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Optimal time for the controllability of linear hyperbolic systems

in one dimensional space

Jean-Michel Coron ∗ Hoai-Minh Nguyen †

Abstract

We are concerned about the controllability of a general linear hyperbolic system of the
form ∂tw(t, x) = Σ(x)∂xw(t, x) + γC(x)w(t, x) (γ ∈ R) in one space dimension using bound-
ary controls on one side. More precisely, we establish the optimal time for the null and exact
controllability of the hyperbolic system for generic γ. We also present examples which yield
that the generic requirement is necessary. In the case of constant Σ and of two positive
directions, we prove that the null-controllability is attained for any time greater than the
optimal time for all γ ∈ R and for all C which is analytic if the slowest negative direction
can be alerted by both positive directions. We also show that the null-controllability is at-
tained at the optimal time by a feedback law when C ≡ 0. Our approach is based on the
backstepping method paying a special attention on the construction of the kernel and the
selection of controls.

Keywords: hyperbolic systems, boundary controls, backstepping, optimal time.
AMS: 35F05, 35F15, 35B37, 58G16, 93C20.

1 Introduction

Linear hyperbolic systems in one dimensional space are frequently used in modelling of
many systems such as traffic flow, heat exchangers, and fluids in open channels. The stability
and boundary stabilization of these hyperbolic systems have been studied intensively in the
literature, see, e.g., [3] and the references therein. In this paper, we are concerned about the
optimal time for the null-controllability and exact controllability of such systems using boundary
controls on one side. More precisely, we consider the system

∂tw(t, x) = Σ(x)∂xw(t, x) + γC(x)w(t, x) for (t, x) ∈ R+ × (0, 1). (1)

Here w = (w1, · · · , wn)T : R+ × (0, 1) → Rn (n ≥ 2), γ ∈ R, Σ and C are (n × n) real matrix-
valued functions defined in [0, 1]. We assume that for every x ∈ [0, 1], Σ(x) is diagonal with
m ≥ 1 distinct positive eigenvalues and k = n − m ≥ 1 distinct negative eigenvalues. Using
Riemann coordinates, one might assume that Σ(x) is of the form

Σ(x) = diag
(
− λ1(x), · · · ,−λk(x), λk+1(x), · · · , λn(x)

)
, (2)
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where
− λ1(x) < · · · < −λk(x) < 0 < λk+1(x) < · · · < λk+m(x). (3)

Throughout the paper, we assume that

λi is Lipschitz on [0, 1] for 1 ≤ i ≤ n (= k +m). (4)

We are interested in the following type of boundary conditions and boundary controls. The
boundary conditions at x = 0 are given by

(w1, · · · , wk)T(t, 0) = B(wk+1, · · · , wk+m)T(t, 0) for t ≥ 0, (5)

for some (k ×m) real constant matrix B, and the boundary controls at x = 1 are

wk+1(t, 1) = Wk+1(t), . . . , wk+m(t, 1) = Wk+m(t) for t ≥ 0, (6)

where Wk+1, . . . ,Wk+m are controls. Our goal is to obtain the optimal time for the null-
controllability and exact controllability of (1), (5), and (6). Let us recall that the control
system (1), (5), and (6) is null-controllable (resp. exactly controllable) at the time T > 0 if, for
every initial data w0 : (0, 1) → Rn in [L2(0, 1)]n (resp. for every initial data w0 : (0, 1) → Rn
in [L2(0, 1)]n and for every (final) state wT : (0, 1) → Rn in [L2(0, 1)]n), there is a control
W = (Wk+1, . . . ,Wk+m)T : (0, T ) → Rm in [L2(0, T )]m such that the solution of (1), (5), and
(6) satisfying w(0, x) = w0(x) vanishes (resp. reaches wT ) at the time T : w(T, x) = 0 (resp.
w(T, x) = wT (x)). Set

τi :=

∫ 1

0

1

λi(ξ)
dξ for 1 ≤ i ≤ n (7)

and

Topt :=

{
max

{
τ1 + τm+1, . . . , τk + τm+k, τk+1

}
if m ≥ k,

max
{
τk+1−m + τk+1, τk+2−m + τk+2, . . . , τk + τk+m

}
if m < k.

(8)

The first result in this paper, which implies in particular that one can reach the null-
controllability of (1), (5), and (6) at the time Topt for generic γ (and B), is

Theorem 1. Assume that (3) and (4) hold. We define

B :=
{
B ∈ Rk×m; such that (10) holds for 1 ≤ i ≤ min{k,m− 1}

}
, (9)

where

the i× i matrix formed from the last i columns and the last i rows of B is invertible. (10)

Then

1. In the case m = 1, there exists a (linear) time independent feedback which yields the
null-controllability at the time Topt.

2. In the case m = 2, if B ∈ B, Bk1 6= 0, Σ is constant, and (Topt = τk + τk+2 = τk−1 + τk+1

if k ≥ 2 and Topt = τ1 + τ3 = τ2 if k = 1), then there exists a non-zero constant matrix C
such that the system is not null-controllable at the time Topt.
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3. In the case m ≥ 2, we have i) for each B ∈ B, outside a discrete set of γ in R, the control
system (1), (5), and (6) is null-controllable at the time Topt, and ii) for each γ outside a
discrete set in R, outside a set of zero measure of B in B, the control system (1), (5), and
(6) is null-controllable at the time Topt.

Theorem 1 is proved in Section 4. The optimality of Topt is shown in Proposition 1 for C ≡ 0
(see also Remark 11).

Remark 1. In Proposition 3 in Section 5, we present a null-controllability result, which holds
for all γ and B ∈ B, for a time which is larger than Topt but smaller than T2 defined in (14) for
m ≥ 2.

Concerning the exact controllability, we have the following theorem whose proof is just a
straightforward modification of the one of Theorem 1 (see Remark 10).

Theorem 2. Assume that m ≥ k ≥ 1, (3) and (4) hold. Define

Be :=
{
B ∈ Rk×m; such that (10) holds for 1 ≤ i ≤ k

}
, (11)

Then, i) for each B ∈ Be, outside a discrete set of γ in R, the control system (1), (5), and (6)
is exactly controllable at the time Topt, and ii) for each γ outside a discrete set in R, outside a
set of zero measure of B in Be, the control system (1), (5), and (6) is exactly controllable at the
time Topt.

Remark 2. In the case k = m = 1, the result of Theorem 2 holds for all γ and B ∈ Be, which
was already proved in [23]. Our proof can be modified to obtain this result.

In the case where k ≥ 1, m = 2, Σ is constant, B ∈ B, and Bk1 6= 0, we show that the system
is null-controllable for any time greater than Topt for all γ ∈ R and C analytic. More precisely,
we have

Theorem 3. Let k ≥ 1, m = 2, and T > Topt. Assume that (3) holds, B ∈ B and Bk1 6= 0, Σ
is constant, and C is analytic on [0, L] 1 where

L =
ρk

ρk − 1
with ρk =


λk+2

λk+1
if k = 1,

min
{

min1≤j<i≤k
λj
λi
,
λk+2

λk+1

}
if k ≥ 2.

(12)

Then the system is null-controllable at the time T . Similarly, if in addition that m ≥ k and
B ∈ Be, then the system is exactly controllable at the time T .

Theorem 3 is proved in Section 6.
In the case C ≡ 0, we can prove that Topt is the optimal time for the null-controllability of

the considered system via a linear time independent feedback law. More precisely, we have

1This means that C is analytic in a neighborhood of [0, L].
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Proposition 1. Assume that C ≡ 0 and (10) holds for 1 ≤ i ≤ min{k,m − 1}. There exists
a linear time independent feedback which yields the null-controllability at the time Topt.
Assume in addition that (10) holds for i = min{k,m}, then, for any T < Topt, there exists an
initial datum such that u(T, ·) 6≡ 0 for every control.

Proposition 1 is proved in Section 7.
We now briefly describe the method used in the proofs. Our approach relies on backstepping

due to Miroslav Krstic and his coauthors (see also Remark 3). More precisely, we make the
following change of variables

u(t, x) = w(t, x)−
∫ x

0
K(x, y)w(t, y) dy

for some kernel K : T =
{

(x, y) ∈ (0, 1)2; 0 < y < x
}
→ Rn. The idea is to choose K in such a

way that the controllability of the target system of u is easier to investigate. In our case, K is
chosen so that (20) holds with K(x, 0) having appropriate properties, see in particular (23) and
(25).

The use of backstepping method to obtain the null-controllability for hyperbolic systems in
one dimension was initiated in [10] for the case m = k = 1. This approach has been developed
later on for more general hyperbolic system in [14, 1, 7]. In [10], the optimal time Topt is obtained
for the case m = k = 1. In [14], the authors considered the case where Σ is constant. They
obtained the null-controllability for the time

T1 := τk +

m∑
l=1

τk+l. (13)

It was later showed in [1, 7] that one can reach the null-controllability at the time

T2 := τk + τk+1. (14)

In [14, 1, 7], one does not require any conditions on B and the optimal time in this case is T2.
With the convention (3), it is clear that

Topt ≤ T2 ≤ T1,

and
T2 < T1 if m > 1 and Topt < T2 if m > 1 or k > 1.

