an inferior cardinality. Thus, what is a single point in the configuration space of a membrane, which is seen as a single element in the binary encoding, is totally equivalent to a restricted binary encoding with a number of metric elements equal to the cardinality of the Hausdorff decomposition of that initial single point, in the corresponding positions. Another similar duality is seen when we "decompose" a membrane into any number of different subspaces, which are then allowed to evolve indipendently: what is a single membrane state in the binary encoding is totally equivalent to a multiple state made up of all the subspaces in the covering of the membrane. Since every membrane is continuous, any possible metric space compatible with our restrictions appears as a subspace of at least one membrane. So, in the binary encoding, in place of any number of metric spaces that properly cover a membrane, we can put the corresponding membrane. This would not be sufficient in a finite decomposition in which there are not all the necessary subspace of the covering; however here, by our assumptions, we know that all such subspaces are there. We have proven yet the theorem for non-endo spaces and for a generic Hausdorff decomposition. Now we generalize this argument to endospaces: for an endospace is not sufficient an encoding in a single-dimensional slice of M, but we need an additional mapping for each of the elements of the basis mapping. The structure of the reasoning doesn't change, since it is sufficient to repeat the above construction for each element of the membrane mapping. The elements that connect the two statements we are trying to prove, explicitly that H ξ is self-dual and that the decomposition can be chosen to be maximal, are the hyperbolic membranes. By "hyperbolic membrane" we mean a continuous metric space whose conformally intrinsic metric is hyperbolic (and thus unbounded). To prove that the ∞-manifold is self-dual, it's sufficient to take a filtering that has an associated S ξ which contains suitable hyperbolic metric spaces; then, we embed the generating space in a hyperbolic manifold that shares the same boundary with H ξ when embedded in a non-hyperbolic space. This can always be done, but in almost no circumstances this saturates the ways to make H ξ self-dual. To prove that the Hausdorff decomposition can be chosen to be maximal, it's necessary to separate hyperbolic membranes and non-hyperbolic membranes if we want to have conformally consistent membranes: the latter can be embedded in larger membranes, with boundary ∂M , so that in the decomposition it's always possible to choose the extended version with the same boundary as H ξ ; the former cannot be embedded in a larger membrane in a conformally consistent way, so they are not the refinement of any other membrane. So, we end up with a decomposition made up of totally refined hyperbolic membranes with arbitrary boundary (included in ∂M ) and non-hyperbolic membranes with boundary ∂M , which, by definition, cannot be the refinement of other membranes. Let's now think a bit about the pertinence of the M-filterings regarding the whole space: the crucial fact is that (remember that we are "moving" inside ∂M ), once again, any bounded metric space, even continuous, can be considered as an element of the configuration space of a membrane (loosely speaking, a membrane is a bounded metric space that fills the boundaries, i.e. a maximal Kolmogorov metric space), and thus the equivalence classes can be thought of as generated by maximal membranes. In this case, it is useful to abandon the conformal consistency and work only with maximal membranes that fill the boundaries. Any other stacked membrane, so that the whole subspace becomes pseudo-metric and not reducible to an element of M, can be moved independently by considering any stacking membrane as a background. Any filtering in the succession can be decomposed into a set of Mfilterings with varying backgrounds, based on the stacking order. So M is the basis for any evolution of subsystems, since the stacking order is totally arbitrary. Thus, knowing that in H ξ by costruction there are infinitely many distinct membranes in any class of the identity filtering, the evolution of maximal membranes is completely independent. To finally prove that it is sufficient to meet the assumptions for just one arbitrary M-filtering of the power set of { µ ⊕ H µ }, consider two distinct cases: the case in which our chosen partitioning is a refinement with respect to another arbitrary partitioning, and the case in which the other partitioning is a refinement with respect to our initial one. In the first case, the proof is trivial since any new equivalence class is larger than the equivalence classes we begin with; in the second case, since the choice of elements inside the same equivalence class is arbitrary and does not change the space, we are free to choose whatever elements are needed for the new partitioning to meet the needed conditions.

