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We are concerned about the controllability of a general linear hyperbolic system of the form ∂ t w(t, x) = Σ(x)∂ x w(t, x) + γC(x)w(t, x) (γ ∈ R) in one space dimension using boundary controls on one side. More precisely, we establish the optimal time for the null and exact controllability of the hyperbolic system for generic γ. We also present examples which yield that the generic requirement is necessary. In the case of constant Σ and of two positive directions, we prove that the null-controllability is attained for any time greater than the optimal time for all γ ∈ R and for all C which is analytic if the slowest negative direction can be alerted by both positive directions. We also show that the null-controllability is attained at the optimal time by a feedback law when C ≡ 0. Our approach is based on the backstepping method paying a special attention on the construction of the kernel and the selection of controls.

Introduction

Linear hyperbolic systems in one dimensional space are frequently used in modelling of many systems such as traffic flow, heat exchangers, and fluids in open channels. The stability and boundary stabilization of these hyperbolic systems have been studied intensively in the literature, see, e.g., [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF] and the references therein. In this paper, we are concerned about the optimal time for the null-controllability and exact controllability of such systems using boundary controls on one side. More precisely, we consider the system ∂ t w(t, x) = Σ(x)∂ x w(t, x) + γC(x)w(t, x) for (t, x) ∈ R + × (0, 1).

(

) 1 
Here w = (w 1 , • • • , w n ) T : R + × (0, 1) → R n (n ≥ 2), γ ∈ R, Σ and C are (n × n) real matrixvalued functions defined in [0, 1]. We assume that for every x ∈ [0, 1], Σ(x) is diagonal with m ≥ 1 distinct positive eigenvalues and k = n -m ≥ 1 distinct negative eigenvalues. Using Riemann coordinates, one might assume that Σ(x) is of the form

Σ(x) = diag -λ 1 (x), • • • , -λ k (x), λ k+1 (x), • • • , λ n (x) , (2) 
where

-λ 1 (x) < • • • < -λ k (x) < 0 < λ k+1 (x) < • • • < λ k+m (x). (3) 
Throughout the paper, we assume that

λ i is Lipschitz on [0, 1] for 1 ≤ i ≤ n (= k + m). (4) 
We are interested in the following type of boundary conditions and boundary controls. The boundary conditions at x = 0 are given by

(w 1 , • • • , w k ) T (t, 0) = B(w k+1 , • • • , w k+m ) T (t, 0) for t ≥ 0, (5) 
for some (k × m) real constant matrix B, and the boundary controls at x = 1 are w k+1 (t, 1) = W k+1 (t), . . . , w k+m (t, 1) = W k+m (t) for t ≥ 0, [START_REF] Coron | Rapid Stabilization of a Linearized Bilinear 1-D Schrödinger Equation[END_REF] where W k+1 , . . . , W k+m are controls. Our goal is to obtain the optimal time for the nullcontrollability and exact controllability of (1), [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and [START_REF] Coron | Rapid Stabilization of a Linearized Bilinear 1-D Schrödinger Equation[END_REF]. Let us recall that the control system (1), [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and ( 6) is null-controllable (resp. exactly controllable) at the time T > 0 if, for every initial data w 0 : (0, 1) → R n in [L2 (0, 1)] n (resp. for every initial data w 0 : (0, 1) → R n in [L 2 (0, 1)] n and for every (final) state w T : (0, 1) → R n in [L 2 (0, 1)] n ), there is a control W = (W k+1 , . . . , W k+m ) T : (0, T ) → R m in [L 2 (0, T )] m such that the solution of ( 1), [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and (6) satisfying w(0, x) = w 0 (x) vanishes (resp. reaches w T ) at the time T : w(T, x) = 0 (resp. w(T, x) = w T (x)). Set

τ i := 1 0 1 λ i (ξ) dξ for 1 ≤ i ≤ n (7) 
and

T opt := max τ 1 + τ m+1 , . . . , τ k + τ m+k , τ k+1 if m ≥ k, max τ k+1-m + τ k+1 , τ k+2-m + τ k+2 , . . . , τ k + τ k+m if m < k. (8) 
The first result in this paper, which implies in particular that one can reach the nullcontrollability of (1), [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and (6) at the time T opt for generic γ (and B), is Theorem 1. Assume that (3) and (4) hold. We define B := B ∈ R k×m ; such that [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] 

holds for 1 ≤ i ≤ min{k, m -1} , (9) 
where the i × i matrix formed from the last i columns and the last i rows of B is invertible. [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] Then 1. In the case m = 1, there exists a (linear) time independent feedback which yields the null-controllability at the time T opt .

3. In the case m ≥ 2, we have i) for each B ∈ B, outside a discrete set of γ in R, the control system (1), [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and (6) is null-controllable at the time T opt , and ii) for each γ outside a discrete set in R, outside a set of zero measure of B in B, the control system (1), [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and (6) is null-controllable at the time T opt .

Theorem 1 is proved in Section 4. The optimality of T opt is shown in Proposition 1 for C ≡ 0 (see also Remark 11).

Remark 1. In Proposition 3 in Section 5, we present a null-controllability result, which holds for all γ and B ∈ B, for a time which is larger than T opt but smaller than T 2 defined in [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF] for m ≥ 2.

Concerning the exact controllability, we have the following theorem whose proof is just a straightforward modification of the one of Theorem 1 (see Remark 10).

Theorem 2. Assume that m ≥ k ≥ 1, (3) and (4) hold. Define B e := B ∈ R k×m ; such that [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] 

holds for 1 ≤ i ≤ k , (11) 
Then, i) for each B ∈ B e , outside a discrete set of γ in R, the control system (1), [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and (6) is exactly controllable at the time T opt , and ii) for each γ outside a discrete set in R, outside a set of zero measure of B in B e , the control system (1), ( 5), and (6) is exactly controllable at the time T opt .

Remark 2. In the case k = m = 1, the result of Theorem 2 holds for all γ and B ∈ B e , which was already proved in [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]. Our proof can be modified to obtain this result.

In the case where k ≥ 1, m = 2, Σ is constant, B ∈ B, and B k1 = 0, we show that the system is null-controllable for any time greater than T opt for all γ ∈ R and C analytic. More precisely, we have Theorem 3. Let k ≥ 1, m = 2, and T > T opt . Assume that (3) holds, B ∈ B and B k1 = 0, Σ is constant, and C is analytic on [0, L]1 where

L = ρ k ρ k -1 with ρ k =    λ k+2 λ k+1 if k = 1, min min 1≤j<i≤k λ j λ i , λ k+2 λ k+1 if k ≥ 2. ( 12 
)
Then the system is null-controllable at the time T . Similarly, if in addition that m ≥ k and B ∈ B e , then the system is exactly controllable at the time T .

Theorem 3 is proved in Section 6.

In the case C ≡ 0, we can prove that T opt is the optimal time for the null-controllability of the considered system via a linear time independent feedback law. More precisely, we have Proposition 1. Assume that C ≡ 0 and (10) holds for 1 ≤ i ≤ min{k, m -1}. There exists a linear time independent feedback which yields the null-controllability at the time T opt . Assume in addition that [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] holds for i = min{k, m}, then, for any T < T opt , there exists an initial datum such that u(T, •) ≡ 0 for every control.

Proposition 1 is proved in Section 7. We now briefly describe the method used in the proofs. Our approach relies on backstepping due to Miroslav Krstic and his coauthors (see also Remark 3). More precisely, we make the following change of variables

u(t, x) = w(t, x) - x 0 K(x, y)w(t, y) dy
for some kernel K : T = (x, y) ∈ (0, 1) 2 ; 0 < y < x → R n . The idea is to choose K in such a way that the controllability of the target system of u is easier to investigate. In our case, K is chosen so that (20) holds with K(x, 0) having appropriate properties, see in particular [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF] and (25).