When C ≡ 0, Long Hu [13] established the exact controllability for quasilinear systems, i.e.,
A = A(u), in the case m ≥ k for the time

T3 := max{τk+1, τk + τm+1}

under a condition on B, which is equivalent to (10) with i = k in our setting. It is clear in the
case m ≥ k that

Topt ≤ T3 ≤ T2, T3 = Topt if k = 1, and Topt < T3 if k > 1.
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In the linear case, the null controllability was established for the time T2 without any as-
sumption on B and the exact controllability was obtained in the case m = k under a condition
which is different but has some similar features to condition (10) with i = k in [23, Theorem
3.2]. In the quasilinear case with m ≥ k, the exact controllability was derived in [11, Theorem
3.2] (see also [12]) for m ≥ k and for the time T2 under a condition which is equivalent to (10)
with i = k in our setting.

Theorems 1 and 2, and Proposition 1 confirm that generically the optimal time to reach the
null-controllability for the system in (1), (5), and (6) is Topt. Condition B ∈ B (resp. B ∈ Be) is
very natural to obtain the null-controllability (resp. exact-controllability) at Topt (see Section 4.2
for details) which roughly speaking allows to use the l controls Wk+m−l+1, · · · ,Wk+m to control
uk−l+1, · · · , uk for 1 ≤ l ≤ min{k,m} (the possibility to implement l controls corresponding to
the fastest positive speeds to control l components corresponding to the lowest negative speeds).

In comparison with the previous works mentioned above, our analysis contains two new
ingredients. First, after transforming the system into a new one (target system) via backstepping
method as usual, we carefully choose the control varying with respect to time so that the zero
state is reachable at Topt; in the previous works, the zero controls were used for the target system.
Secondly, the boundary conditions of the kernel obtained from the backstepping approach given
in this paper are different from the known ones. Our idea is to explore as much as possible
the boundary conditions of the kernel to make the target system as simple as possible from the
control point of view.

Remark 3. The backstepping method has been also used to stabilize the wave equation [16,
22, 19], the parabolic equations in [20, 21], nonlinear parabolic equations [24]. The standard
backstepping approach relies on the Volterra transform of the second kind. In some situations,
more general transformations are considered as for Korteweg-de Vries equations [5], Kuramoto–
Sivashinsky equations [8], and Schrödinger’s equation [6]. The use of backstepping method to
obtain the null-controllability of the heat equation is given in [9]. A concise introduction of this
method applied to numerous partial differential equations can be found in [17].

The paper is organized as follows. In Section 2, we apply the backstepping approach to derive
the target system and the equations for the kernel. Section 3 is devoted to some properties on
the control systems and the kernel. The proofs of Theorems 1 and 3 are presented in Sections 4
and 6 respectively. A null-controllability result which holds for all γ and B ∈ B is given in
Section 5. In Section 7, we present the proof of Proposition 1.

Acknowledgement: The authors are grateful to the Institute for Theoretical Studies, ETH
Zürich for the hospitality and the support. They are also partially supported by ANR Finite4SoS
ANR-15-CE23-0007. They thank Amaury Hayat and Long Hu for useful comments.

2 A change of variables via backstepping approach. Systems of
the kernel and the target

In what follows, we assume that γ = 1, the general case can be obtained from this case
by replacing C by γC. As in [2, Section 3], [10, Section 4], and [15, Section 3], without loss of
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generality, one can assume that Cii(x) = 0 for 1 ≤ i ≤ n. The key idea of backstepping approach
is to make the following change of variables

u(t, x) = w(t, x)−
∫ x

0
K(x, y)w(t, y) dy, (15)

for some kernel K : T → Rn×n which is chosen in such a way that the system for u is easier to
control. Here

T =
{

(x, y) ∈ (0, 1)2; 0 < y < x
}
. (16)

To determine/derive the equations for K, we first compute ∂tu(t, x)−Σ(x)∂xu(t, x). Taking
into account (15), we formally have 2

∂tu(t, x) =∂tw(t, x)−
∫ x

0
K(x, y)∂tw(t, y) dy

=∂tw(t, x)−
∫ x

0

[
K(x, y)

(
Σ(y)∂yw(t, y) + C(y)w(t, y)

)]
dy (by (1))

=∂tw(t, x)−K(x, x)Σ(x)w(t, x) +K(x, 0)Σ(0)w(t, 0)

+

∫ x

0

[
∂y
(
K(x, y)Σ(y)

)
w(t, y)−K(x, y)C(y)w(t, y)

]
dy (by integrating by parts)

and

∂xu(t, x) = ∂xw(t, x)−
∫ x

0
∂xK(x, y)w(t, y) dy −K(x, x)w(t, x).

It follows from (1) that

∂tu(t, x)− Σ(x)∂xu(t, x) =
(
C(x)−K(x, x)Σ(x) + Σ(x)K(x, x)

)
w(t, x) +K(x, 0)Σ(0)u(t, 0)

+

∫ x

0

[
∂yK(x, y)Σ(y) +K(x, y)Σ′(y)−K(x, y)C(y) + Σ(x)∂xK(x, y)

]
w(t, y) dy. (17)

We search a kernel K which satisfies the following two conditions

∂yK(x, y)Σ(y) + Σ(x)∂xK(x, y) +K(x, y)Σ′(y)−K(x, y)C(y) = 0 in T (18)

and
C(x) := C(x)−K(x, x)Σ(x) + Σ(x)K(x, x) = 0 for x ∈ (0, 1), (19)

so that one formally has

∂tu(t, x) = Σ(x)∂xu(t, x) +K(x, 0)Σ(0)u(t, 0) for (t, x) ∈ R+ × (0, 1). (20)

2We assume here that u, w, and K are smooth enough so that the below computations make sense.
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In fact, such a K exists so that (20) holds (see Proposition 2). We have

the (i, j) component of the matrix ∂yK(x, y)Σ(y) + Σ(x)∂xK(x, y) is

aij(y)∂yKij(x, y) + bij(x)∂xKij(x, y), (21)

where

(
aij(y), bij(x)

)
=



(
− λj(y),−λi(x)

)
if 1 ≤ i, j ≤ k,(

λj(y),−λi(x)
)

if 1 ≤ i ≤ k < k + 1 ≤ j ≤ k +m,(
λj(y), λi(x)

)
if k + 1 ≤ i, j ≤ k +m,(

− λj(y), λi(x)
)

if 1 ≤ j ≤ k < k + 1 ≤ i ≤ k +m.

(22)

We denote

Γ1 =
{

(x, x);x ∈ (0, 1)
}
, Γ2 =

{
(x, 0);x ∈ (0, 1)

}
, and Γ3 =

{
(1, y); y ∈ (0, 1)

}
.

Remark 4. By the characteristic method, it is possible to impose the following boundary
conditions for Kij when Σ is constant:

• On Γ1 if aij/bij ≤ 0, see case a) in Figure 1.

• On both Γ1 and Γ2 if 0 < aij/bij < 1, see case b) in Figure 1.

• On Γ1 and Γ3 if aij/bij > 1, see case c) in Figure 1.

• On Γ2 if aij/bij = 1, see case d) in Figure 1.

To impose (appropriate) boundary conditions of K on Γ2 so that the system for u is simple,
we investigate the term K(x, 0)Σ(0)u(t, 0). Set

Q :=

(
0k B

0m,k Im

)
. (23)

Here and in what follows, 0i,j denotes the zero matrix of size i × j, and 0i and Ii denotes the
zero matrix and the identity matrix of the size i× i for i, j ∈ N. Using the boundary conditions
at x = 0 in (5) and the fact that u(t, 0) = w(t, 0), we obtain

u(t, 0) = Qu(t, 0).

It follows that
K(x, 0)Σ(0)u(t, 0) = K(x, 0)Σ(0)Qu(t, 0).

We have, by the definition of Q in (23),

Σ(0)Q =

(
0k Σ−(0)B

0m,k Σ+(0)

)
.
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Γ1

Γ2

Γ3

a)

Γ1

Γ2

Γ3

b)

Γ1

Γ2

Γ3

c)

Γ1

Γ2

Γ3

d)

Figure 1: The characteristic vectors of Kij in the case Σ is constant: a) in the case aij/bij < 0
(1 ≤ i ≤ k < k+1 ≤ j ≤ k+m or 1 ≤ j ≤ k < k+1 ≤ i ≤ k+m), b) in the case 0 < aij/bij < 1
(1 ≤ i < j ≤ k or k + 1 ≤ j < i ≤ k + m), c) in the case aij/bij > 1 (1 ≤ j < i ≤ k or
k + 1 ≤ i < j ≤ k +m), and d) in the case aij/bij = 1 (1 ≤ i = j ≤ k +m).

Here and in what follows, we define, for x ∈ [0, 1],

Σ−(x) := diag
(
− λ1(x), . . . ,−λk(x)

)
and Σ+(x) := diag

(
λk+1(x), . . . , λk+m(x)

)
.