As it can be seen, the assumptions don't restrict the set of possible embedding spaces; the fact that we are here considering Clifford spaces is just an arbitrary decision that we make. However, for the theorem to be valid, this has not to be the case, and it is open to generalizations of the embedding spaces such as Super-Clifford spaces (see [START_REF] Castro | Super-Clifford Gravity, Higher Spins, Generalized Supergeometry and Much More[END_REF]); of course, the space in general has to be closed under its own transformations and operations, or rather it has to include as elements the operators. In this sense, the Clifford extension of a standard vector space is the "smallest" self-consistent extension in which the theorem is applicable to all the elements (e.g. every group acting on a Clifford subspace of dimension d < 2 n has elements in C n ) and in which the generating ∞-manifold H ξ is naturally self-dual. Moreover, it is the largest associative algebra that can be constructed with the usual vector space equipped with a metric ( [START_REF] Dressel | Spacetime algebra as a powerful tool for electromagnetism[END_REF]). Note here also that, of all the possible categories of topological coverings with metric spaces as elements, the Hausdorff decomposition is the only one that admits a maximal form, which gives a sort of uniqueness to the decomposition itself, and it is the only one that naturally contains all the others. The interior of each ∞-manifold is the Pavšič-Castro pandimensional continuum defined in extended relativity: we see it here arising naturally from imposing the unitarity of the polydimensional quotiented configuration space. Euristically, in a broader sense, the pandimensional continuum is the state in which the "fuzzy balls" are (see [START_REF] Castro Perelman | The extended relativity theory in Clifford Spaces[END_REF]) when the lenght considered is below the unitary threshold of the Planck lenght. They are usually regarded as being the "absence of information", and for them being an ∞-manifold is consistent: in fact, the ∞-manifolds are the most generic form possible; had it been otherwise, we would have had indirect information on what happens under the "information threshold". By definition, the interior of an ∞-manifold does not evolve, but it need not be true for subfamilies of the interior of the manifold. In those families, the free state term is that of the usual action, but they must be considered interacting with the rest of the manifold. To sum up, what theorem 3.1 says is that, if we take as background an ∞-manifold, then the reparametrization covariant membrane space M f saturates its kinematics; why is the request of kernel-degeneracy of the configuration space so natural and appealing? To begin with, the condition of degeneracy is the only general property on the number of equivalence classes that is valid for every partitioning. This is easy to see, because any other general numerical statement is automatically false in the trivial partitioning with only one element (by definition). Moreover, a grounding has to be unique, self-contained and unevolving: so, we start with a kerneldegenerate quotiented configuration space and we want to study its properties; this is exactly what theorem 3.1 does. Since manifolds V * in M are themselves particular endospaces represented by elements in M and by a mapping φ, then trivially theorem 3.1 holds even if the initial configuration space is generated by an M-manifold.

On the structure of ∞-manifolds

We analyze here the consequences of theorem 3.1 regarding the structure of H ξ . A first thing to study is its behaviour under symmetry transformations: Proof. In order to prove the result, we first need to understand the action of the local Clifford-Leibniz-Poincaré group: it is to note that the local action of the Clifford-Leibniz-Poincaré group is identical with the local action of the Clifford-Leibniz group; since each of its "actions" are composed of a rotation and a translation, we immediately see that such locally independent actions allow us to arbitrarily reshuffle every point in the manifold. In other words, we are free to move each point, independently, wherever we want. This is true both for the translation component alone, and for the rotation component alone. The Clifford-Leibniz-Poincaré group is the most general group that allows us to arbitrarily reshuffle polyvectors, since every other transformation is reducible to local translation or local rotations of this type, and both of them are components of the whole group. The general form of transformation is the affine extension of the following group:

X = λ(Σ) + e θ(Σ) Xe -θ(Σ) ( 33 
)
Where Σ is the coordinate description of the ξ-compatible space. The crucial fact is that two points are always connected by a polyvector, and any two points belong to the surface of at least a hypersphere. Since every transformation of the ∞-manifold gives a negligible variation, then the result follows immediately.