The use of backstepping method to obtain the null-controllability for hyperbolic systems in one dimension was initiated in [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] for the case m = k = 1. This approach has been developed later on for more general hyperbolic system in [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF]. In [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF], the optimal time T opt is obtained for the case m = k = 1. In [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF], the authors considered the case where Σ is constant. They obtained the null-controllability for the time

T 1 := τ k + m l=1 τ k+l . ( 13 
)
It was later showed in [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF] that one can reach the null-controllability at the time

T 2 := τ k + τ k+1 . (14) 
In [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF], one does not require any conditions on B and the optimal time in this case is T 2 . With the convention (3), it is clear that

T opt ≤ T 2 ≤ T 1 , and 
T 2 < T 1 if m > 1 and T opt < T 2 if m > 1 or k > 1.
When C ≡ 0, Long Hu [START_REF] Hu | Sharp time estimates for exact boundary controllability of quasilinear hyperbolic systems[END_REF] established the exact controllability for quasilinear systems, i.e., A = A(u), in the case m ≥ k for the time

T 3 := max{τ k+1 , τ k + τ m+1 }
under a condition on B, which is equivalent to [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = k in our setting. It is clear in the case m ≥ k that

T opt ≤ T 3 ≤ T 2 , T 3 = T opt if k = 1, and T opt < T 3 if k > 1.
In the linear case, the null controllability was established for the time T 2 without any assumption on B and the exact controllability was obtained in the case m = k under a condition which is different but has some similar features to condition [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = k in [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]Theorem 3.2]. In the quasilinear case with m ≥ k, the exact controllability was derived in [START_REF] Li | Controllability and observability for quasilinear hyperbolic systems[END_REF]Theorem 3.2] (see also [START_REF] Li | Local exact boundary controllability for a class of quasilinear hyperbolic systems[END_REF]) for m ≥ k and for the time T 2 under a condition which is equivalent to [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = k in our setting.

Theorems 1 and 2, and Proposition 1 confirm that generically the optimal time to reach the null-controllability for the system in (1), [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], and ( 6) is T opt . Condition B ∈ B (resp. B ∈ B e ) is very natural to obtain the null-controllability (resp. exact-controllability) at T opt (see Section 4.2 for details) which roughly speaking allows to use the l controls

W k+m-l+1 , • • • , W k+m to control u k-l+1 , • • • , u k for 1 ≤ l ≤ min{k,
m} (the possibility to implement l controls corresponding to the fastest positive speeds to control l components corresponding to the lowest negative speeds).

In comparison with the previous works mentioned above, our analysis contains two new ingredients. First, after transforming the system into a new one (target system) via backstepping method as usual, we carefully choose the control varying with respect to time so that the zero state is reachable at T opt ; in the previous works, the zero controls were used for the target system. Secondly, the boundary conditions of the kernel obtained from the backstepping approach given in this paper are different from the known ones. Our idea is to explore as much as possible the boundary conditions of the kernel to make the target system as simple as possible from the control point of view.

Remark 3. The backstepping method has been also used to stabilize the wave equation [START_REF] Krstic | Output-feedback stabilization of an unstable wave equation[END_REF][START_REF] Smyshlyaev | Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary[END_REF][START_REF] Smyshlyaev | Boundary stabilization of a 1-D wave equation with in-domain antidamping[END_REF], the parabolic equations in [START_REF] Smyshlyaev | Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations[END_REF][START_REF] Smyshlyaev | On control design for PDEs with space-dependent diffusivity or time-dependent reactivity[END_REF], nonlinear parabolic equations [START_REF] Vazquez | Control of 1-D parabolic PDEs with Volterra nonlinearities. I. Design[END_REF]. The standard backstepping approach relies on the Volterra transform of the second kind. In some situations, more general transformations are considered as for Korteweg-de Vries equations [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], Kuramoto-Sivashinsky equations [START_REF] Coron | Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation[END_REF], and Schrödinger's equation [START_REF] Coron | Rapid Stabilization of a Linearized Bilinear 1-D Schrödinger Equation[END_REF]. The use of backstepping method to obtain the null-controllability of the heat equation is given in [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]. A concise introduction of this method applied to numerous partial differential equations can be found in [START_REF] Krstic | Boundary control of PDEs, volume 16 of Advances in Design and Control[END_REF].

The paper is organized as follows. In Section 2, we apply the backstepping approach to derive the target system and the equations for the kernel. Section 3 is devoted to some properties on the control systems and the kernel. The proofs of Theorems 1 and 3 are presented in Sections 4 and 6 respectively. A null-controllability result which holds for all γ and B ∈ B is given in Section 5. In Section 7, we present the proof of Proposition 1.
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A change of variables via backstepping approach. Systems of the kernel and the target

In what follows, we assume that γ = 1, the general case can be obtained from this case by replacing C by γC. As in [2, Section 3], [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]Section 4], and [15, Section 3], without loss of generality, one can assume that C ii (x) = 0 for 1 ≤ i ≤ n. The key idea of backstepping approach is to make the following change of variables

u(t, x) = w(t, x) - x 0 K(x, y)w(t, y) dy, (15) 
for some kernel K : T → R n×n which is chosen in such a way that the system for u is easier to control. Here T = (x, y) ∈ (0, 1)2 ; 0 < y < x .

To determine/derive the equations for K, we first compute ∂ t u(t, x) -Σ(x)∂ x u(t, x). Taking into account [START_REF] Hu | Boundary exponential stabilization of 1-d inhomogeneous quasilinear hyperbolic systems[END_REF], we formally have 2

∂ t u(t, x) =∂ t w(t, x) - x 0 K(x, y)∂ t w(t, y) dy =∂ t w(t, x) - x 0 K(x, y) Σ(y)∂ y w(t, y) + C(y)w(t, y) dy (by (1)) =∂ t w(t, x) -K(x, x)Σ(x)w(t, x) + K(x, 0)Σ(0)w(t, 0) + x 0 ∂ y K(x,
y)Σ(y) w(t, y) -K(x, y)C(y)w(t, y) dy (by integrating by parts) and

∂ x u(t, x) = ∂ x w(t, x) - x 0 ∂ x K(x,
y)w(t, y) dy -K(x, x)w(t, x).

It follows from (1) that

∂ t u(t, x) -Σ(x)∂ x u(t, x) = C(x) -K(x, x)Σ(x) + Σ(x)K(x, x) w(t, x) + K(x, 0)Σ(0)u(t, 0) + x 0 ∂ y K(x, y)Σ(y) + K(x, y)Σ (y) -K(x, y)C(y) + Σ(x)∂ x K(x, y) w(t, y) dy. (17)
We search a kernel K which satisfies the following two conditions

∂ y K(x, y)Σ(y) + Σ(x)∂ x K(x, y) + K(x, y)Σ (y) -K(x, y)C(y) = 0 in T (18) 
and C(x) := C(x) -K(x, x)Σ(x) + Σ(x)K(x, x) = 0 for x ∈ (0, 1), [START_REF] Smyshlyaev | Boundary stabilization of a 1-D wave equation with in-domain antidamping[END_REF] so that one formally has

∂ t u(t, x) = Σ(x)∂ x u(t, x) + K(x, 0)Σ(0)u(t, 0) for (t, x) ∈ R + × (0, 1). ( 20 
)
In fact, such a K exists so that (20) holds (see Proposition 2). We have the (i, j) component of the matrix ∂ y K(x, y)Σ(y) + Σ(x)∂ x K(x, y) is

a ij (y)∂ y K ij (x, y) + b ij (x)∂ x K ij (x, y), (21) 
where

a ij (y), b ij (x) =              -λ j (y), -λ i (x) if 1 ≤ i, j ≤ k, λ j (y), -λ i (x) if 1 ≤ i ≤ k < k + 1 ≤ j ≤ k + m, λ j (y), λ i (x) if k + 1 ≤ i, j ≤ k + m, -λ j (y), λ i (x) if 1 ≤ j ≤ k < k + 1 ≤ i ≤ k + m. (22) 
We denote

Γ 1 = (x, x); x ∈ (0, 1) , Γ 2 = (x, 0); x ∈ (0, 1)
, and Γ 3 = (1, y); y ∈ (0, 1) .