Denote

K(x, 0) =

(
K−−(x) K−+(x)

K+−(x) K++(x)

)
,

where K−−, K−+, K+−, and K++ are matrices of size k × k, k × m, m × k, and m × m,
respectively. Set

S(x) := K(x, 0)Σ(0)Q. (24)

We have

S(x) =

(
0k K−−(x)Σ−(0)B +K−+(x)Σ+(0)

0m,k K+−(x)Σ−(0)B +K++(x)Σ+(0)

)
=

(
0k S−+(x)

0m,k S++(x)

)
. (25)

We impose boundary conditions for Kij on Γ1, Γ2, and Γ3 as follows:

BC1) For (i, j) with 1 ≤ i 6= j ≤ k+m, we impose the boundary condition for Kij on Γ1 in such
a way that Cij(x) = 0 (recall that C is define in (19)). More precisely, we have, noting that
aij 6= bij ,

Kij(x, x) = Cij(x)/
(
aij(x)− bij(x)

)
for x ∈ (0, 1). (26)

BC2) Set
J =

{
(i, j); 1 ≤ i ≤ j ≤ k or k + 1 ≤ j ≤ i ≤ k +m

}
,

Note that if
(
i 6= j and (i, j) ∈ J

)
then 0 < aij(0)/bi,j(0) < 1 and the characteristic

trajectory passing (0, 0) is inside T as in case b) in Figure 1. Using (21) and (22), we
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can impose the boundary condition of Kij on Γ2 with (i, j) ∈ J in such a way that, for
x ∈ (0, 1),

Kij(x, 0) = 0 for 1 ≤ i ≤ j ≤ k (27)

and
(S++)pq(x) = 0 for 1 ≤ q ≤ p ≤ m. (28)

These imposed conditions can be written under the form, for (i, j) ∈ J ,

Kij(x, 0) =
∑

(r,s)6∈J

cijrs(B)Krs(x, 0) for x ∈ (0, 1), (29)

for some cijrs(B) which is linear with respect to B. Indeed, (27) can be written under the
form of (29) with cijrs = 0 and for 1 ≤ q ≤ p ≤ m, Kp,q can be written under the form of
(29) since the (p, q) component of S++ = K+−(x)Σ−(0)B +K++(x)Σ+(0) is 0.

BC3) For (i, j) with either 1 ≤ j < i ≤ k or k+1 ≤ i < j ≤ k+m, we impose the zero boundary
condition of Kij on Γ3, i.e.,

Kij(1, y) = 0 for y ∈ (0, 1). (30)

(Note that in this case aij(1)/bij(1) > 1 and hence the characteristic trajectory passing
(1, 1) is in T as in case c) in Figure 1).

Below are the form of S(= Sk,m) when BC2) is taken into account for some pairs (k,m):

S2,3(x) =



0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗

0 0 0 0 ∗

0 0 0 0 0


, and S3,2(x) =



0 0 0 ∗ ∗

0 0 0 ∗ ∗

0 0 0 ∗ ∗

0 0 0 0 ∗

0 0 0 0 0


. (31)

Here and in what follows, in a matrix, ∗ means that this part of that matrix can be whatever.

Remark 5. We here impose (27) on Γ1 and (30) on Γ3. These choices are just for the simplicity
of presentation. We later modify these in the proof of Theorem 3.

3 Properties of the control systems and the kernel

In this section, we establish the well-posedness of u, w, and K and the unique determination
of w from u. For notational ease, we assume that γ = 1 (except in Lemma 2 and its proof),
the general case follows easily. We first investigate the well-posedness of w and u under the
boundary conditions and the controls considered. We consider a more general control system,
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for T > 0,

∂tv(t, x) = Σ(x)∂xv(t, x) + C(x)v(t, x) +D(x)v(t, 0) + f(t, x) for (t, x) ∈ (0, T )× (0, 1),

v−(t, 0) = Bv+(t, 0) + g(t) for t ∈ (0, T ),

v+(t, 1) =

R∑
r=1

Ar(t)v
(
t, xr

)
+

∫ 1

0
M(t, y)v(t, y) dy + h(t) for t ∈ (0, T ),

v(t = 0, x) = v0(x) for x ∈ (0, 1),
(32)

where v− = (v1, · · · , vk)T and v+ = (vk+1, · · · , vk+m)T. Here R ∈ N, C,D : [0, 1] → Rn×n, Ar :
[0, T ] → Rm×n, xr ∈ [0, 1] (1 ≤ r ≤ R), M : [0, T ] × [0, 1] → Rn×n, f ∈

[
L∞
(
(0, T ) × (0, 1)

)]n
,

g ∈ [L∞(0, T )]k, and h ∈ [L∞(0, T )]m. We make the following assumptions for this system

xr < c < 1 for some constant c, (33)

C,D ∈ [L∞(0, 1)]n×n, Ar ∈ [L∞(0, T )]n×n, and M ∈ [L∞
(
(0, T )× (0, 1)

)
]n×n. (34)

We are interested in bounded broad solutions of (32) whose definition is as follows. Extend λi
in R by λi(0) for x < 0 and λi(1) for x ≥ 1. For (s, ξ) ∈ [0, T ]× [0, 1], define xi(t, s, ξ) for t ∈ R
by

d

dt
xi(t, s, ξ) = λi

(
xi(t, s, ξ)

)
and xi(s, s, ξ) = ξ if 1 ≤ i ≤ k, (35)

and
d

dt
xi(t, s, ξ) = −λi

(
xi(t, s, ξ)

)
and xi(s, s, ξ) = ξ if k + 1 ≤ i ≤ k +m. (36)

The following definition of broad solutions for (32) is used in this paper

Definition 1. A function v = (v1, . . . , vk+m) : (0, T )× (0, 1)→ Rk+m is called a broad solution
of (32) if v ∈ [L∞

(
(0, T ) × (0, 1)

)
]k+m ∩ [C

(
[0, T ];L2(0, 1)

)
]k+m ∩ [C

(
[0, 1];L2(0, T )

)
]k+m and

if, for almost every (τ, ξ) ∈ (0, T )× (0, 1), we have

1. For k + 1 ≤ i ≤ k +m,

vi(τ, ξ) =

∫ τ

t

n∑
j=1

(
Cij
(
xi(s, τ, ξ)

)
vj
(
s, xi(s, τ, ξ)

)
+Dij

(
xi(s, τ, ξ)

)
vj(s, 0) + fi

(
s, xi(s, τ, ξ)

))
ds

+

R∑
r=1

n∑
j=1

Ar,ij(t)vj
(
t, xr

)
+

∫ 1

0

n∑
j=1

Mij(t, x)vj(t, x) dx+ h(t), (37)

if xi(0, τ, ξ) > 1 and t is such that xi(t, τ, ξ) = 1, and

vi(τ, ξ) =

∫ τ

0

n∑
j=1

(
Cij
(
xi(s, τ, ξ)

)
vj
(
s, xi(s, τ, ξ)

)
+Dij

(
xi(s, τ, ξ)

)
vj(s, 0)

+ fi
(
s, xi(s, τ, ξ)

))
ds+ v0,i

(
xi(0, τ, ξ)

)
, (38)
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if xi(0, τ, ξ) < 1.

2. For 1 ≤ i ≤ k,

vi(τ, ξ) =

∫ τ

t

n∑
j=1

(
Cij(xi(s, τ, ξ))vj(s, xi(s, τ, ξ)) +Dij(xi(s, τ, ξ))vj(s, 0)

+ fi
(
s, xi(s, τ, ξ)

))
ds+

m∑
j=1

Bijvj+k(t, 0) + gi(t), (39)

if xi(0, τ, ξ) < 0 and t is such that xi(t, τ, ξ) = 0 where vj+k(t, 0) is defined by the RHS of (37)
or (38) with (τ, ξ) = (t, 0), and

vi(τ, ξ) =

∫ τ

0

n∑
j=1

(
Cij(xi(s, τ, ξ))vj(s, xi(s, τ, ξ)) +Dij(xi(s, τ, ξ))vj(s, 0)

+ fi
(
s, xi(s, τ, ξ)

))
ds+ v0,i

(
xi(0, τ, ξ)

)
, (40)

if xi(0, τ, ξ) > 0.

Here and in what follows, vi denotes the i-th component of v, vi,0 denotes the i-th component
of v0, and Ar,ij denotes the (i, j) component of Ar.

Classical solutions are smooth broad solutions. Conversely, smooth broad solutions are
classical solutions. This is a consequence of the following lemma on the well-posedness of (32):

Lemma 1. Let v0 ∈ [L∞(0, 1)]n, f ∈
[
L∞
(
(0, T )× (0, 1)

)]n
, g ∈ [L∞(0, T )]k, and

h ∈ [L∞(0, T )]m, and assume (33) and (34). Then (32) has a unique broad solution v.

Proof. The proof is based on a fixed point argument. To this end, define F from Y :=[
L∞
(
(0, T ) × (0, 1)

)]n ∩ [C([0, T ];L2(0, 1)
)]n ∩ [C([0, 1];L2(0, T )

)]n
into itself as follows, for

v ∈ Y and for (τ, ξ) ∈ (0, T )× (0, 1),(
F(v)

)
i
(τ, ξ) is the RHS of (37) or (38) or (39) or (40)

under the corresponding conditions. (41)

Set

N := ‖B‖L∞ + ‖C‖L∞ + ‖D‖L∞ + ‖M‖L∞ +
R∑
r=1

‖Ar‖L∞ .

We claim that there exist two constants L1, L2 > 1 depending only on c, N , and Σ such that
F is a contraction map for the norm

‖v‖ := sup
1≤i≤n

ess sup (τ,ξ)∈(0,T )×(0,1)e
−L1τ−L2ξ|vi(τ, ξ)|. (42)

We first consider the case where
(
F(v)

)
i
(τ, ξ) is given by the RHS of (38) or (40). We claim

that, for v, v̂ ∈ Y,

e−L1τ−L2ξ
∣∣(F(v)

)
i
(τ, ξ)−

(
F(v̂)

)
i
(τ, ξ)

∣∣ ≤ ‖v − v̂‖/(10n), (43)
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if L2 is large enough and L1 is much larger than L2. Indeed, we have, with V = v − v̂,∣∣(F(v)
)
i
(τ, ξ)−

(
F(v̂)

)
i
(τ, ξ)

∣∣ ≤N ∫ τ

0

(
|V (s, xi(s, τ, ξ))|+ |V (s, 0)|

)
ds

≤2
√
nNL−1

1 ‖V ‖e
τL1+L2 ,

which implies (43).
We next consider the case where

(
F(v)

)
i
(τ, ξ) is given by the RHS of (37). We have

∣∣(F(v)−F(v̂)
)
i
(τ, ξ)

∣∣ ≤N (∫ τ

t

(
|V (s, xi(s, τ, ξ))|+ |V (s, 0)|

)
ds+ |V (t, xr)|+

∫ 1

0
|V (t, x)| dx

)
≤2
√
nN
(
L−1

1 eL1τ+L2‖V ‖+ eL1t+L2c‖V ‖+ L−1
2 eL1t+L2‖V ‖

)
.