In many coordinate systems, or grids, the rotations and the translations become very different from the usual euclidean type: in locally non-euclidean systems even the infinitesimal transformations reshuffle the manifold in ways that are far from the intuitive notion. However, since those spaces must belong to the set of ξ-compatible elements, they must be compatible with a wide set of "nicer" spaces because a symmetry that involves a class of coordinate distortions has to include the global polyvector reshuffling, and thus the complicated fractal-like coordinate systems can be recast as an affine active transformation in a more suitable membrane. This addresses even the case in which the partitioning isolates a single fractal-like coordinate system with its associated manifold: if the usual rotations and translations are not locally computable, then the element is in a separate equivalence class and thus the quotiented configuration space has more than one element; on the other hand, if we want the quotiented configuration space to have only one element, we must compare all the equivalence classes and the set of ξ-compatible spaces widens to include the smooth ones.

Corollary 3.1.2. The endomorphism φ

∞ : M → M , if consistent, is completely relflexive.
Proof. A "completely reflexive endomorphism" is an endomorphism that maps the whole space on which it operates to every point of that space, and it is consistent if every topologically idistinguishable membrane with a different mapping is considered equivalently a single membrane with the combined mapping of all the initial membranes. The proof is then trivial, as had the endomorphism not been equivalent to a completely reflexive one, an evolution of the subset associated with each point would have been possible. Now that we understand a little the structure of an ∞-manifold, we see that this structure is completely independent from any embedding space, the dependance being only in the dynamical boundary, which can be considered intrinsic anyway. So, we can use the ∞-manifolds as an independent background similarly to the construction of a bulk metric generated by membrane fluids, as described in [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]. So, there is in principle no need for an embedding space, as it is generated by conditions on membrane fluids. Since we work extensively with indices of Wheeler-Hochberg type, an alternative choice of dimensional measure with respect to the Lebesgue dimension of membranes and metric spaces is that of Hausdorff dimension, which gives information on local properties of the membranes, or equivalently of functional measure. The author refers to [START_REF] Wheeler | Spacetime dimension from a variational principle[END_REF] for the main results of Hausdorff theory applied to point-particle dynamics. Notably, even though the Lebesgue dimension is trivially constant if we consider membranes, the Hausdorff dimension is not a constant of motion. This is expecially evident in the projective Clifford formalism of extended relativity, in which a projected loop has a generally undefined Hausdorff dimension, or rather, loosely speaking, each projected loop is in a "superposition" of all the possible Hausdorff dimensions. The author wants to point this out because theorem 3.1, together with the seminal work of Wheeler and Hochberg, gives sufficient hints for the fact that, in the evolution of any subset of H ξ , the Lebesgue dimension of each element of an arbitrary metric decomposition can be considered as a constant of motion. About the topological properties of the ∞-manifolds, a first observation is that they have to be at least completely normal (when embedded), but they cannot be Kolmogorov; in fact, we know that a proper pseudo-metric space is at least completely normal, but we also know that the ∞-manifold contains every proper embeddable manifold, so the statement follows. The ∞-manifolds are lattices with respect to the extrinsic metric of the embedding spaces, but not with respect to the conformal intrinsic metric of each membrane. In fact, the intrinsic metric is arbitrary, meaning that by choosing conformally the unit lenght inside a submanifold we can end up with an unbounded metric, even though it is bounded with respect to the extrinsic embedding metric. An example is given by the already mentioned hyperbolic membranes stacked inside a riemannian membrane: for a subfamily evolving inside the nested stacking of the two, we can choose to analyze the dynamics starting from the intrinsic metric of the riemannian manifold, in which case it is bounded and the hyperbolic manifold is just another family evolving in a riemannian metric, or we can choose to analyze the dynamics starting from the intrinsic metric of the hyperbolic manifold, in which case it is unbounded and the hyperbolic manifold is no more a family evolving, but the stage in which the evolution takes place. In the general manifold it's always possible to reduce a Hausdorff manifold to an arbitrary intrinsic metric through the closed action of the Clifford-Leibniz-Poncaré group. Of course, we know from theorem 3.1 that in an ∞-manifold (in principle) we can choose the M-filtering we want, and thus all the facts about intrinsic metrics can be translated to appropriate ξ-compatible extrinsic metrics. In fact:

Claim 3.1.