Remark 4. By the characteristic method, it is possible to impose the following boundary conditions for K ij when Σ is constant:

• On Γ 1 if a ij /b ij ≤ 0, see case a) in Figure 1. • On both Γ 1 and Γ 2 if 0 < a ij /b ij < 1, see case b) in Figure 1. • On Γ 1 and Γ 3 if a ij /b ij > 1, see case c) in Figure 1. • On Γ 2 if a ij /b ij = 1, see case d) in Figure 1.
To impose (appropriate) boundary conditions of K on Γ 2 so that the system for u is simple, we investigate the term K(x, 0)Σ(0)u(t, 0). Set

Q := 0 k B 0 m,k I m . (23) 
Here and in what follows, 0 i,j denotes the zero matrix of size i × j, and 0 i and I i denotes the zero matrix and the identity matrix of the size i × i for i, j ∈ N. Using the boundary conditions at x = 0 in ( 5) and the fact that u(t, 0) = w(t, 0), we obtain

u(t, 0) = Qu(t, 0). It follows that K(x, 0)Σ(0)u(t, 0) = K(x, 0)Σ(0)Qu(t, 0). Γ 1 Γ 2 Γ 3 a) Γ 1 Γ 2 Γ 3 b) Γ 1 Γ 2 Γ 3 c) Γ 1 Γ 2 Γ 3 d) Figure 1: The characteristic vectors of K ij in the case Σ is constant: a) in the case a ij /b ij < 0 (1 ≤ i ≤ k < k + 1 ≤ j ≤ k + m or 1 ≤ j ≤ k < k + 1 ≤ i ≤ k + m), b) in the case 0 < a ij /b ij < 1 (1 ≤ i < j ≤ k or k + 1 ≤ j < i ≤ k + m), c) in the case a ij /b ij > 1 (1 ≤ j < i ≤ k or k + 1 ≤ i < j ≤ k + m), and d) in the case a ij /b ij = 1 (1 ≤ i = j ≤ k + m).
Here and in what follows, we define, for x ∈ [0, 1],

Σ -(x) := diag -λ 1 (x), . . . , -λ k (x) and Σ + (x) := diag λ k+1 (x), . . . , λ k+m (x) . Denote K(x, 0) = K --(x) K -+ (x) K +-(x) K ++ (x)
, where K --, K -+ , K +-, and

K ++ are matrices of size k × k, k × m, m × k, and m × m, respectively. Set S(x) := K(x, 0)Σ(0)Q. ( 24 
)
We have

S(x) = 0 k K --(x)Σ -(0)B + K -+ (x)Σ + (0) 0 m,k K +-(x)Σ -(0)B + K ++ (x)Σ + (0) = 0 k S -+ (x) 0 m,k S ++ (x) . ( 25 
)
We impose boundary conditions for K ij on Γ 1 , Γ 2 , and Γ 3 as follows:

BC 1 ) For (i, j) with 1 ≤ i = j ≤ k + m, we impose the boundary condition for K ij on Γ 1 in such a way that C ij (x) = 0 (recall that C is define in (19)).
More precisely, we have, noting that

a ij = b ij , K ij (x, x) = C ij (x)/ a ij (x) -b ij (x) for x ∈ (0, 1). ( 26 
) BC 2 ) Set J = (i, j); 1 ≤ i ≤ j ≤ k or k + 1 ≤ j ≤ i ≤ k + m ,
Note that if i = j and (i, j) ∈ J then 0 < a ij (0)/b i,j (0) < 1 and the characteristic trajectory passing (0, 0) is inside T as in case b) in Figure 1. Using ( 21) and ( 22), we can impose the boundary condition of K ij on Γ 2 with (i, j) ∈ J in such a way that, for x ∈ (0, 1),

K ij (x, 0) = 0 for 1 ≤ i ≤ j ≤ k (27) and (S ++ ) pq (x) = 0 for 1 ≤ q ≤ p ≤ m. (28) 
These imposed conditions can be written under the form, for (i, j) ∈ J ,

K ij (x, 0) = (r,s) ∈J c ijrs (B)K rs (x, 0) for x ∈ (0, 1), (29) 
for some c ijrs (B) which is linear with respect to B. Indeed, ( 27) can be written under the form of (29) with c ijrs = 0 and for 1 ≤ q ≤ p ≤ m, K p,q can be written under the form of (29) since the (p, q) component of

S ++ = K +-(x)Σ -(0)B + K ++ (x)Σ + (0) is 0. BC 3 ) For (i, j) with either 1 ≤ j < i ≤ k or k + 1 ≤ i < j ≤ k + m, we impose the zero boundary condition of K ij on Γ 3 , i.e., K ij (1, y) = 0 for y ∈ (0, 1). (30) 
(Note that in this case a ij (1)/b ij (1) > 1 and hence the characteristic trajectory passing (1, 1) is in T as in case c) in Figure 1).

Below are the form of S(= S k,m ) when BC 2 ) is taken into account for some pairs (k, m):

S 2,3 (x) =           0 0 * * * 0 0 * * * 0 0 0 * * 0 0 0 0 * 0 0 0 0 0           , and S 3,2 (x) =           0 0 0 * * 0 0 0 * * 0 0 0 * * 0 0 0 0 * 0 0 0 0 0           . ( 31 
)
Here and in what follows, in a matrix, * means that this part of that matrix can be whatever.

Remark 5. We here impose (27) on Γ 1 and (30) on Γ 3 . These choices are just for the simplicity of presentation. We later modify these in the proof of Theorem 3.

Properties of the control systems and the kernel

In this section, we establish the well-posedness of u, w, and K and the unique determination of w from u. For notational ease, we assume that γ = 1 (except in Lemma 2 and its proof), the general case follows easily. We first investigate the well-posedness of w and u under the boundary conditions and the controls considered. We consider a more general control system, for T > 0,

                 ∂ t v(t, x) = Σ(x)∂ x v(t, x) + C(x)v(t, x) + D(x)v(t, 0) + f (t, x) for (t, x) ∈ (0, T ) × (0, 1), v -(t, 0) = Bv + (t, 0) + g(t)
for t ∈ (0, T ),

v + (t, 1) = R r=1 A r (t)v t, x r + 1 0 M (t, y)v(t, y) dy + h(t) for t ∈ (0, T ), v(t = 0, x) = v 0 (x) for x ∈ (0, 1), ( 32 
) where v -= (v 1 , • • • , v k ) T and v + = (v k+1 , • • • , v k+m ) T . Here R ∈ N, C, D : [0, 1] → R n×n , A r : [0, T ] → R m×n , x r ∈ [0, 1] (1 ≤ r ≤ R), M : [0, T ] × [0, 1] → R n×n , f ∈ L ∞ (0, T ) × (0, 1) n , g ∈ [L ∞ (0, T )] k , and h ∈ [L ∞ (0, T )] m .
We make the following assumptions for this system

x r < c < 1 for some constant c, (33) 
C, D ∈ [L ∞ (0, 1)] n×n , A r ∈ [L ∞ (0, T )] n×n , and M ∈ [L ∞ (0, T ) × (0, 1) ] n×n . ( 34 
)
We are interested in bounded broad solutions of (32) whose definition is as follows. Extend λ i in R by λ i (0) for x < 0 and

λ i (1) for x ≥ 1. For (s, ξ) ∈ [0, T ] × [0, 1], define x i (t, s, ξ) for t ∈ R by d dt x i (t, s, ξ) = λ i x i (t, s, ξ) and x i (s, s, ξ) = ξ if 1 ≤ i ≤ k, (35) 
and

d dt x i (t, s, ξ) = -λ i x i (t, s, ξ) and x i (s, s, ξ) = ξ if k + 1 ≤ i ≤ k + m. ( 36 
)
The following definition of broad solutions for (32) is used in this paper

Definition 1. A function v = (v 1 , . . . , v k+m ) : (0, T ) × (0, 1) → R k+m is called a broad solution of (32) if v ∈ [L ∞ (0, T ) × (0, 1) ] k+m ∩ [C [0, T ]; L 2 (0, 1) ] k+m ∩ [C [0, 1]; L 2 (0, T ) ]
k+m and if, for almost every (τ, ξ) ∈ (0, T ) × (0, 1), we have

1. For k + 1 ≤ i ≤ k + m, v i (τ, ξ) = τ t n j=1 C ij x i (s, τ, ξ) v j s, x i (s, τ, ξ) + D ij x i (s, τ, ξ) v j (s, 0) + f i s, x i (s, τ, ξ) ds + R r=1 n j=1 A r,ij (t)v j t, x r + 1 0 n j=1 M ij (t, x)v j (t, x) dx + h(t), (37) 
if x i (0, τ, ξ) > 1 and t is such that x i (t, τ, ξ) = 1, and

v i (τ, ξ) = τ 0 n j=1 C ij x i (s, τ, ξ) v j s, x i (s, τ, ξ) + D ij x i (s, τ, ξ) v j (s, 0) + f i s, x i (s, τ, ξ) ds + v 0,i x i (0, τ, ξ) , (38) 
if x i (0, τ, ξ) < 1. 2. For 1 ≤ i ≤ k, v i (τ, ξ) = τ t n j=1 C ij (x i (s, τ, ξ))v j (s, x i (s, τ, ξ)) + D ij (x i (s, τ, ξ))v j (s, 0) + f i s, x i (s, τ, ξ) ds + m j=1 B ij v j+k (t, 0) + g i (t), (39) 
if x i (0, τ, ξ) < 0 and t is such that x i (t, τ, ξ) = 0 where v j+k (t, 0) is defined by the RHS of (37) or (38) with (τ, ξ) = (t, 0), and

v i (τ, ξ) = τ 0 n j=1 C ij (x i (s, τ, ξ))v j (s, x i (s, τ, ξ)) + D ij (x i (s, τ, ξ))v j (s, 0) + f i s, x i (s, τ, ξ) ds + v 0,i x i (0, τ, ξ) , (40) 
if x i (0, τ, ξ) > 0.
Here and in what follows, v i denotes the i-th component of v, v i,0 denotes the i-th component of v 0 , and A r,ij denotes the (i, j) component of A r .