≤4
√
nN
(
L−1

1 eL1τ+L2‖V ‖+ L−1
2 eL1t+L2‖V ‖

)
,

if L2 is large enough since c < 1. Since τ − t ≥ C(1 − ξ) for some positive constant depending
only on Σ, k, and m by the definitions of xi and t, it follows that

e−L1τ−L2ξ
∣∣(F(v)−F(v̂)

)
i
(τ, ξ)

∣∣ ≤ ‖V ‖/2, (44)

if L2 is large and L1 is much larger than L2.
We finally consider the case where

(
F(v)

)
i
(τ, ξ) is given by the RHS of (39). We have

∣∣(F(v)−F(v̂)
)
i
(τ, ξ)| ≤ N

∫ τ

t

(
|V (s, xi(s, τ, ξ))|+ |V (s, 0)|

)
ds+

k+m∑
j=k+1

|Vj(t, 0)|


≤ 2
√
nN
(
L−1

1 eL1τ+L2‖V ‖+
k+m∑
j=k+1

|Vj(t, 0)|
)
. (45)

From (37) and (38), as in the previous cases, we have

N eL2e−L1t|Vj(t, 0)| ≤ ‖V ‖/(10n) for k + 1 ≤ j ≤ k +m,

if L2 is large and L1 is much larger than L2. We derive from (45) that

e−L1τ−L2ξ
∣∣(F(v)

)
i
(τ, ξ)−

(
F(v̂)

)
i
(τ, ξ)

∣∣ ≤ ‖V ‖/2, (46)

if L2 is large enough and L1 is much larger than L2.
Combining (43), (44), and (46) yields, for v, v̂ ∈ Y,

‖F(v)−F(v̂)‖ ≤ ‖v − v̂‖/2.

Thus F is a contraction mapping. By the Banach fixed-point theorem, there exists a unique
v ∈ Y such that

F(v) = v.

The proof is complete.
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Concerning K, we have the following result:

Lemma 2. Assume (33) and (34). There exists a unique broad bounded solution K : T → Rn×n
of system (18), (26), (29), and (30). Moreover, (γ,B) ∈ R × Rk×m 7→ K ∈ [L∞(T )]n×n is
analytic.

Remark 6. The broad solution meaning of K is understood via the characteristic approach
similar to Definition 1. The continuity assumptions in Definition 1 are replaced by the assump-
tion that K̃(·, y) ∈ L2([0, 1]) is continuous w.r.t. to y ∈ [0, 1) where K̃(x, y) = K((1 − y)x, y)
and similar facts for x and x+ y variables.

Proof. Using similar approach, one can establish the existence and uniqueness of K. The real
analytic with respect to each component of B can be proved by showing that K is holomorphic
with respect to each component of B. In fact, for notational ease, assuming again that γ = 1,
one can prove that

∂K

∂Bpq
= K̂ in T

(the derivative is understood for a complex variable), where K̂ is the bounded broad solution of
(18),

K̂ij(x, x) = 0 for x ∈ (0, 1), 1 ≤ i 6= j ≤ k +m,

K̂ij(1, y) = 0 for y ∈ (0, 1), 1 ≤ i < j ≤ k or k + 1 ≤ j < i ≤ k +m,

(which are derived from (26), and (30)) and for (i, j) ∈ J ,

K̂ij(x, 0) =
∑

(r,s)6∈J

cijrs(B)K̂rs(x, 0) +
∑

(r,s) 6∈J

∂cijrs(B)

∂Bpq
Krs(x, 0) for x ∈ (0, 1), (47)

which is obtained from (29). The existence and uniqueness of K̂ can be established as in the
proof of Lemma 1 where the second term in the RHS of (47) plays a role as the one of g in
Lemma 1. The details of the proof are left to the reader.

The analyticity with respect to γ can be proved by showing that K is holomorphic with
respect to γ. In fact, one can prove that

∂K

∂γ
= K̂ in T ,

(the derivative is understood for a complex variable) where K̂ is the bounded broad solution of

∂yK̂(x, y)Σ(y) + Σ(x)∂xK̂(x, y) + K̂(x, y)Σ′(y)− γK̂(x, y)C(y) = K(x, y)C(y) in T , (48)

by (18),

K̂ij(x, x) =
Cij(x)

aij(x)− bij(x)
for x ∈ (0, 1), 1 ≤ i 6= j ≤ k +m, (49)

K̂ij(1, x) = 0 for x ∈ (0, 1), 1 ≤ i < j ≤ k or k + 1 ≤ j < i ≤ k +m,
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by (26), and (30), and

K̂ij(x, 0) =
∑

(r,s)6∈J

cijrs(B)K̂rs(x, 0) for x ∈ (0, 1), (i, j) ∈ J (50)

by (29). Here K(x, y) denotes the solution corresponding to fixed γ and B. Note that γ does
not appear in the boundary conditions of K̂. The details are omitted.

A connection between w and u is given in the following proposition.

Proposition 2. Let w0 ∈ L∞
(
(0, 1)

)
and let w ∈ L∞

(
(0, T )× (0, 1)

)
. Define u0 and u from w0

and w by (15) respectively and let S be given by (24). Assume (33) and (34). We have, if w is
a broad solution of the system

∂tw(t, x) = Σ(x)∂xw(t, x) + C(x)w(t, x) for (t, x) ∈ (0, T )× (0, 1),

w−(t, x = 0) = Bw+(t, x = 0) for t ∈ (0, T ),

u+(t, 1) =
R∑
r=1

Ar(t)u
(
t, xr

)
+

∫ 1

0
M(t, y)u(t, y) dy for t ∈ (0, T ),

w(t = 0)(x) = w0(x) for x ∈ (0, 1),

(51)

then u is a broad solution of the system

∂tu(t, x) = Σ(x)∂xu(t, x) + S(x)u(t, 0) for (t, x) ∈ (0, T )× (0, 1),

u−(t, x = 0) = Bu+(t, x = 0) for t ∈ (0, T ),

u+(t, 1) =

R∑
r=1

Ar(t)u
(
t, xr

)
+

∫ 1

0
M(t, y)u(t, y) dy for t ∈ (0, T ),

u(t = 0, x) = u0(x) for x ∈ (0, 1).

(52)

Remark 7. In the two sides of the third condition in (51), u is given by (15). Therefore, this
condition is understood as a condition on w. By Lemma 1, there exist a unique broad solution
w of (51) and a unique broad solution u of (52).

Proof. We first assume in addition that C and Σ are smooth on [0, 1]. Let Kn be a C1- solution
of (18) and (26) such that

‖Kn‖L∞(T ) ≤M and Kn → K in L1(T ), (53)

where M is a positive constant independent of n. Such a Kn can be obtained by considering
the solution of (18), (26), and

Kn,ij(x, 0) =
∑

(r,s) 6∈J

cijrs(B)Kn,rs(x, 0) + gn(x, 0) for x ∈ (0, 1)

and
Kn,ij(1, x) = hn(x) for x ∈ (0, 1)
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instead of (29) and (30) respectively where (gn), (hn) are chosen such that (gn) and (hn) are
bounded in L∞(0, 1), (gn), (hn) → 0 in L1(0, 1), and the compatibility conditions hold for Kn

at (0, 0) and (1, 1) 3. Set, for sufficiently small positive ε,

wε(t, x) =
1

2ε

∫ t+ε

t−ε
w(s, x) ds in (ε, T − ε)× (0, 1).

Then wε ∈W 1,∞((ε, T − ε)× (0, 1)
)

and

∂twε(t, x) = Σ(x)∂xwε(t, x) + C(x)wε(t, x) in (ε, T − ε)× (0, 1).

Define

un,ε(t, x) = wε(t, x)−
∫ x

0
Kn(x, y)wε(t, y) dy in (ε, T − ε)× (0, 1)

and

un(t, x) = w(t, x)−
∫ x

0
Kn(x, y)w(t, y) dy in (0, T )× (0, 1).

As in (20), we have

∂tun,ε(t, x) = Σ(x)∂xun,ε(t, x) +Kn(x, 0)Σ(0)un,ε(t, 0) in (ε, T − ε)× (0, 1).

By letting ε→ 0, we obtain

∂tun(t, x) = Σ(x)∂xun(t, x) +Kn(x, 0)Σ(0)un(t, 0) for (t, x) ∈ (0, T )× (0, 1).

By letting n→ +∞ and using (53), we derive that

∂tu(t, x) = Σ(x)∂xu(t, x) +K(x, 0)Σ(0)u(t, 0) for (t, x) ∈ (0, T )× (0, 1).

This yields the first equation of (52). The other parts of (52) are clear from the definition of w0

and w.
We next consider the general case, in which no further additional smooth assumption on Σ

and C is required. The proof in the case can be derived from the previous case by approximating
Σ and C by smooth functions. The details are omitted.

The fact that w is uniquely determined from u is a consequence of the following standard re-
sult on the Volterra equation of the second kind whose proof is omitted; this implies in particular
that w(t, ·) ≡ 0 in (0, 1) if u(t, ·) ≡ 0 in (0, 1).