There is always at least a partitioning ξ u of the polydimensional configuration space (Q, ξ u ) that allows to transform an arbitrary Hausdorff subspace of a bounded ∞-manifold into a uniform manifold, through a ξ-compatible transformation.

Proof. We are interested only in continuous subspaces, because the continuous ones are the only subspaces in which an intrinsic metric is defined, and for which that metric can be nontrivial even when embedded in a distance-preserving way. For general Hausdorff subspaces, the metric is defined only in the continuous sub-subspace of the Hausdorff subspace itself, and the rest of the space can be ignored. From this assumptions, the proof is trivial as it is sufficient to stack the Hausdorff subspace on an unbounded continuous metric space that contains a subspace which is topologically indistinguishable from the stacked space.

Next, we are going to state a result that is important for giving a grounding to pseudo-metric spaces embedded in particular configuration spaces. This is notable for at least two reasons: the first is that, if a dynamics grounded in ξ-compatible spaces is not grounded in its respective configuration spaces, then the problem of finding a general grounding would end up in an infinite cascade; the second is that such a result allows us to work directly inside the configuration spaces. Proposition 3.1. An ∞-manifold embedded in an element of S ξ retains its structure in every configuration space generated by a set of membranes, at least up to a membrane fluid.

Proof. We have seen before that a consistent ∞-manifold fulfills the Grothendieck conditions. This implies that for every configuration space generated by an up to continuous set of membranes, every equivalence class of that configuration space fullfills once again the Grothendieck conditions due to the nature of strongly inaccessible cardinals. It is implicitly assumed that all the metrics in the configuration space are defined only on the restriction of that configuration space to the boundary of the background.

Outline of the hyper-orbital dynamics of membrane fluids

The aim of the hyper-orbital dynamics is to study the behaviour of systems with particularly strong properties described in the next definition. This allows us to find a supremum for the number of equivalence classes in the M-partitionings of any sequence in a natural way; this is needed, since inside our framework there isn't an operable grounding without a supremum for the filterings. Basically, the hyper-orbital dynamics is the collection of all the dynamics equipped with a grounding. The first definition we need is: Definition 3.1. Given a well defined partitioning ξ of a configuration space generated by an arbitrary space, a property is said to be "hyper-ξ" if and only if it is true in every equivalence class of each filtering that has ξ as refinement.

To make things clear with an example, let's consider the following statement: Proof. An unbounded ∞-manifold is locally invariant due to corollary 3.1.1; a single point is locally invariant on a hyper-isometric partitioning because there are no distances to vary. Every other family, finite or continuous, can be changed simply by varying the distance function.

"Hyper-isometric" means simply "hyper-ξ 0 ", and this statement restricts our study to ∞-manifolds with at least consistent filterings. Let's now say that we work with hyper-isometric properties, and that we work within the ∞-manifold generated by γ * (which is the number associated with the isometric filtering) so that we can use the theory of extended membrane space M f to study the dynamics of its Hausdorff subspaces. This way, we can work inside the hyper-isometric intrinsic configuration space and consider many properties of metric spaces in a background-independent way. We also fix a dynamics on the extended membrane space, for the moment without specifying any hyper-ξ 0 filtering:

I[X µ (γ)] = dl = d I X µ(γ) d I X ν(γ) ( 34 
)
The resulting equation of motion, which is an infinite dimensional version of the usual geodesic equation in finite dimensional spaces, is (after the application of the horizontal stacking):

D τ Ẋµ(γ) + Γ µ(γ) α(γ )β(γ ) Ẋα(γ ) Ẋβ(γ ) = 0 (35)
As usual in intrinsic dynamics, the metric (or the Christoffel symbols) defined in the configuration space determines the dynamical behaviour of systems as seen from the embedding spaces. This geodesic equations are formally equivalent to those obtained in a Wheeler-Hochberg construction with mixed continuous and discrete indices. It is proven in [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF] that with a suitable metric the usual Dirac-Nambu-Goto action is obtained as a particular case of the general geodesic equation. We know by claim 2.1 that the solutions we are interested in are the geodesics that cut the orbits orthogonally: this clarifies the role of the metric in M f , as it comes from the arbitrary filtering we want to apply. Choosing the solutions requires mathematically to insert the intrinsic differential in the geodesic equation or, equivalently, to select the ortogonal geodesics from the complete set of solutions. To sum up, the language of developed so far allows us to correlate the following statements ( [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF], [START_REF] Barbour | Mach's principle and the structure of dynamical theories[END_REF]):