Classical solutions are smooth broad solutions. Conversely, smooth broad solutions are classical solutions. This is a consequence of the following lemma on the well-posedness of (32):

Lemma 1. Let v 0 ∈ [L ∞ (0, 1)] n , f ∈ L ∞ (0, T ) × (0, 1) n , g ∈ [L ∞ (0, T )] k , and
h ∈ [L ∞ (0, T )] m , and assume (33) and (34). Then (32) has a unique broad solution v.

Proof. The proof is based on a fixed point argument. To this end, define

F from Y := L ∞ (0, T ) × (0, 1) n ∩ C [0, T ]; L 2 (0, 1) n ∩ C [0, 1]; L 2 (0, T ) n into itself as follows, for
v ∈ Y and for (τ, ξ) ∈ (0, T ) × (0, 1),

F(v) i (τ, ξ)
is the RHS of (37) or (38) or (39) or (40)

under the corresponding conditions. (41)

Set

N := B L ∞ + C L ∞ + D L ∞ + M L ∞ + R r=1 A r L ∞ .
We claim that there exist two constants L 1 , L 2 > 1 depending only on c, N , and Σ such that F is a contraction map for the norm

v := sup 1≤i≤n ess sup (τ,ξ)∈(0,T )×(0,1) e -L 1 τ -L 2 ξ |v i (τ, ξ)|. ( 42 
)
We first consider the case where F(v) i (τ, ξ) is given by the RHS of (38) or (40). We claim that, for v, v ∈ Y,

e -L 1 τ -L 2 ξ F(v) i (τ, ξ) -F(v) i (τ, ξ) ≤ v -v /(10n), (43) 
if L 2 is large enough and L 1 is much larger than L 2 . Indeed, we have, with

V = v -v, F(v) i (τ, ξ) -F(v) i (τ, ξ) ≤N τ 0 |V (s, x i (s, τ, ξ))| + |V (s, 0)| ds ≤2 √ nN L -1 1 V e τ L 1 +L 2 ,
which implies (43).

We next consider the case where F(v) i (τ, ξ) is given by the RHS of (37). We have

F(v) -F(v) i (τ, ξ) ≤N τ t |V (s, x i (s, τ, ξ))| + |V (s, 0)| ds + |V (t, x r )| + 1 0 |V (t, x)| dx ≤2 √ nN L -1 1 e L 1 τ +L 2 V + e L 1 t+L 2 c V + L -1 2 e L 1 t+L 2 V . ≤4 √ nN L -1 1 e L 1 τ +L 2 V + L -1 2 e L 1 t+L 2 V , if L 2 is large enough since c < 1. Since τ -t ≥ C(1 -ξ)
for some positive constant depending only on Σ, k, and m by the definitions of x i and t, it follows that

e -L 1 τ -L 2 ξ F(v) -F(v) i (τ, ξ) ≤ V /2, (44) 
if L 2 is large and L 1 is much larger than L 2 . We finally consider the case where F(v) i (τ, ξ) is given by the RHS of (39). We have

F(v) -F(v) i (τ, ξ)| ≤ N   τ t |V (s, x i (s, τ, ξ))| + |V (s, 0)| ds + k+m j=k+1 |V j (t, 0)|   ≤ 2 √ nN L -1 1 e L 1 τ +L 2 V + k+m j=k+1 |V j (t, 0)| . (45) 
From ( 37) and (38), as in the previous cases, we have

N e L 2 e -L 1 t |V j (t, 0)| ≤ V /(10n) for k + 1 ≤ j ≤ k + m,
if L 2 is large and L 1 is much larger than L 2 . We derive from (45) that

e -L 1 τ -L 2 ξ F(v) i (τ, ξ) -F(v) i (τ, ξ) ≤ V /2, (46) 
if L 2 is large enough and L 1 is much larger than L 2 . Combining (43), (44), and (46) yields, for v, v ∈ Y,

F(v) -F(v) ≤ v -v /2.
Thus F is a contraction mapping. By the Banach fixed-point theorem, there exists a unique v ∈ Y such that

F(v) = v.
The proof is complete.

Concerning K, we have the following result:

Lemma 2. Assume (33) and (34). There exists a unique broad bounded solution K : T → R n×n of system (18), ( 26), (29), and (30). Moreover, (γ,

B) ∈ R × R k×m → K ∈ [L ∞ (T )] n×n is analytic.
Remark 6. The broad solution meaning of K is understood via the characteristic approach similar to Definition 1. The continuity assumptions in Definition 1 are replaced by the assumption that K(•, y) ∈ L 2 ([0, 1]) is continuous w.r.t. to y ∈ [0, 1) where K(x, y) = K((1 -y)x, y) and similar facts for x and x + y variables.

Proof. Using similar approach, one can establish the existence and uniqueness of K. The real analytic with respect to each component of B can be proved by showing that K is holomorphic with respect to each component of B. In fact, for notational ease, assuming again that γ = 1, one can prove that ∂K ∂B pq = K in T (the derivative is understood for a complex variable), where K is the bounded broad solution of (18), Kij (x, x) = 0 for x ∈ (0, 1), 1 

≤ i = j ≤ k + m, Kij (1, y) = 0 for y ∈ (0, 1), 1 ≤ i < j ≤ k or k + 1 ≤ j < i ≤ k + m,
which is obtained from (29). The existence and uniqueness of K can be established as in the proof of Lemma 1 where the second term in the RHS of (47) plays a role as the one of g in Lemma 1. The details of the proof are left to the reader. The analyticity with respect to γ can be proved by showing that K is holomorphic with respect to γ. In fact, one can prove that

∂K ∂γ = K in T ,
(the derivative is understood for a complex variable) where K is the bounded broad solution of

∂ y K(x, y)Σ(y) + Σ(x)∂ x K(x, y) + K(x, y)Σ (y) -γ K(x, y)C(y) = K(x, y)C(y) in T , (48) 
by [START_REF] Renardy | An introduction to partial differential equations[END_REF], A connection between w and u is given in the following proposition.

Kij (x, x) = C ij (x) a ij (x) -b ij (x) for x ∈ (0, 1), 1 ≤ i = j ≤ k + m, (49) 
Kij (1, x) = 0 for x ∈ (0, 1), 1 ≤ i < j ≤ k or k + 1 ≤ j < i ≤ k + m,
Proposition 2. Let w 0 ∈ L ∞ (0, 1) and let w ∈ L ∞ (0, T ) × (0, 1) . Define u 0 and u from w 0 and w by (15) respectively and let S be given by [START_REF] Vazquez | Control of 1-D parabolic PDEs with Volterra nonlinearities. I. Design[END_REF]. Assume (33) and (34). We have, if w is a broad solution of the system

                 ∂ t w(t, x) = Σ(x)∂ x w(t, x) + C(x)w(t, x) for (t, x) ∈ (0, T ) × (0, 1), w -(t, x = 0) = Bw + (t, x = 0) for t ∈ (0, T ), u + (t, 1) = R r=1 A r (t)u t, x r + 1 0
M (t, y)u(t, y) dy for t ∈ (0, T ),

w(t = 0)(x) = w 0 (x) for x ∈ (0, 1), ( 51 
)
then u is a broad solution of the system

                 ∂ t u(t, x) = Σ(x)∂ x u(t, x) + S(x)u(t, 0) for (t, x) ∈ (0, T ) × (0, 1), u -(t, x = 0) = Bu + (t, x = 0) for t ∈ (0, T ), u + (t, 1) = R r=1
A r (t)u t, x r + 1 0 M (t, y)u(t, y) dy for t ∈ (0, T ), u(t = 0, x) = u 0 (x) for x ∈ (0, 1).

(52)

Remark 7. In the two sides of the third condition in (51), u is given by [START_REF] Hu | Boundary exponential stabilization of 1-d inhomogeneous quasilinear hyperbolic systems[END_REF]. Therefore, this condition is understood as a condition on w. By Lemma 1, there exist a unique broad solution w of (51) and a unique broad solution u of (52).