Lemma 3. Let d ∈ N, τ1, τ2 ∈ R be such that τ1 < τ2 and let G :
{

(t, s) : τ1 ≤ s ≤ t ≤
τ2

}
→ Rd×d be bounded measurable. For every F ∈

[
L∞(τ1, τ2)

]d
, there exists a unique solution

U ∈
[
L∞(τ1, τ2)

]d
of the following equation

U(t) = F (t) +

∫ t

τ1

G(t, s)U(s) ds for t ∈ (τ1, τ2).

3One needs to establish the stability for L1-norm for the system of K. This can be done as in [4].
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t0 = Topt

t1 = Topt −
1

λ1

tl−1 = Topt −
1

λl−1
tl = Topt −

1

λl

tk = Topt −
1

λk

0 1a)

t0 = Topt

t1

tl−1

tl

x0,l
x1,l

xl−1,l
xl,l

0 1b)

Figure 2: The definition of tl is given in a) and the definition of xi,l is given in b) where dashed
lines have the same slope for constant Σ.

4 Null-controllability for generic γ and B - Proof of Theorem 1

4.1 Proof of part 1) of Theorem 1

Choose uk+1(t, 1) = 0 for t ≥ 0. Since S++ = 0 by (28), we have

uk+1(t, 0) = 0 for t ≥ τk+1 and uk+1(Topt, x) = 0 for x ∈ (0, 1).

This implies, by (5),
ui(t, 0) = 0 for t ≥ τk+1, 1 ≤ i ≤ k.

We derive from (20) that

ui(Topt, x) = 0 for x ∈ (0, 1), 1 ≤ i ≤ k.

The null-controllability at the time Topt is attained for u and hence for w by Lemma 3.

4.2 Proof of part 3) of Theorem 1

We here establish part 3) of Theorem 1 even for m ≥ 1. We hence assume that m ≥ 1 in
this section. Set

t0 = Topt, t1 = t0 − τ1, · · · , tk = t0 − τk, (54)

and, for 1 ≤ l ≤ k,

x0,l = 0 and xi,l = xl(t0, ti, 0), for 1 ≤ i ≤ l. (55)

Recall that xl is defined in (35) for 1 ≤ l ≤ k. (See Figure 2 in the case where Σ is constant.)

In the next two sections, we deal with the case m ≥ k and m < k respectively.
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4.2.1 On the case m ≥ k

The idea of the proof is to derive sufficient conditions to be able to steer the control system
from the initial data to 0 at the time Topt. These conditions will be written under the form
U + KU = F (see (66)) where K is an analytic, compact operator with respect to λ and F
depending on the initial data. We then apply the Fredholm theory to obtain the conclusion. We
now proceed the proof.

We begin with deriving conditions for controls to reach the null-controllability at the time
Topt. First, if m > k, choose the control

ul(t, 1) = 0 for 0 ≤ t ≤ Topt − τl and k + 1 ≤ l ≤ m. (56)

Note that in the case Topt = τl, one does not impose any condition for ul in (56). Second, choose
the control, for 1 ≤ i ≤ k,

um+i(t, 1) = 0 for 0 ≤ t < Topt − τi − τm+i. (57)

Note that in the case Topt = τm+i + τi, one does not impose any condition for um+i in (57).
Requiring (56) and (57) is just a preparation step, other choices are possible. The main

part in the construction of the controls is to choose the control um+i(t, 1) for t ∈ (Topt − τi −
τm+i, Topt − τi) and for 1 ≤ i ≤ k such that the following k conditions hold:

a1)
uk(Topt, x) = 0 for x ∈ (x0,k, x1,k), · · · , u1(Topt, x) = 0 for x ∈ (x0,1, x1,1).

a2)
uk(Topt, x) = 0 for x ∈ (x1,k, x2,k), · · · , u2(Topt, x) = 0 for x ∈ (x1,2, x2,2).

. . .

ak)
uk(Topt, x) = 0 for x ∈ (xk−1,k, xk,k).

Set
X := L2(t1, t0)× L2(t2, t0)× · · · × L2(tk, t0) (58)

and denote
Uj(t) =

(
um+j(t, 0), · · · , um+k(t, 0)

)T
for 1 ≤ j ≤ k

and
Vj(t) =

(
uk+1(t, 0), . . . , uj(t, 0)

)T
for m ≤ j ≤ m+ k,

We determine (
um+1(·, 0), · · · , um+k(·, 0)

)T ∈ X .
via the conditions in a1), a2), . . . , ak). Let us now find necessary and sufficient conditions on(
um+1(·, 0), · · · , um+k(·, 0)

)T ∈ X so that a1), . . . , ak) hold. These are analysed in b1), . . . , bk)
below respectively.
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b1) From (20) and (25), using the characteristic method and the fact that Sij = 0 for 1 ≤ i, j ≤ k,
one can write the conditions in a1) under the form

(u1, · · · , uk)T(t, 0) +

∫ t0

t
L1(t, s)(uk+1, · · · , uk+m)T(s, 0) ds = 0 for t1 ≤ t ≤ t0,

for some L1 ∈
[
L∞
(
(t, s); t1 ≤ t ≤ s ≤ t0

)]k×m
. Using (10) with i = k provided m > k, one can

write the above equation under the form

U1(t) = A1Vm(t) +

∫ t0

t
G1(t, s)Vm(s) ds+

∫ t0

t
H1(t, s)U1(s) ds for t1 ≤ t ≤ t0, (59)

for some G1 ∈ [L∞({(t, s); t1 ≤ t ≤ s ≤ t0})]k×(m−k) and H1 ∈ [L∞({(t, s); t1 ≤ t ≤ s ≤ t0})]k×k
depending only on S, B, and Σ, and some matrix A1 ∈ Rk×(m−k) depending only on B. In the
case m = k, one chooses H1 = 0 (there are not A1 and G1 in this case by the convention) Since
K is analytic with respect to (γ,B), one can check that L1 is analytic with respect to (γ,B).
In fact, L1 depends linearly on S and so analytically on (γ,B), and if γ = 0 then L1 = 0. This
implies that G1 and H1 are analytic with respect to (γ,B). It is also clear that A1 is analytic
with respect to (γ,B) as well.

Remark 8. In the case m = k, U1(t) = 0 for t1 ≤ t ≤ t0. This fact will be used to deal with
the case m < k.

b2) Similar to (59), the conditions in a2) is equivalent to

U2(t) = A2Vm+1(t) +

∫ t0

t
G2(t, s)Vm+1(s) ds+

∫ t0

t
H2(t, s)U2(s) ds for t2 ≤ t < t1, (60)

for some constant matrix A2 and some bounded functions G2 and H2 defined in
{

(s, t); t2 ≤ t ≤
s ≤ t0

}
which depend only on S, B, and Σ. Moreover, A2, G2 and H2 are analytic with respect

to (γ,B).
. . .

bk) Similar to (59), the condition in ak) is equivalent to

Uk(t) = AkVm+k−1(t) +

∫ t0

t
Gk(t, s)Vm+k−1(s) ds+

∫ t0

t
Hk(t, s)Uk(s) ds for tk ≤ t < tk−1,

(61)
for some constant matrix Ak and some bounded functions Gk and Hk defined in

{
(s, t); tk ≤

t ≤ s ≤ t0
}

which depends only on S, B, and Σ. Moreover, Ak, Gk and Hk are analytic with
respect to (γ,B).

We are next concerned about the relations between the components of u(t, 0). We have, by
the property of S++ in (28) and the form of S in (25), and (56) and (57),

um+k(s, 0) = Fm+k(s) for 0 ≤ s ≤ tk, (62)

um+k−1(s, 0) = Fm+k−1(s) +

∫ s

0
Gm+k−1,m+k(ξ)um+k(ξ, 0) dξ for 0 ≤ s ≤ tk−1, (63)
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um+k−2(s, 0) =Fm+k−2(s) +

∫ s

0
Gm+k−2,m+k(ξ)um+k(ξ, 0) dξ

+

∫ s

0
Gm+k−2,m+k−1(ξ)um+k−1(ξ, 0) dξ for 0 ≤ s ≤ tk−2, (64)

. . .

uk+1(s, 0) = Fk+1(s) +

∫ s

0

k+m∑
j=k+2

Gk+1,j(ξ)uj(ξ, 0) dξ for 0 ≤ s ≤ t1, (65)

where Gi,j depends only on S and Σ and is analytic with respect to (γ,B), and Fi depends only
on the initial data. Here we also use (56) and (57).

Using (62-65), one can write the equations in b1), . . . , bk) under the form

U +K(U) = F in X . (66)

where
U =

(
um+1(·, 0), · · · , um+k(·, 0)

)T
and K is a Hilbert-Schmidt operator, therefore a compact operator, and it is analytic with
respect to (γ,B).

By the theory of analytic compact theory (see, e.g., [18, Theorem 8.92]), for each B ∈ B,
I +K is invertible outside a discrete set of γ in R since ‖K‖ is small if γ is small.

Using this fact, since B has a finite number of connected components, there exists a discrete
subset of R such that outside this set, I+K is invertible for almost every B ∈ B by the Fredholm
theory for analytic compact operator.