• A membrane seen as a point particle V n embedded in a space V N , with n continuous indices and N discrete indices, moving in the quotiented configuration space M f .

• A closed orientable membrane seen as the projection of a polyvector onto a target slice of the general Clifford manifold, which is in itself an element of M f .

• The worldvolume swept by a membrane onto a target space as a bundle of worldlines swept by point particles.

• A membrane seen as a Clifford-valued manifold embedded in a target Clifford-space.

• A point, with a continuous index of Wheeler-Hochberg type, evolving in an arbitrary quotiented configuration space.

The first two statements are connected by the extended relativity in Clifford spaces. The connection between the second and the third statement can be found in [START_REF] Pavšič | The Landscape of Theoretical Physics: A Global View[END_REF]. The connection between the first and the fourth statement comes directly from the Jacobian approach. The connection with the last statement comes directly from the Wheeler-Hochberg construction.

Dynamical metrics

The setup from now on will be that of studying the evolution of systems inside M f with a dynamical metric. Why is there the need for a dynamical metric? Let's begin the discussion by pointing out the four most important hyper-isometric filterings (other than the identity filtering itself, obviously): the isometric filtering, the diffeomorphic filtering, the conformal filtering and the homeomorphic filtering. They are ordered by refinement, which means that each one of them is a refinement with respect to all the successive filterings. The homeomorphic filtering is the "largest" mathematically meaningful partitioning (arguably also the homotopy filtering fulfills this requirement), which means, loosely speaking, that any other larger partitioning would have to be made by manual choice or would be the trivial one. On the other hand, the diffeomorphic filtering is the "smallest" filtering with an isometric refinement that generates new dynamics. All these filterings come out on an equal footing from the background given by theorem 3.1. Looking closely at this background, we see that it is a (stacked) membrane fluid: Claim 3.3. Once we have fixed an arbitrary filtering and a maximal Hausdorff decomposition for H ξ , that decomposition can always be refined to give a continuous spectrum of membranes on the whole interior of the ∞-manifold.

Proof. We know from theorem 3.1 that there is always a maximal Hausdorff decomposition of H ξ , independently from the choice of partitioning; now suppose we take an element of the arbitrary decomposition that we choose and that we fix, which belongs to the membrane space M. Then we take a topological cover of that membrane whose elements are (smaller) membranes; in other words, we take a tassellation of the membrane. If we now take as reference a point in each member of the tassellation, and we act on those points via a continuous group, we obtain in general a system of tassellations whose reference points span a line. Repeating this contruction over and over allows for a system whose reference points are themselves a membrane. More simply, since in our decomposition we have an arbitrary amount of membranes, is sufficient to take a reference membrane and associate with each of its local coordinate points a membrane that belongs to a tassellation of another maximal membrane.

From these considerations, we deduce that the most general dynamical object we have to consider is a membrane fluid with an arbitrary (dynamical) metric, equipped with a global Clifford endomorphism. To see why this has to be the case, from another point of view, it's sufficient to consider the structure of H ξ inside the membrane space: it is a pseudo-metric space with (as noted before) the same basic structure as the pseudo-metric space in the embedding spaces. This is, in other words, the statement of theorem 3.1. So, the evolving manifold in M has a conformal intrinsic metric that evolves with the evolution of its points, and this is precisely why the metric is dynamical. We have also to account for a dynamical endomorphism on each element of the fluid itself. We shall study the Pavšič ansatz, not accounting for the moment for the dynamical endomorphism. There is here a second ambiguity similar to the one encountered above, the D without any index represents a hypervolume element.