Proof. We first assume in addition that C and Σ are smooth on [0, 1]. Let K n be a C 1 -solution of ( 18) and (26) such that

K n L ∞ (T ) ≤ M and K n → K in L 1 (T ), ( 53 
)
where M is a positive constant independent of n. Such a K n can be obtained by considering the solution of ( 18), (26), and

K n,ij (x, 0) = (r,s) ∈J c ijrs (B)K n,rs (x, 0) + g n (x, 0) for x ∈ (0, 1) and K n,ij (1, x) = h n (x) for x ∈ (0, 1)
instead of ( 29) and (30) respectively where (g n ), (h n ) are chosen such that (g n ) and (h n ) are bounded in L ∞ (0, 1), (g n ), (h n ) → 0 in L 1 (0, 1), and the compatibility conditions hold for K n at (0, 0) and (1, 1) 3 . Set, for sufficiently small positive ε,

w ε (t, x) = 1 2ε t+ε t-ε w(s, x) ds in (ε, T -ε) × (0, 1). Then w ε ∈ W 1,∞ (ε, T -ε) × (0, 1)
and

∂ t w ε (t, x) = Σ(x)∂ x w ε (t, x) + C(x)w ε (t, x) in (ε, T -ε) × (0, 1). Define u n,ε (t, x) = w ε (t, x) - x 0 K n (x, y)w ε (t, y) dy in (ε, T -ε) × (0, 1)
and

u n (t, x) = w(t, x) - x 0 K n (x, y)w(t, y) dy in (0, T ) × (0, 1).
As in [START_REF] Smyshlyaev | Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations[END_REF], we have

∂ t u n,ε (t, x) = Σ(x)∂ x u n,ε (t, x) + K n (x, 0)Σ(0)u n,ε (t, 0) in (ε, T -ε) × (0, 1).
By letting ε → 0, we obtain

∂ t u n (t, x) = Σ(x)∂ x u n (t, x) + K n (x, 0)Σ(0)u n (t, 0) for (t, x) ∈ (0, T ) × (0, 1).
By letting n → +∞ and using (53), we derive that ∂ t u(t, x) = Σ(x)∂ x u(t, x) + K(x, 0)Σ(0)u(t, 0) for (t, x) ∈ (0, T ) × (0, 1).

This yields the first equation of (52). The other parts of (52) are clear from the definition of w 0 and w.

We next consider the general case, in which no further additional smooth assumption on Σ and C is required. The proof in the case can be derived from the previous case by approximating Σ and C by smooth functions. The details are omitted.

The fact that w is uniquely determined from u is a consequence of the following standard result on the Volterra equation of the second kind whose proof is omitted; this implies in particular that w(t, •) ≡ 0 in (0, 1) if u(t, •) ≡ 0 in (0, 1).

Lemma 3. Let d ∈ N, τ 1 , τ 2 ∈ R be such that τ 1 < τ 2 and let G : (t, s) : τ 1 ≤ s ≤ t ≤ τ 2 → R d×d be bounded measurable. For every F ∈ L ∞ (τ 1 , τ 2 )
d , there exists a unique solution

U ∈ L ∞ (τ 1 , τ 2 )
d of the following equation

U (t) = F (t) + t τ 1
G(t, s)U (s) ds for t ∈ (τ 1 , τ 2 ).

3 One needs to establish the stability for L 1 -norm for the system of K. This can be done as in [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF]. Choose u k+1 (t, 1) = 0 for t ≥ 0. Since S ++ = 0 by (28), we have u k+1 (t, 0) = 0 for t ≥ τ k+1 and u k+1 (T opt , x) = 0 for x ∈ (0, 1). This implies, by [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF],

t 0 = T opt t 1 = T opt - 1 λ 1 t l-1 = T opt - 1 λ l-1 t l = T opt - 1 λ l t k = T opt - 1 λ k 0 1 a) t 0 = T opt t 1 t l-1 t l x 0,l x 1,l x l-1,l x l,l 0 1 b)
u i (t, 0) = 0 for t ≥ τ k+1 , 1 ≤ i ≤ k.
We derive from (20) that

u i (T opt , x) = 0 for x ∈ (0, 1), 1 ≤ i ≤ k.
The null-controllability at the time T opt is attained for u and hence for w by Lemma 3.

Proof of part 3) of Theorem 1

We here establish part 3) of Theorem 1 even for m ≥ 1. We hence assume that m ≥ 1 in this section. Set

t 0 = T opt , t 1 = t 0 -τ 1 , • • • , t k = t 0 -τ k , (54) 
and, for 1 ≤ l ≤ k, x 0,l = 0 and x i,l = x l (t 0 , t i , 0), for 1 ≤ i ≤ l.

(55)

Recall that x l is defined in (35) for 1 ≤ l ≤ k. (See Figure 2 in the case where Σ is constant.)

In the next two sections, we deal with the case m ≥ k and m < k respectively.

b 1 ) From ( 20) and (25), using the characteristic method and the fact that S ij = 0 for 1 ≤ i, j ≤ k, one can write the conditions in a 1 ) under the form

(u 1 , • • • , u k ) T (t, 0) + t 0 t L 1 (t, s)(u k+1 , • • • , u k+m ) T (s, 0) ds = 0 for t 1 ≤ t ≤ t 0 ,
for some L 1 ∈ L ∞ (t, s); t 1 ≤ t ≤ s ≤ t 0 k×m . Using [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = k provided m > k, one can write the above equation under the form

U 1 (t) = A 1 V m (t) + t 0 t G 1 (t, s)V m (s) ds + t 0 t H 1 (t, s)U 1 (s) ds for t 1 ≤ t ≤ t 0 , (59) 
for some

G 1 ∈ [L ∞ ({(t, s); t 1 ≤ t ≤ s ≤ t 0 })] k×(m-k) and H 1 ∈ [L ∞ ({(t, s); t 1 ≤ t ≤ s ≤ t 0 })] k×k
depending only on S, B, and Σ, and some matrix A 1 ∈ R k×(m-k) depending only on B. In the case m = k, one chooses H 1 = 0 (there are not A 1 and G 1 in this case by the convention) Since K is analytic with respect to (γ, B), one can check that L 1 is analytic with respect to (γ, B).

In fact, L 1 depends linearly on S and so analytically on (γ, B), and if γ = 0 then L 1 = 0. This implies that G 1 and H 1 are analytic with respect to (γ, B). It is also clear that A 1 is analytic with respect to (γ, B) as well.

Remark 8. In the case m = k, U 1 (t) = 0 for t 1 ≤ t ≤ t 0 . This fact will be used to deal with the case m < k.

b 2 ) Similar to (59), the conditions in a 2 ) is equivalent to 

U 2 (t) = A 2 V m+1 (t) + t 0 t G 2 (t,
U k (t) = A k V m+k-1 (t) + t 0 t G k (t, s)V m+k-1 (s) ds + t 0 t H k (t, s)U k (s) ds for t k ≤ t < t k-1 , (61 
) for some constant matrix A k and some bounded functions G k and H k defined in (s, t); t k ≤ t ≤ s ≤ t 0 which depends only on S, B, and Σ. Moreover, A k , G k and H k are analytic with respect to (γ, B).

We are next concerned about the relations between the components of u(t, 0). We have, by the property of S ++ in (28) and the form of S in (25), and (56) and (57),

u m+k (s, 0) = F m+k (s) for 0 ≤ s ≤ t k , ( 62 
)
u m+k-1 (s, 0) = F m+k-1 (s) + s 0 G m+k-1,m+k (ξ)u m+k (ξ, 0) dξ for 0 ≤ s ≤ t k-1 , (63) 
u m+k-2 (s, 0) =F m+k-2 (s) + s 0 G m+k-2,m+k (ξ)u m+k (ξ, 0) dξ + s 0 G m+k-2,m+k-1 (ξ)u m+k-1 (ξ, 0) dξ for 0 ≤ s ≤ t k-2 , (64) 
. . .

u k+1 (s, 0) = F k+1 (s) + s 0 k+m j=k+2 G k+1,j (ξ)u j (ξ, 0) dξ for 0 ≤ s ≤ t 1 , (65) 
where G i,j depends only on S and Σ and is analytic with respect to (γ, B), and F i depends only on the initial data. Here we also use ( 56) and (57). Using (62-65), one can write the equations in b 1 ), . . . , b k ) under the form

U + K(U ) = F in X . ( 66 
)
where

U = u m+1 (•, 0), • • • , u m+k (•, 0)
T and K is a Hilbert-Schmidt operator, therefore a compact operator, and it is analytic with respect to (γ, B).

By the theory of analytic compact theory (see, e.g., [START_REF] Renardy | An introduction to partial differential equations[END_REF]Theorem 8.92]), for each B ∈ B,

I + K is invertible outside a discrete set of γ in R since K is small if γ is small.
Using this fact, since B has a finite number of connected components, there exists a discrete subset of R such that outside this set, I +K is invertible for almost every B ∈ B by the Fredholm theory for analytic compact operator.