Consider (γ,B) such that I + K is invertible. Then equation (66) has a unique solution for
all F in X . One can check that if F is bounded then U is bounded since KU is bounded. To
obtain the null-controllability at the time Topt, in addition to the preparation step, one chooses
uk+m(1, t) for Topt − τk+m − τk ≤ t ≤ Topt − τk+m, . . . , um+1(1, t) for Topt − τm+1 − τ1 ≤ t ≤
Topt − τm+1 such that

(
um+1(·, 0), · · · , um+k(·, 0)

)T
= U (this can be done by the form of S++)

and chooses ul(t, 1) for Topt − τl ≤ t ≤ Topt and m+ 1 ≤ l ≤ k +m in such a way that

ul(Topt, x) = 0 for x ∈ (0, 1). (67)

Requirement (67) is again possible by the property of S++ in (28) and by the form of S in (25).

Remark 9. The above analysis shows that the existence of a bounded solution U of (66) implies
the existence of a control to steer the system from the initial data to 0 in time Topt by the
characteristic method. Moreover, in the case where m = k and

Topt = τ1 + τm+1 = · · · = τk + τm+k,

the existence of such a U is necessary.
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Remark 10. We now show how to modify the proof of Theorem 1 in the case m ≥ k ≥ 1
to reach the exact controllability. To obtain the exact controllability with the final state v, the
requirements in a1, . . . , ak) become
c1)

uk(Topt, x) = vk(x) for x ∈ (x0,k, x1,k), · · · , u1(Topt, x) = v1(x) for x ∈ (x0,1, x1,1).

c2)

uk(Topt, x) = vk(x) for x ∈ (x1,k, x2,k), · · · , u2(Topt, x) = v2(x) for x ∈ (x1,2, x2,2).

. . .
ck)

uk(Topt, x) = vk(x) for x ∈ (xk−1,k, xk,k).

Equations (59), (60), and (61) then become

U1(t) = J1(t) +A1Vm(t) +

∫ t0

t
G1(t, s)Vm(s) ds+

∫ t0

t
H1(t, s)U1(s) ds for t1 ≤ t ≤ t0,

U2(t) = J2(t) +A2Vm+1(t) +

∫ t0

t
G2(t, s)Vm+1(s) ds+

∫ t0

t
H2(t, s)U2(s) ds for t2 ≤ t < t1,

Uk(t) = Jk(t)+AkVm+k−1(t)+

∫ t0

t
Gk(t, s)Vm+k−1(s) ds+

∫ t0

t
Hk(t, s)Uk(s) ds for tk ≤ t < tk−1,

for some functions J1, J2, . . . , Jk depending on the final state v. Using (62-65), one can write
these equations under the form

U +K(U) = F in X .
where F now also depends on J1, . . . , Jk. The rest of the proof of the exact controllability is
unchanged.

Remark 11. In the case where m = k and

Topt = τ1 + τm+1 = · · · = τk + τm+k,

the above analysis also gives the optimality of Topt for all γ such that I+K is invertible. Indeed,
assume that there exists T < Topt such that one can steer an arbitrary state u(0, ·) to 0 at the
time T . Without loss of generality, one might assume that Topt − T is small. To simplify the
notations, we assume that Σ is constant. As mentioned in Remark 9, a necessary condition to
have a control is the existence of a solution U ∈ X of

U +KU = G, (68)

whereG now depends on ui(0, x) for 1 ≤ i ≤ k and x ∈ (0, 1) and ui(0, x) for k+1 ≤ i ≤ k+m and
x ∈ (0, 1−si) with si = (Topt−T )/λi by (62-65). However, for t ∈ (1/λk+m−(Topt−T ), 1/λk+m),

um+k(t, 0) = uk+m(0, λk+mt), (69)

the LHS of (69) is uniquely determined by G from (68) and the RHS of (69) can be chosen
independently of G. This yields a contradiction.
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4.2.2 On the case m < k

Set
û(t, x) =

(
uk−m+1, . . . uk+m

)T
(t, x) in (0, T )× (0, 1),

Σ̂(x) = diag (−λk−m+1, · · · ,−λk, λk+1, · · · , λm+k)(x) in (0, 1),

and denote

Ŝ(x) the 2m× 2m matrix formed from the last 2m columns and the last 2m rows of S(x),

and
B̂ the m×m matrix formed from the last m rows of B.

Then û is a bounded broad solution of the system

∂tû(t, x) = Σ̂(x)∂xû(t, x) + Ŝ(x)û(t, 0), (70)

with the boundary condition at 0 given by (û1, · · · , ûm)(t, 0)T = B̂(ûm+1, · · · , û2m)(t, 0)T. Set

T̂opt := max{τk+m + τk, · · · , τk+1 + τk+1−m} = Topt.

Consider the pair (γ, B̂) such that the control constructed in Section 4.2.1 for û exists. Then,
for this control,

û(Topt, x) = 0 for x ∈ (0, 1). (71)

As observed in Remark 8, one has

(ûm+1, . . . , û2m)T(t, 0) = 0 for t ∈ [Topt − τk−m+1, Topt].

This yields
(u1, . . . , uk−m)T(Topt, x) = 0 for x ∈ (0, 1) (72)

by the form of S given in (25).
Combining (71) and (72) yields the null-controllability at the time Topt.

4.3 Proof of part 2) of Theorem 1

Fix α 6= 0 and β 6= 0, and consider

C3,3 =


0 0 α(λk+2 + λk)

0 0 β(λk+2 − λk+1)

0 0 0

 and C(x) = Ck+2,k+2 :=

(
0k−1,k−1 0k−1,3

03,k−1 C3,3

)
for k ≥ 1.

(73)
Set

K3,3 =


0 0 α

0 0 β

0 0 0

 and K(x) = Kk+2,k+2 :=

(
0k−1,k−1 0k−1,3

03,k−1 K3,3

)
for k ≥ 1. (74)
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One can check that KC = 0k+2 and K is a solution of equation (18) by noting that Σ is
constant. Moreover, (19) holds by the choice of K and C. We have, by (25), that

S(x) = Sk+2,k+2 =

(
0k−1,k−1 0k−1,3

03,k−1 S3,3

)
where S3,3 =


0 0 λk+2α

0 0 λk+2β

0 0 0

 . (75)

In what follows, for simplicity of notations, we only consider the case k = 2. The other cases
can be established similarly. Suppose that

u2(t, 0) = au3(t, 0) + bu4(t, 0) for t ≥ 0. (76)

Then a 6= 0 by condition (10). To obtain the null-controllability at the time Topt, one has, from
condition a1),

u3(t, 0) = u4(t, 0) = 0 for t ∈ (t1, t0)

and, hence from condition a2) and (75),

au3(t, 0) + bu4(t, 0) +

∫ t1

t
λ4αu4(s, 0) ds = 0 for t ∈ (t2, t1).

Since, by (20), (24), and (75),

u3(t, 0) =

∫ t

t2

λ4βu4(s, 0) ds+ f(t) for t ∈ (t2, t1),

for some f depending on the initial data. By taking β = α/a (a 6= 0), we have

bu4(t, 0) +

∫ t1

t2

λ4αu4(s, 0) ds = −af(t) for t ∈ (t2, t1). (77)

By choosing α such that b+λ4α(t1− t2) = 0, and integrating (77) from t2 to t1, it follows, since
a 6= 0, that ∫ t1

t2

f(t) dt = 0. (78)

This is impossible for an arbitrary initial data, for example if u4(0, ·) = 0 then f(t) = u3(0, λ3t)
and an appropriate choice of u3(0, ·) yields that (78) does not hold. In other words, the system
is not null-controllable at the time Topt.

5 A null-controllability result for all γ and B ∈ B
A slight modification of the proof of part 3) of Theorem 1 gives the following result, where

T2 is defined in (14).

Proposition 3. Let m ≥ 2. Assume that (3) and (4) hold and B ∈ B. There exists δ > 0
depending only on C,B,Σ, and γ such that the system is null-controllable at the time T2 − δ.
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Proof. We only consider here the case m ≥ k, the case m < k can be handled as in Section 4.2.2.
The controls are chosen so that

uk+1(t, 0) = 0 for t ≥ τk+1, . . . , uk+m−1(t, 0) = 0 for t ≥ τk+m−1, (79)

uk+m(t, 0) = 0 for (t ≥ τk+m and t 6∈ [τk+1 − δ, τk+1]), (80)

and uk+m(t, 0) is chosen in [τk+1 − δ, τk+1] in such a way that

uk(T2 − δ, x) = 0 for x ∈ [x∗, 1], (81)

where x∗ = xk(T2 − δ, τk+1, 0) (see the definition of xk in (35)). As in bk), we derive that, in
[τk+1 − δ, τk+1], (81) is equivalent to

uk+m(t, 0) =

∫ τk+1

τk+1−δ
K(t, s)uk+m(s, 0) ds+ f(t), (82)

for some bounded function f defined in [τk+1 − δ, τk+1] which now depends only on the initial
data. Here K : [τk+1 − δ, τk+1]2 → R is a bounded function depending only on C,B,Σ, and γ.
Since δ is small, one can check that the mapping T : L2([τk+1 − δ, τk+1])→ L2([τk+1 − δ, τk+1])
which is given by

T (v)(t) =

∫ τk+1

τk+1−δ
K(t, s)v(s) ds

is a contraction. By the contraction mapping theorem, equation (82) is uniquely solvable and
the solution is bounded since f is bounded.

We now show how to construct such a control. Since um+k(t, 0) for 0 ≤ t ≤ τm+k is
uniquely determined by the initial data (by (28)), one derives from (28) that um+k−1(t, 0) for
0 ≤ t ≤ τm+k−1, . . . , uk+1 for 0 ≤ t ≤ τk+1 are uniquely determined from the initial condition
and the requirements on the constructive controls at (t, 0). It follows from (28) again that

• uk+m(t, 1) for t ≥ 0 is uniquely determined from um+k(t, 0) for t ≥ τm+k,

• um+k−1(t, 1) for t ≥ 0 is uniquely determined from (um+k−1(t, 0) for t ≥ τm+k−1 and
um+k(t, 0) for t ≥ 0),

. . . ,

• uk+1(t, 1) for t ≥ 0 is uniquely determined from (uk+1(t, 0) for t ≥ τk+1, uk+2(t, 0) for
t ≥ 0, . . . , um+k(t, 0) for t ≥ 0).