I[g, X] = DX |g| g µ(χ,κ)ν(χ ,κ) Ẋµ(χ,κ) Ẋν(χ ,κ) + R (36) 
This equation becomes, in intrinsic notation:

I[g, X] = DX |g| d I X µ(χ,κ) d I X µ(χ,κ) + R (37) 
Before analyzing each term of the equation, we shall look at the general structure and its connections with the other actions we have seen before. Equation 37 is a particular unconstrained action with a standard field term; it has to be compatible with the field equations derived with the Jacobi principle. This is because, as seen before in this section, a membrane moving dynamically in M is also a Clifford-valued manifold that has to evolve according to the general Jacobi field equation. This correlation is non-trivial, because in the case of a membrane fluid evolving in M the embedding space is unspecified and, in addition to this, each membrane is an endospace that has to evolve indipendently in the Jacobi formalism. Now we shall analyze each term of equation 37. The first term appearing, DX |g|, is the volume element in membrane space:

|g|DX = det(g) µ(χ,κ) dX µ(χ,κ) (38) 
The last term, R, is the most complex one and requires some thought. It is, basically, the Ricci scalar in the membrane space, defined according to:

R = g µ(χ,κ)ν(χ ,κ) R µ(χ,κ)ν(χ ,κ) (39)
The Ricci tensor is the usual contraction of the Riemann tensor, with continuous indices wherever necessary. The resulting equations of motion are two, of which the first is identical with the one derived from the usual geodesic, and the other is the Einstein equation in M:

Ẋα(γ,κ) Ẋβ(γ ,κ) + R α(γ,κ)β(γ ,κ) = 0 (40) 
Equation 37, thus, is an action principle defined on the configuration space generated by a fluid of membranes. It has to give the same answer, when the fluid is embedded, as the Jacobi approach (mentioned in a previous section) or in general as the approach based not on the configuration space but on the dynamics in embedding spaces. The theoretical contact point is, once again, theorem 3.1: it says, as already pointed out, that we can equivalently embed a metric space directly into the configuration space (V p , ξ p ), and study its dynamics there, which is exactly the approach of membrane space (see proposition 3.1). The intrinsic dynamics (if we want to study the projection of the M-manifold) then imposes a filtering on the membrane space and, thus, the initial embedded metric space in M becomes in general a pseudo-metric space. Since a normal space (as we have seen before) can be considered as the configuration space of a single point, how is the filtering approached in this case? A single point has basically two possible filterings: the identity filtering, in which every point is a distinct point; and every isometric or hyper-isometric filterings, which do not distinguish any point and the equivalence class is unique. So, the intrinsic dynamics applied to standard embedding spaces is equivalent to the usual dynamics. Now we need to account for endospaces. For our (preliminary) analysis of endospaces, we begin with a single point and then we expand the model from there. The only endomorphism φ compatible with a single point is the map from the point onto itself. So, basically, the point is associated with the position polyvector. In this case it is not possible, for example, to associate our point with a constant vector field. This, however, is always possible for self-dual endospaces: it is sufficient to choose a dynamical, "contravariant" endomorphism such that the point corresponding to a fixed polyvector in the embedding space is mapped into every element of the endospace (limited to the domain of the field). This is the reason why self-dual spaces are important as backgrounds. We now extend our study to membranes with a polyvector field on them. An interesting special case is when the field is analytic, because then we can use the powerful tools of Clifford calculus to study them. As mentioned before, we use the term "field" instead of "dynamical endomorphism with suitable properties", those properties changing in each case. As an example, we study here the endomorphisms bound to be analytic, or rather, the endomorphisms such that the gradient of the resulting field vanishes. We are going to use Pompeiu's theorem to prove that any analytic field defined on an open membrane is completely determined by the boundary conditions:

P (x 0 ) = (-1) n-1 Ω n I n ∂Vn r r n d n-1 x (P ) (41) 
Where Ω n is the unit sphere hypervolume, and I n the unit pseudoscalar of the membrane. From this theorem it follows trivially that an evolving open analytic membrane has all the information encoded in its boundary, without the need for the Jacobi approach. We give an example of a trivial result obtainable with Pompeiu's theorem: Claim 3.4. A hyperspherical analytic membrane has spherical symmetry. Proof. To prove the claim it's sufficient to take as set of boundaries the set of maximal circles. Since the theorem, in each of those cases, implies mirror symmetry, the statement follows directly.