Consider (γ, B) such that I + K is invertible. Then equation (66) has a unique solution for all F in X . One can check that if F is bounded then U is bounded since KU is bounded. To obtain the null-controllability at the time T opt , in addition to the preparation step, one chooses

u k+m (1, t) for T opt -τ k+m -τ k ≤ t ≤ T opt -τ k+m , . . . , u m+1 (1, t) for T opt -τ m+1 -τ 1 ≤ t ≤ T opt -τ m+1 such that u m+1 (•, 0), • • • , u m+k (•, 0)
T = U (this can be done by the form of S ++ ) and chooses u l (t, 1) for T opt -τ l ≤ t ≤ T opt and m + 1 ≤ l ≤ k + m in such a way that u l (T opt , x) = 0 for x ∈ (0, 1).

Requirement ( 67) is again possible by the property of S ++ in (28) and by the form of S in (25).

Remark 9. The above analysis shows that the existence of a bounded solution U of (66) implies the existence of a control to steer the system from the initial data to 0 in time T opt by the characteristic method. Moreover, in the case where m = k and

T opt = τ 1 + τ m+1 = • • • = τ k + τ m+k ,
the existence of such a U is necessary.

Remark 10. We now show how to modify the proof of Theorem 1 in the case m ≥ k ≥ 1 to reach the exact controllability. To obtain the exact controllability with the final state v, the requirements in a 1 , . . . , a k ) become c 1 )

u k (T opt , x) = v k (x) for x ∈ (x 0,k , x 1,k ), • • • , u 1 (T opt , x) = v 1 (x) for x ∈ (x 0,1 , x 1,1 ). c 2 ) u k (T opt , x) = v k (x) for x ∈ (x 1,k , x 2,k ), • • • , u 2 (T opt , x) = v 2 (x) for x ∈ (x 1,2 , x 2,2 ). . . . c k ) u k (T opt , x) = v k (x) for x ∈ (x k-1,k , x k,k ).
Equations (59), (60), and (61) then become

U 1 (t) = J 1 (t) + A 1 V m (t) + t 0 t G 1 (t, s)V m (s) ds + t 0 t H 1 (t, s)U 1 (s) ds for t 1 ≤ t ≤ t 0 , U 2 (t) = J 2 (t) + A 2 V m+1 (t) + t 0 t G 2 (t, s)V m+1 (s) ds + t 0 t H 2 (t, s)U 2 (s) ds for t 2 ≤ t < t 1 , U k (t) = J k (t)+A k V m+k-1 (t)+ t 0 t G k (t, s)V m+k-1 (s) ds+ t 0 t H k (t, s)U k (s) ds for t k ≤ t < t k-1 ,
for some functions J 1 , J 2 , . . . , J k depending on the final state v. Using (62-65), one can write these equations under the form

U + K(U ) = F in X .
where F now also depends on J 1 , . . . , J k . The rest of the proof of the exact controllability is unchanged.

Remark 11. In the case where m = k and

T opt = τ 1 + τ m+1 = • • • = τ k + τ m+k ,
the above analysis also gives the optimality of T opt for all γ such that I + K is invertible. Indeed, assume that there exists T < T opt such that one can steer an arbitrary state u(0, •) to 0 at the time T . Without loss of generality, one might assume that T opt -T is small. To simplify the notations, we assume that Σ is constant. As mentioned in Remark 9, a necessary condition to have a control is the existence of a solution U ∈ X of

U + KU = G, (68) 
where G now depends on u i (0, x) for 1 ≤ i ≤ k and x ∈ (0, 1) and u i (0, x) for k+1 ≤ i ≤ k+m and x ∈ (0, 1-s i ) with s i = (T opt -T )/λ i by (62-65). However, for t ∈ (1/λ k+m -(T opt -T ), 1/λ k+m ),

u m+k (t, 0) = u k+m (0, λ k+m t), (69) 
the LHS of ( 69) is uniquely determined by G from (68) and the RHS of (69) can be chosen independently of G. This yields a contradiction. Then û is a bounded broad solution of the system

On the case

m < k Set û(t, x) = u k-m+1 , . . . u k+m T (t, x) in (0, T ) × (0, 1), Σ(x) = diag (-λ k-m+1 , • • • , -λ k , λ k+1, • • • , λ m+k )(x) in (0,
∂ t û(t, x) = Σ(x)∂ x û(t, x) + Ŝ(x)û(t, 0), (70) 
with the boundary condition at 0 given by (û

1 , • • • , ûm )(t, 0) T = B(û m+1 , • • • , û2m )(t, 0) T . Set Topt := max{τ k+m + τ k , • • • , τ k+1 + τ k+1-m } = T opt .
Consider the pair (γ, B) such that the control constructed in Section 4.2.1 for û exists. Then, for this control, û(T opt , x) = 0 for x ∈ (0, 1).

As observed in Remark 8, one has (û m+1 , . . . , û2m ) T (t, 0) = 0 for t ∈ [T opt -τ k-m+1 , T opt ].

This yields (u 1 , . . . , u k-m ) T (T opt , x) = 0 for x ∈ (0, 1) (72) by the form of S given in (25). Combining (71) and (72) yields the null-controllability at the time T opt .

Proof of part 2) of Theorem 1

Fix α = 0 and β = 0, and consider

C 3,3 =     0 0 α(λ k+2 + λ k ) 0 0 β(λ k+2 -λ k+1 ) 0 0 0     and C(x) = C k+2,k+2 := 0 k-1,k-1 0 k-1,3 0 3,k-1 C 3,3
for k ≥ 1.

(73) Set

K 3,3 =     0 0 α 0 0 β 0 0 0     and K(x) = K k+2,k+2 := 0 k-1,k-1 0 k-1,3 0 3,k-1 K 3,3 for k ≥ 1. ( 74 
)
One can check that KC = 0 k+2 and K is a solution of equation ( 18) by noting that Σ is constant. Moreover, [START_REF] Smyshlyaev | Boundary stabilization of a 1-D wave equation with in-domain antidamping[END_REF] holds by the choice of K and C. We have, by (25), that

S(x) = S k+2,k+2 = 0 k-1,k-1 0 k-1,3 0 3,k-1 S 3,3
where

S 3,3 =     0 0 λ k+2 α 0 0 λ k+2 β 0 0 0     . (75) 
In what follows, for simplicity of notations, we only consider the case k = 2. The other cases can be established similarly. Suppose that

u 2 (t, 0) = au 3 (t, 0) + bu 4 (t, 0) for t ≥ 0. ( 76 
)
Then a = 0 by condition [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. To obtain the null-controllability at the time T opt , one has, from condition a 1 ), u 3 (t, 0) = u 4 (t, 0) = 0 for t ∈ (t 

By choosing α such that b + λ 4 α(t 1 -t 2 ) = 0, and integrating (77) from t 2 to t 1 , it follows, since a = 0, that

t 1 t 2 f (t) dt = 0. ( 78 
)
This is impossible for an arbitrary initial data, for example if u 4 (0, •) = 0 then f (t) = u 3 (0, λ 3 t) and an appropriate choice of u 3 (0, •) yields that (78) does not hold. In other words, the system is not null-controllable at the time T opt .

A null-controllability result for all γ and B ∈ B

A slight modification of the proof of part 3) of Theorem 1 gives the following result, where T 2 is defined in [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF]. Proposition 3. Let m ≥ 2. Assume that (3) and (4) hold and B ∈ B. There exists δ > 0 depending only on C, B, Σ, and γ such that the system is null-controllable at the time T 2 -δ. and

u k (T 2 -δ, x) = 0 for x ∈ [0, x * ],
which yields, by (81),

u k (T 2 -δ, x) = 0 for x ∈ [0, 1]. (85) 
From (83) and the form of S, we also derive that

u k+m (t, x) = • • • = u k+1 (t, x) for x ∈ [0, 1] and t ≥ τ k+1 ;
in particular, if δ is small enough,

u k+m (T 2 -δ, x) = • • • = u k+1 (T 2 -δ, x) for x ∈ [0, 1]. ( 86 
)
The null-controllability at T 2 -δ now follows from (84), (85), and (86).