The existence and uniqueness of controls satisfying requirements are established.
It remains to check that the constructive controls give the null-controllability at the time

T2 − δ if δ is small enough. Indeed, by (79) and (80), we have

uk+1(t, 0) = · · · = uk+m(t, 0) = 0 for t ≥ τk+1. (83)

Since S−− = 0k, it follows from (5) that

u1(T2 − δ, x) = · · · = uk−1(T2 − δ, x) = 0 for x ∈ [0, 1] (84)
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and
uk(T2 − δ, x) = 0 for x ∈ [0, x∗],

which yields, by (81),
uk(T2 − δ, x) = 0 for x ∈ [0, 1]. (85)

From (83) and the form of S, we also derive that

uk+m(t, x) = · · · = uk+1(t, x) for x ∈ [0, 1] and t ≥ τk+1;

in particular, if δ is small enough,

uk+m(T2 − δ, x) = · · · = uk+1(T2 − δ, x) for x ∈ [0, 1]. (86)

The null-controllability at T2 − δ now follows from (84), (85), and (86).

6 On the case m = 2 and Bk1 6= 0 - Proof of Theorem 3

We only establish the null-controllability result. The proof of the exact controllability can
be derived similarly as in the spirit mentioned in Remark 10 and is omitted. Without loss of
generality, one might assume that γ = 1 and T − Topt is small. As mentioned in Remark 5, the
choice of K on Γ3 in (30) can be “arbitrary”. In this section, we modify this choice to reach
some analytic property of K. The new K will be defined in T̂ which is the triangle formed by
three points (0, 0), (1, 0), and (L,L), where L is defined in (12), this triangle contains T . Since
Bk1 6= 0, by (25), one can replace the condition Kkk = 0 in (27) by the condition(

S−+

)
k1

= 0

while the rest of (27) remains unchanged. The idea of the proof is to show that one can prepare
u(T−Topt, ·) using the control in the time interval [0, T−Topt] in such a way that (66) is solvable.
In what follows, we present a direct proof for Theorem 3.

We first consider the case k = m (=2). The matrix S then has the form

S =


0 0 ∗ ∗

0 0 0 ∗

0 0 0 ∗

0 0 0 0

 . (87)

We choose a control so that u3(t, 0) = u4(t, 0) = 0 for t ≥ T −τ1, u4(t, 0) = 0 for τ4 ≤ t ≤ T −τ2,
and u3(t, 0) = 0 for τ3 ≤ t ≤ Topt − τ1 (the last two choices are just a preparation step), and as
in a2), u4(t, 0) for t ∈ (T − τ2, T − τ1) is required to ensure that

u2(T, x) = 0 for x ∈ [x12, 1] (88)

(see (55) for the definition of x12). One can verify that the null-controllability is attained at T
for such a control if it exists. As in the proof of Proposition 3, it suffices to show that (88) is
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solvable for some (bounded) choice of u3(t, 1) for t ∈ (Topt− τ1− τ3, T − τ1− τ3). Let χO denote
a characteristic function of a subset O of R. By the form of S in (87) and the fact that B ∈ B,
equation (88) is equivalent to, for t ∈ (T − τ2, T − τ1),

h(t) + u4(t, 0) + αu3(t, 0)χ[Topt−τ1,T−τ1] =

∫ t

T−τ2
g(t− s)u4(s, 0) ds+

∫ T−τ1

t
f(s− t)u4(s, 0) ds,

(89)
where g and f are two functions depending only on K, B, and Σ, α is a non-zero constant
(since B21 6= 0), and h(t) is a function now depends only on B, K, Σ, and the initial condition.
Moreover, f and g are analytic by Lemma 5 below. Let K1 : L2(T−τ2, T−τ1)→ L2(T−τ2, T−τ1)
be defined by the RHS of (89). Then the adjoint operator K∗1 : L2(T − τ2, T − τ1) → L2(T −
τ2, T − τ1) is given by

K∗1(v) =

∫ T−τ1

t
g(s− t)v(s) ds+

∫ t

T−τ2
f(t− s)v(s) ds.

Let V be an eigenfunction of K∗1 with respect to the eigenvalue −1. We have, by Lemma 4
below,

V 6≡ 0 in a neighborhood of T − τ1. (90)

Since the kernel of I +K∗1 is of finite dimension, one can prepare the state at the time T − Topt
(i.e. u3(t, 1) for t ∈ (Topt−τ1−τ3, T −τ1−τ3)) in such a way that the RHS of (89) is orthogonal
to the kernel of I+K∗1. It follows from the Fredholm theory that (89) is solvable and the solution
is bounded.

We next consider the case k > m = 2. The proof in this case follows from the previous one
as in Section 4.2.2. We finally consider the case k = 1 and m = 2. The matrix S then has the
form

S =


0 0 ∗

0 0 ∗

0 0 0

 . (91)

We choose a control such that u3(t, 0) = 0 for τ3 ≤ t ≤ T − τ1, u2(t, 0) = 0 for τ2 ≤ t ≤ Topt (a
preparation step), u2(t, 0) = u3(t, 0) = 0 for t ≥ T , and u3(t, 0) for t ∈ (T − τ1, T ) is required to
ensure that

u1(T, x) = 0 for x ∈ [0, 1]. (92)

One can verify that the null-controllability is attained at T for such a control if it exists. As in
the proof of Proposition 3, it suffices to show that (92) is solvable. As before, equation (92) is
equivalent to, for t ∈ (T − τ1, T ),

h(t) + u3(t, 0) + αu2(t, 0)χ[Topt,T ] =

∫ t

T−τ1
g(t− s)u3(s, 0) ds+

∫ T

t
f(s− t)u3(s, 0) ds,

where g and f are two functions depending only on K, B, and Σ, α is a non-zero constant
(since B21 6= 0), and h(t) is a function now depends only on B, K, Σ, and the initial condition.
Moreover, f and g are analytic by Lemma 5 below. The proof now follows as in the case
k = m = 2 and the details are omitted. �

The following result is used in the proof of Theorem 3.
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Lemma 4. Let T > 0, f, g ∈ C1([0, T ]) and let V be a continuous function defined in [0, T ]
such that

V (t) =

∫ t

0
f(t− s)V (s) +

∫ T

t
g(s− t)V (s) ds for t ∈ [0, T ].

Assume that g is analytic on [0, T ] and V = 0 in a neighbourhood of 0. Then V ≡ 0 on [0, T ].

Proof. It suffices to prove that V is analytic on [0, T ]. We have

V ′(t) = f(0)V (t) +

∫ t

0
f ′(t− s)V (s) ds− g(0)V (t)−

∫ T

t
g′(s− t)V (s) ds. (93)

Since V = 0 in a neighborhood of 0, an integration by parts gives

V ′(t) =

∫ t

0
f(t− s)V ′(s) +

∫ T

t
g(t− s)V ′(s) ds− g(T − t)V (T ). (94)

By recurrence, we obtain, for n ≥ 0,

V (n+1)(t) =f(0)V (n)(t) +

∫ t

0
f ′(t− s)V (n)(s) ds− g(0)V (n)(t)−

∫ T

t
g′(s− t)V (n)(s) ds

+
n−1∑
k=0

(−1)n−k+1g(n−k)(T − t)V (k)(T ) (95)

and

V (n+1)(t) =

∫ t

0
f(t−s)V (n+1)(s)+

∫ T

t
g(t−s)V (n+1)(s) ds+

n∑
k=0

(−1)n−k+1g(n−k)(T −t)V (k)(T ).

(96)
By rescaling, without loss of generality, one might assume that

T = 1 and ‖V ‖C1([0,T ]) = 1.

Set

an = ‖V (n)‖L∞([0,T ]) and bn = ‖g(n)‖L∞([0,T ]) + ‖g(n+1)‖L∞([0,T ]) + 2‖f‖C1([0,T ]).

Using (95), we obtain

an+1 ≤
n∑
k=0

an−kbk. (97)

We have, by the analyticity of g,
bk ≤ ckk!. (98)

In this proof, c denotes a constant greater than 1 and independent of k and n. It is clear that

n∑
k=0

ckk!cn−k(n− k)! ≤ cn(n+ 1)!, (99)

Combining (97), (98), and (99) and using a recurrence argument yield

an ≤ cnn!.

The analyticity of V now follows from the definition of an. The proof is complete.
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The second lemma yields the analyticity of g and f in the definition of K∗1 in the proof of
Theorem 3.

Lemma 5. Let l ≥ 4 and γ1 ≤ γ2 ≤ · · · ≤ γl be such that I1, I2, I3, I4 6= ∅, where

I1 = {i : γi ≤ 0}, I2 = {i : 0 < γi < 1}, I3 = {i : γi = 1}, I4 = {i : γi > 1}.

Denote T̂ the triangle formed by three lines y = x, y = 0, and y = γi0x− γi0 where i0 = min I4.
Let G : [0, γi0/(γi0 − 1)]→ Rn×n be analytic, and denote Γ = diag(γ1, · · · , γl) and

Λ := {(x, y) ∈ ∂T̂ ;x = y} = {(x, x);x ∈ [0, γi0/(γi0 − 1)]}.