To sum up, in this special case we see that the Jacobi approach can be substituted by studying the kinematics of the boundaries of open membranes or arbitrary loops on closed membranes. In order to do so, we study the constrained evolution of points in the membrane space and we give an a priori condition on the boundary of the points, whenever it represents an open membrane. It is interesting to note that the free electromagnetic field is analytic.

Preliminary results on the statistical behaviour of M-fluids

As we have seen in the previous section, membrane fluids are a special case of membrane systems in which the coordinates have an additional index of Wheeler-Hochberg type. Some useful notions to classify the type of statistics we have to work with are the notions regarding the indistinguishability of elements. While, of course, when embedded in a suitable space the membranes are distinguishable and generally non-interchangeable, for membrane fluids the following statement is true: Claim 3.5. If a membrane fluid ρ is represented by a manifold V * in M, then ρ occupies a totally symmetric state and its discrete elements are M-indistinguishable.

Proof. Trivial, in a manifold of point-like objects an exchange of two points doesn't change the state of the manifold. In this case, the exchange results in a transformation for the two membranes from their state to the state of the other one.

Differently from the standard membrane space construction, a system of stacked membranes living in an unbounded continuous metric space has access to another symmetry: the topological exchange. It consists of an exchange of two topologically indistinguishable stacked membranes; the next result allows us to use the Hausdorff decomposition in a dynamical way: Proposition 3.2. Let ω t be the number of states that can be obtained in a reducible space by performing a topological exchange, and let ω h be the number of different maximal Hausdorff decompositions that can be performed in that same reducible space. Then:

ω t = ω h (42)
Proof. A topological exchange is operated on topologically indistinguishable stacked elements; to be topologically indistinguishable, it's sufficient for the metric in the boundary of the stacked membrane to be compatible with the projection of its boundary on the embedding membrane. From the point of view of the conformal intrinsic metric of the branes, usually not all the stackings make sense, while of course in the metric of the embedding space the distances are defined all at once and the embeddings are distance-preserving. So, let's say we have a general stacking of n branes: the number of topological exchanges is equal to the number of pairs of membranes in which one is a proper subspace of the other (for the hyperbolic branes, of course, this doesn't make sense if we work with the conformal intrinsic metric, as stated above); but this is also the number of different maximal Hausdorff decompositions of the pseudo-metric space made up of all the stacked membranes. Let's see why: consider the simple case of a pair of membranes in which one is a proper subspace with respect to the other; in this case, we have a pseudo-metric space limited to the superposition of the smaller membrane with its projection on the bigger one, and this pseudo-metric space has trivially only two maximal decompositions. Since both in the case of topological exchange and in the case of decomposition we have two elements for each proper pair, the proposition is proven.

From theorem 3.1 and proposition 3.2 we see that in the case of ∞-manifold background, the topological analysis can be replaced completely by the analysis of the maximal Hausdorff decompositions. An interesting statistical behaviour comes out naturally from considering non-disjoint filtering substructures. These substructures are simply non-disjoint subpartitionings of whole equivalence classes in the initial partitioning. Consider, as an example, a configuration space quotiented by the isometric partitioning. Now, arbitrarily, we divide each isometric equivalence class in non-disjoint subclasses. Then assume, for a yet unspecified reason, that the initial isometric filtering locally becomes the disjoint closure of the non-disjoint filtering substructure. By disjoint closure it is meant simply that each shared portion of the configuration space now belongs to only one equivalence class. The combinatoric part of the process comes out if we choose an element inside each equivalence class randomly. This somewhat makes sense, since every element inside an equivalence class is by definition equivalent to all the others. For example, a uniformly distributed probability intuitively describes the notion of "superposition" of equivalent states. Since some states in non-disjoint filterings belong to more than one class, after the process of "filtering collapse" described above and in the case of uniform distribution, the probability of belonging to a particular equivalence class is:

P (V ∈ Class i ) = 1 (N ) V µ V j dµdj (43)
Here, N is the number of relevant equivalence classes, V µ is the hypervolume of the shared elements, V j the hypervolume of the equivalence classes of the initial filtering substructure. If we suppose that the state of a membrane is randomly chosen in a properly associated pseudo-metric space embedded in its configuration space, an interesting duality appears: Proposition 3.3. There is always a duality between the filtering substructure of the configuration space of an embedded membrane V and the structure of its associated pseudo-metric space in M. In the uniform hypothesis, the duality is given by:

ρ U = ρ 0 * ζ U (44)
The associated probability is then:

P (V ∈ Class i ) = i [DX]ζ X tot [DX]ζ X ( 45 
)
Proof. The term ζ U quantifies the number of classes the neighborhood U is in. From equation 43 we see that the probability is proportional to the "surface" of every subclass multiplied by the number of classes it belongs to. Since the probability distribution is uniform, and since the density is proportional to the number of classes the subclass belongs to, the result of the calculation based on the density of the pseudo-metric space is equivalent to the calculation based on the filtering substructure. The same happens with any other arbitrary distribution on the classes of the nondisjoint filtering substructure, as it is sufficient to consider a uniform basis for the density and repeat the calculations with the same equation.

This result allows us to work only with disjoint filterings, which in turn generate a dynamics through the methods of intrinsic calculus.

Conjectures and future research

For future works, the research is going toward trying to formulate a theory of gravity which encompasses torsion from the geometry of Clifford space and that is based only on observable projected quantities. Also, the quantization of the Barbour-Bertotti-Clifford model is still to be properly analyzed (see [START_REF] Rovelli | Group Quantization of the Barbour-Bertotti model[END_REF] for the general direction of the research). A conjecture on this regard arises from the structure of the ∞-manifolds used as background in hyper-orbital dynamics: the hyper-orbital dynamics, if one considers interactions, implies naturally a path integral formulation, the functional measure being given by the application of Hausdorff theory on points with indices of Wheeler-Hochberg type. A proposed connection between Clifford loops and Hausdorff theory is given by a statement on projections: for any x ∈ [d, sup(h)] the proposition "a projected loop V d of Lebesgue dimension d has a Hausdorff dimension h(V d ) = x" is true. There are also sufficient hints to hope for a theoretical formulation of "wave function collapse" in terms of the evolving filterings. It still remains to properly build a horizontally stacked gauge invariant Pavšič-Polyakov-Howe-Tucker action that includes the total diffeomorphic gauge covariance found in [START_REF] Dressel | Spacetime algebra as a powerful tool for electromagnetism[END_REF], under the standard polydimensional superspace. Lastly, a complete formulation of extended relativity in Clifford-Twistor spaces is yet to be done (see [START_REF] Keller | Twistors and Clifford Algebras[END_REF]). In the literature there are also sufficient hints to hope for a unicity theorem for the action of non-interacting riemannian membranes stacked to form a globally hyperbolic spacetime. This last request, the one on global hyperbolicity, can perhaps be "weakened" to require causally simple spacetimes, causally continuous spacetimes and so on, down in the spacetimes hierarchy. There are some analytical open problems regarding equation 16: it is presently not known whether the Cauchy problem corresponding to that equation is generically uniquely solvable (see [START_REF] Barbour | Mach's principle and the structure of dynamical theories[END_REF]). Future research includes studying the causal closure of self-dual spaces, studying the interactions among ∞-manifolds, studying the dynamics of analytical loops, and making connections between membrane space and more studied theories such as loop quantum gravity and conformal cyclic cosmology. The starting point for conformal cyclic cosmology could be claim 3.2.
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 311 Each and only each ∞-manifold is locally invariant under the closed action of the Clifford-Leibniz-Poincaré group.

Claim 3 . 2 .

 32 The only two hyper-isometric locally invariant families under open transformations generated by the Clifford-Leibniz-Poincaré group are the unbounded ∞-manifold H u and the family consisting of one point.