6 On the case m = 2 and B k1 = 0 -Proof of Theorem 3

We only establish the null-controllability result. The proof of the exact controllability can be derived similarly as in the spirit mentioned in Remark 10 and is omitted. Without loss of generality, one might assume that γ = 1 and T -T opt is small. As mentioned in Remark 5, the choice of K on Γ 3 in (30) can be "arbitrary". In this section, we modify this choice to reach some analytic property of K. The new K will be defined in T which is the triangle formed by three points (0, 0), (1, 0), and (L, L), where L is defined in [START_REF] Li | Local exact boundary controllability for a class of quasilinear hyperbolic systems[END_REF], this triangle contains T . Since B k1 = 0, by (25), one can replace the condition K kk = 0 in (27) by the condition S -+ k1 = 0 while the rest of (27) remains unchanged. The idea of the proof is to show that one can prepare u(T -T opt , •) using the control in the time interval [0, T -T opt ] in such a way that (66) is solvable. In what follows, we present a direct proof for Theorem 3.

We first consider the case k = m (=2). The matrix S then has the form

S =        0 0 * * 0 0 0 * 0 0 0 * 0 0 0 0        . ( 87 
)
We choose a control so that u 3 (t, 0) = u 4 (t, 0) = 0 for t ≥ T -τ 1 , u 4 (t, 0) = 0 for τ 4 ≤ t ≤ T -τ 2 , and u 3 (t, 0) = 0 for τ 3 ≤ t ≤ T opt -τ 1 (the last two choices are just a preparation step), and as in a 2 ), u 4 (t, 0) for t ∈ (T -τ 2 , T -τ 1 ) is required to ensure that 

u 2 (T, x) = 0 for x ∈ [x 12 , 1] (88) 
h(t) + u 4 (t, 0) + αu 3 (t, 0)χ [Topt-τ 1 ,T -τ 1 ] = t T -τ 2 g(t -s)u 4 (s, 0) ds + T -τ 1 t f (s -t)u 4 (s, 0) ds, (89 
) where g and f are two functions depending only on K, B, and Σ, α is a non-zero constant (since B 21 = 0), and h(t) is a function now depends only on B, K, Σ, and the initial condition. Moreover, f and g are analytic by Lemma 5 below. Let

K 1 : L 2 (T -τ 2 , T -τ 1 ) → L 2 (T -τ 2 , T -τ 1 )
be defined by the RHS of (89). Then the adjoint operator K *

1 : L 2 (T -τ 2 , T -τ 1 ) → L 2 (T - τ 2 , T -τ 1 ) is given by K * 1 (v) = T -τ 1 t g(s -t)v(s) ds + t T -τ 2 f (t -s)v(s) ds.
Let V be an eigenfunction of K * 1 with respect to the eigenvalue -1. We have, by Lemma 4 below,

V ≡ 0 in a neighborhood of T -τ 1 . (90) 
Since the kernel of I + K * 1 is of finite dimension, one can prepare the state at the time T -T opt (i.e. u 3 (t, 1) for t ∈ (T opt -τ 1 -τ 3 , T -τ 1 -τ 3 )) in such a way that the RHS of (89) is orthogonal to the kernel of I +K * 1 . It follows from the Fredholm theory that (89) is solvable and the solution is bounded.

We next consider the case k > m = 2. The proof in this case follows from the previous one as in Section 4.2.2. We finally consider the case k = 1 and m = 2. The matrix S then has the form

S =     0 0 * 0 0 * 0 0 0     . (91) 
We choose a control such that u 3 (t, 0) = 0 for τ 3 ≤ t ≤ T -τ 1 , u 2 (t, 0) = 0 for τ 2 ≤ t ≤ T opt (a preparation step), u 2 (t, 0) = u 3 (t, 0) = 0 for t ≥ T , and u 3 (t, 0) for t ∈

(T -τ 1 , T ) is required to ensure that u 1 (T, x) = 0 for x ∈ [0, 1]. ( 92 
)
One can verify that the null-controllability is attained at T for such a control if it exists. As in the proof of Proposition 3, it suffices to show that (92) is solvable. As before, equation ( 92) is equivalent to, for t ∈ (T -τ 1 , T ),

h(t) + u 3 (t, 0) + αu 2 (t, 0)χ [Topt,T ] = t T -τ 1 g(t -s)u 3 (s, 0) ds + T t f (s -t)u 3 (s, 0) ds,
where g and f are two functions depending only on K, B, and Σ, α is a non-zero constant (since B 21 = 0), and h(t) is a function now depends only on B, K, Σ, and the initial condition. Moreover, f and g are analytic by Lemma 5 below. The proof now follows as in the case k = m = 2 and the details are omitted.

The following result is used in the proof of Theorem 3.

Lemma 4. Let T > 0, f, g ∈ C 1 ([0, T ]) and let V be a continuous function defined in [0, T ] such that

V (t) = t 0 f (t -s)V (s) + T t g(s -t)V (s) ds for t ∈ [0, T ].
Assume that g is analytic on [0, T ] and V = 0 in a neighbourhood of 0. Then V ≡ 0 on [0, T ].

Proof. It suffices to prove that V is analytic on [0, T ]. We have

V (t) = f (0)V (t) + t 0 f (t -s)V (s) ds -g(0)V (t) - T t g (s -t)V (s) ds. (93) 
Since V = 0 in a neighborhood of 0, an integration by parts gives

V (t) = t 0 f (t -s)V (s) + T t g(t -s)V (s) ds -g(T -t)V (T ). ( 94 
)
By recurrence, we obtain, for n ≥ 0,

V (n+1) (t) =f (0)V (n) (t) + t 0 f (t -s)V (n) (s) ds -g(0)V (n) (t) - T t g (s -t)V (n) (s) ds + n-1 k=0 (-1) n-k+1 g (n-k) (T -t)V (k) (T ) (95) 
and 

V (n+1) (t) = t 0 f (t -s)V (n+1) (s) + T t g(t -s)V (n+1) (s) ds + n k=0 (-1) n-k+1 g (n-k) (T -t)V (k) (T ). ( 96 
In this proof, c denotes a constant greater than 1 and independent of k and n. It is clear that

n k=0 c k k!c n-k (n -k)! ≤ c n (n + 1)!, (99) 
Combining (97), (98), and (99) and using a recurrence argument yield

a n ≤ c n n!.
The analyticity of V now follows from the definition of a n . The proof is complete.

The second lemma yields the analyticity of g and f in the definition of K * 1 in the proof of Theorem 3. Denote T the triangle formed by three lines y = x, y = 0, and y = γ i 0 x -γ i 0 where i 0 = min I 4 . Let G : [0, γ i 0 /(γ i 0 -1)] → R n×n be analytic, and denote Γ = diag(γ 1 , • • • , γ l ) and Λ := {(x, y) ∈ ∂ T ; x = y} = {(x, x); x ∈ [0, γ i 0 /(γ i 0 -1)]}.

Let f i (i ∈ I 1 ∪ I 4 ) be analytic functions defined in a neighborhood of Λ and let c i,j ∈ R for 1 ≤ i, j ≤ l. Assume that v is the unique broad solution of the system        ∂ x v(x, y) + Γ∂ y v(x, y) -G(y)v(x, y) = 0 in T , v i (x, x) = f i (x, x) for (x, x) ∈ Λ, i ∈ I 1 ∪ I 4 , v i (x, 0) = j∈I 1 ∪I 4 c ij v j (x, 0) for x ∈ (0, 1), i ∈ I 2 ∪ I 3 .

Then v is analytic in ∆i+1 \ ∆ i for i ∈ Î2 where Î2 = i ∈ I 2 or i + 1 ∈ I 2 and ∆ j is the open triangle formed by three lines y = γ j x, y = 0, and y = γ i 0 x -γ i 0 .

Proof. We first prove by recurrence that, for k ≥ 1,

v C k ( ∆i+1 \∆ i ) ≤ C k f C k (Γ) for i ∈ Î2 . (100) 
In this proof, C denotes a positive constant independent of k and f . Indeed, using the standard fixed point iteration, one can show that v ∈ C 1 ( ∆i+1 \ ∆ i ) (i ∈ Î2 ); moreover,

v C 1 ( ∆i+1 \∆ i ) ≤ C f C 1 (Γ) for i ∈ Î2 . (101) 
Hence (100) holds for k = 1. Assume that (100) is valid for some k ≥ 1. We prove that it holds for k + 1. Set V = ∂ x v in T .

We have        ∂ x V (x, y) + Γ∂ y V (x, y) -G(y)V (x, y) = 0 in T , V i (x, x) = g i (x, x) for (x, y) ∈ Λ, i ∈ I 1 ∪ I 4 , V i = j∈I 1 ∪I 4 c ij V j for x ∈ (0, 1), for i ∈ I 2 ∪ I 3 ,

where g i (x, x) = a i G(x)v i (x, x) + b i d dx [f i (x, x)]
for some positive constant a i , b i ∈ R depending only on Γ. This is obtained by considering the first equation and the derivative with respect to x of the second equation in the system of v. By the recurrence, one has

u C k ( ∆i+1 \∆ i ) ≤ C k g C k (Γ) for i ∈ Î2 .
Using the equation of v, one derives that

u C k+1 ( ∆i+1 \∆ i ) ≤ C k+1 f C k+1 (Γ) for i ∈ Î2 .
Assertion (100) is established.