Let fi (i ∈ I1 ∪ I4) be analytic functions defined in a neighborhood of Λ and let ci,j ∈ R for
1 ≤ i, j ≤ l. Assume that v is the unique broad solution of the system

∂xv(x, y) + Γ∂yv(x, y)−G(y)v(x, y) = 0 in T̂ ,

vi(x, x) = fi(x, x) for (x, x) ∈ Λ, i ∈ I1 ∪ I4,

vi(x, 0) =
∑

j∈I1∪I4 cijvj(x, 0) for x ∈ (0, 1), i ∈ I2 ∪ I3.

Then v is analytic in ∆̄i+1 \∆i for i ∈ Î2 where Î2 =
{
i ∈ I2 or i+ 1 ∈ I2

}
and ∆j is the open

triangle formed by three lines y = γjx, y = 0, and y = γi0x− γi0.

Proof. We first prove by recurrence that, for k ≥ 1,

‖v‖Ck(∆̄i+1\∆i)
≤ Ck‖f‖Ck(Γ) for i ∈ Î2. (100)

In this proof, C denotes a positive constant independent of k and f . Indeed, using the standard
fixed point iteration, one can show that v ∈ C1(∆̄i+1 \∆i) (i ∈ Î2); moreover,

‖v‖C1(∆̄i+1\∆i)
≤ C‖f‖C1(Γ) for i ∈ Î2. (101)

Hence (100) holds for k = 1. Assume that (100) is valid for some k ≥ 1. We prove that it holds
for k + 1. Set

V = ∂xv in T̂ .
We have 

∂xV (x, y) + Γ∂yV (x, y)−G(y)V (x, y) = 0 in T̂ ,

Vi(x, x) = gi(x, x) for (x, y) ∈ Λ, i ∈ I1 ∪ I4,

Vi =
∑

j∈I1∪I4 cijVj for x ∈ (0, 1), for i ∈ I2 ∪ I3,

where

gi(x, x) = aiG(x)vi(x, x) + bi
d

dx
[fi(x, x)]

for some positive constant ai, bi ∈ R depending only on Γ. This is obtained by considering the
first equation and the derivative with respect to x of the second equation in the system of v. By
the recurrence, one has

‖u‖Ck(∆̄i+1\∆i)
≤ Ck‖g‖Ck(Γ) for i ∈ Î2.

Using the equation of v, one derives that

‖u‖Ck+1(∆̄i+1\∆i)
≤ Ck+1‖f‖Ck+1(Γ) for i ∈ Î2.

Assertion (100) is established.
The conclusion now follows from the analyticity of f .
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7 On the case C ≡ 0 - Proof of Proposition 1

Note that S ≡ 0 since C ≡ 0. We first construct a time independent feedback to reach the
null-controllability at the time Topt. We begin with considering the case m > k. Condition ak)
can be written under the form

um+k(t, 0) = Mk(uk+1, · · · , um+k−1)T(t, 0) for t ∈ (tk, tk−1), (102)

for some constant matrix Mk of size 1× (m−1) by considering (10) with i = 1. Condition ak−1)
can be written under the form (102) and

um+k−1(t, 0) = Mk−1(uk+1, · · · , um+k−2)T(t, 0) for t ∈ (tk, tk−1), (103)

for some constant matrix Mk−1 of size 1 × (m − 2) by applying (10) with i = 2 and using the
Gaussian elimination method, etc. Finally, condition a1) can be written under the form (102),
(103), . . . , and

um+1(t, 0) = M1(uk+1, · · · , um)T(t, 0) for t ∈ (tk, tk−1), (104)

for some constant matrix M2 of size 1 × (m − k) by applying (10) with i = k and using the
Gaussian elimination method if m > k; this condition is replaced by the one um+1 = 0 in the
case m = k. The matrices M1, · · · ,Mk can be obtained via the Gaussian elimination method
starting with M1 using condition (10) with i = 1, and then with M2 using condition (10) with
i = 2, · · · , and finally with Mk using condition (10) with i = k.

We now choose the following feedback law

um+k(t, 1) = Mk

(
uk+1

(
t, xk+1(−τm+k, 0, 0)

)
, . . . , uk+m−1

(
t, xk+m−1(−τm+k, 0, 0)

))
, (105)

um+k−1(t, 1) = Mk−1

(
uk+1

(
t, xk+1(−τm+k−1, 0, 0)

)
, . . . , uk+m−2

(
t, xk+m−2(−τm+k−1, 0, 0)

))
,

(106)
. . .

um+1(t, 1) = M1

(
uk+1

(
t, xk+1(−τm+1, 0, 0)

)
, . . . , um

(
t, xm+1(−τm+1, 0, 0)

))
(107)

(this condition is replaced by the one um+1(t, 1) = 0 in the case k = m), and

uk+1(t, 1) = · · · = um(t, 1) = 0. (108)

Let us point out that, by Lemma 1, the closed-loop system of u given by ∂tu = Σ∂xu and
the boundary conditions (105-108) is well-posed in the sense of Definition 1. With this law of
feedback, conditions ak), . . . , a1) hold. It follows that

u1(Topt, x) = · · · = uk(Topt, x) = 0 in (0, 1). (109)

We also derive from (108) using the characteristic method and the fact C = 0 that

uk+1(t, 0) = · · · = um(t, 0) = 0 for t ≥ τk+1

28



and from (105-107) (see also (102-104)) that

uk+1(t, 0) = · · · = uk+m(t, 0) = 0 for t ≥ Topt.

We then obtain
uk+1(Topt, x) = · · · = uk+m(Topt, x) = 0 for x ∈ (0, 1). (110)

The null-controllability attained at the optimal time Topt now follows from (109) and (110).
We next deal with the case m < k. The construction of a time independent feedback yielding

a null-state at the time t = Topt in this case is based on the construction given in the case m = k
obtained previously. Set

û(t, x) =
(
uk−m+1, . . . uk+m

)T
(t, x) in (0, T )× (0, 1),

Σ̂(x) = diag (−λk−m+1, · · · ,−λk, λk+1, · · · , λm+k)(x) in (0, 1),

and
B̂ is the matrix formed from the last m rows of B.

Then û is a bounded broad solution of the system

∂tû(t, x) = Σ̂(x)∂xû(t, x),

with the boundary condition at 0 given by (û1, · · · , ûm)(t, 0)T = B̂(ûm+1, · · · , û2m)(t, 0)T. Con-
sider the time dependent feedback for û constructed previously. Then, as in Section 4.2.2, the
null-controllability is attained at Topt for this feedback. The details are omitted.

We next establish the second part of Proposition 1 by contradiction. We only deal with the
casem ≥ k. We first consider the case Topt = max1≤i≤k{τi+τi+m}. Fix T ∈

(
max1≤i≤k τi+m, Topt

)
and let 1 ≤ i0 ≤ k be such that τi0 + τi0+m = Topt. Consider an initial datum u such that
ui(t = 0, x) = 0 for x ∈ (0, 1) and for 1 ≤ i 6= i0 + m ≤ k + m and ui0+m(t = 0, x) = 1 for
x ∈ (0, 1). Assume that the null-controllability is attained at T . By the convention of λj , one
has, for some ε > 0 depending on Σ,

ui0(t, 0) = ui0+1(t, 0) = · · · = uk(t, 0) = 0 for t ∈ (T − τi0 , T − τi0 + ε).

As in (102), (103), and (104), we obtain, for t ∈ (T − τi0 , T − τi0 + ε),

um+k(t, 0) = Mk(uk+1, · · · , um+k−1)T(t, 0),

um+k−1(t, 0) = Mk−1(uk+1, · · · , um+k−2)T(t, 0),

. . .
um+i0(t, 0) = Mi0(uk+1, · · · , um+i0−1)T(t, 0). (111)

Since u1(0, ·) = · · · = um+i0−1(0, ·) = 0, it follows form (111) that

um+i0(t, 0) = 0 for t ∈ (T − τi0 , T − τi0 + ε). (112)

On the other hand, by using the characteristic method and the fact T < τi0 + τi0+m, one has,
for ε small enough,

ui0+m(t, 0) = 1 for t ∈ (T − τi0 , T − τi0 + ε).
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This contradicts (112). The second part of Proposition 1 is proved in this case.
We next consider the case Topt > max1≤i≤k{τi + τi+m}. Then Topt = τk+1 and m > k. The

conclusion follows by considering ui(0, x) = 1 for 1 ≤ i 6= k + 1 ≤ k +m and uk+1(0, x) = 1. �

In what follows, we present two concrete examples on the feedback form used in the context
of Proposition 1. We first consider the case where k = 1, m = 2,

Σ+ = diag(1, 2) and B = (2, 1).

One can check that (102) has the form

u3(t, 0) = −2u2(t, 0).

The feedback is then given by

u3(t, 1) = −2u2(t, 1/2) and u2(t, 1) = 0 for t ≥ 0.

We next consider the case where k = 3, m = 3,

Σ+ = diag(1, 2, 4) and the matrix formed from the last two rows of B is

(
2 0 1

−1 −1 1

)
.

One can check that (102) has the form (by imposing the condition u3(t, 0) = 0)

u6(t, 0) = u5(t, 0) + u4(t, 0),

(103) has the form (by imposing the condition u3(t, 0) = u2(t, 0) = 0)

u5(t, 0) = −3u4(t, 0).

The feedback is then given by

u6(t, 1) = u5(t, 1/2) + u4(t, 1/4), u5(t, 1) = −3u4(t, 1/2), and u4(t, 1) = 0 for t ≥ 0.

One can verify directly that the null-controllability is reached for these feedbacks.
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