The conclusion now follows from the analyticity of f . This contradicts (112). The second part of Proposition 1 is proved in this case. We next consider the case T opt > max 1≤i≤k {τ i + τ i+m }. Then T opt = τ k+1 and m > k. The conclusion follows by considering u i (0, x) = 1 for 1 ≤ i = k + 1 ≤ k + m and u k+1 (0, x) = 1.

In what follows, we present two concrete examples on the feedback form used in the context of Proposition 1. We first consider the case where k = 1, m = 2, Σ + = diag(1, 2) and B = (2, 1).

One can check that (102) has the form u 3 (t, 0) = -2u 2 (t, 0).

The feedback is then given by u 3 (t, 1) = -2u 2 (t, 1/2) and u 2 (t, 1) = 0 for t ≥ 0.

We next consider the case where k = 3, m = 3, Σ + = diag(1, 2, 4) and the matrix formed from the last two rows of B is 2 0 1 -1 -1 1

.

One can check that (102) has the form (by imposing the condition u 3 (t, 0) = 0) u 6 (t, 0) = u 5 (t, 0) + u 4 (t, 0), (103) has the form (by imposing the condition u 3 (t, 0) = u 2 (t, 0) = 0) u 5 (t, 0) = -3u 4 (t, 0).

The feedback is then given by u 6 (t, 1) = u 5 (t, 1/2) + u 4 (t, 1/4), u 5 (t, 1) = -3u 4 (t, 1/2), and u 4 (t, 1) = 0 for t ≥ 0.

One can verify directly that the null-controllability is reached for these feedbacks.

(

  which are derived from (26), and (30)) and for (i, j) ∈ J , Kij (x, 0) = (r,s) ∈J c ijrs (B) Krs (x, 0) + (r,s) ∈J ∂c ijrs (B)∂B pq K rs (x, 0) for x ∈ (0, 1),

  by (26), and (30), and Kij (x, 0) = (r,s) ∈J c ijrs (B) Krs (x, 0) for x ∈ (0, 1), (i, j) ∈ J (50) by (29). Here K(x, y) denotes the solution corresponding to fixed γ and B. Note that γ does not appear in the boundary conditions of K. The details are omitted.

Figure 2 :

 2 Figure 2: The definition of t l is given in a) and the definition of x i,l is given in b) where dashed lines have the same slope for constant Σ.
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  the 2m × 2m matrix formed from the last 2m columns and the last 2m rows of S(x), and B the m × m matrix formed from the last m rows of B.

  ) By rescaling, without loss of generality, one might assume that T = 1 andV C 1 ([0,T ]) = 1.Seta n = V (n) L ∞ ([0,T ]) and b n = g (n) L ∞ ([0,T ]) + g (n+1) L ∞ ([0,T ]) + 2 f C 1 ([0,T ]) . Using (95), we obtain a n+1 ≤ n k=0 a n-k b k .(97)We have, by the analyticity of g, b k ≤ c k k!.

Lemma 5 .

 5 Let l ≥ 4 and γ 1 ≤ γ 2 ≤ • • • ≤ γ l be such that I 1 , I 2 , I 3 , I 4 = ∅, whereI 1 = {i : γ i ≤ 0}, I 2 = {i : 0 < γ i < 1}, I 3 = {i : γ i = 1}, I 4 = {i : γ i > 1}.

  αu 4 (s, 0) ds = 0 for t ∈ (t 2 , t 1 ). αu 4 (s, 0) ds = -af (t) for t ∈ (t 2 , t 1 ).

		1 , t 0 )
	and, hence from condition a 2 ) and (75),
		t 1
	au 3 (t, 0) + bu 4 (t, 0) + λ 4 Since, by (20), (24), and (75), t
		t
	u 3 (t, 0) =	λ 4 βu 4 (s, 0) ds + f (t) for t ∈ (t 2 , t 1 ),
	t 2
	for some f depending on the initial data. By taking β = α/a (a = 0), we have
	t 1	
	bu 4 (t, 0) +	λ 4
	t 2	

  As in the proof of Proposition 3, it suffices to show that (88) is solvable for some (bounded) choice of u 3 (t, 1) for t ∈ (T opt -τ 1 -τ 3 , T -τ 1 -τ 3 ). Let χ O denote a characteristic function of a subset O of R. By the form of S in (87) and the fact that B ∈ B, equation (88) is equivalent to, for t ∈ (T -τ 2 , T -τ 1 ),

(see

(55) 

for the definition of x 12 ). One can verify that the null-controllability is attained at T for such a control if it exists.

In the case m = 2, if B ∈ B, B k1 = 0, Σ is constant, and(T opt = τ k + τ k+2 = τ k-1 + τ k+1 if k ≥ 2 and T opt = τ 1 + τ 3 = τ 2 if k = 1), then there exists a non-zero constant matrix C such that the system is not null-controllable at the time T opt .

This means that C is analytic in a neighborhood of [0, L].

We assume here that u, w, and K are smooth enough so that the below computations make sense.

We have, by the definition of Q in[START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF],Σ(0)Q = 0 k Σ -(0)B 0 m,k Σ + (0).

On the case m ≥ k

The idea of the proof is to derive sufficient conditions to be able to steer the control system from the initial data to 0 at the time T opt . These conditions will be written under the form U + KU = F (see (66)) where K is an analytic, compact operator with respect to λ and F depending on the initial data. We then apply the Fredholm theory to obtain the conclusion. We now proceed the proof.

We begin with deriving conditions for controls to reach the null-controllability at the time T opt . First, if m > k, choose the control u l (t, 1) = 0 for 0 ≤ t ≤ T opt -τ l and k + 1 ≤ l ≤ m.

(56)

Note that in the case T opt = τ l , one does not impose any condition for u l in (56). Second, choose the control, for 1

Note that in the case T opt = τ m+i + τ i , one does not impose any condition for u m+i in (57). Requiring ( 56) and ( 57) is just a preparation step, other choices are possible. The main part in the construction of the controls is to choose the control u m+i (t, 1) for t ∈ (T opt -τ iτ m+i , T opt -τ i ) and for 1 ≤ i ≤ k such that the following k conditions hold:

and denote

via the conditions in a 1 ), a 2 ), . . . , a k ). Let us now find necessary and sufficient conditions on

T ∈ X so that a 1 ), . . . , a k ) hold. These are analysed in b 1 ), . . . , b k ) below respectively.

Proof. We only consider here the case m ≥ k, the case m < k can be handled as in Section 4.2.2. The controls are chosen so that u k+1 (t, 0) = 0 for t ≥ τ k+1 , . . . , u k+m-1 (t, 0) = 0 for t ≥ τ k+m-1 , (79)

and u k+m (t, 0) is chosen in [τ k+1 -δ, τ k+1 ] in such a way that

where

for some bounded function f defined in [τ k+1 -δ, τ k+1 ] which now depends only on the initial data. Here K : [τ k+1 -δ, τ k+1 ] 2 → R is a bounded function depending only on C, B, Σ, and γ. Since δ is small, one can check that the mapping T :

which is given by

is a contraction. By the contraction mapping theorem, equation ( 82) is uniquely solvable and the solution is bounded since f is bounded. We now show how to construct such a control. Since u m+k (t, 0) for 0 ≤ t ≤ τ m+k is uniquely determined by the initial data (by (28)), one derives from (28) that u m+k-1 (t, 0) for 0 ≤ t ≤ τ m+k-1 , . . . , u k+1 for 0 ≤ t ≤ τ k+1 are uniquely determined from the initial condition and the requirements on the constructive controls at (t, 0). It follows from (28) again that • u k+m (t, 1) for t ≥ 0 is uniquely determined from u m+k (t, 0) for t ≥ τ m+k ,

• u m+k-1 (t, 1) for t ≥ 0 is uniquely determined from (u m+k-1 (t, 0) for t ≥ τ m+k-1 and u m+k (t, 0) for t ≥ 0), . . . ,

• u k+1 (t, 1) for t ≥ 0 is uniquely determined from (u k+1 (t, 0) for t ≥ τ k+1 , u k+2 (t, 0) for t ≥ 0, . . . , u m+k (t, 0) for t ≥ 0).

The existence and uniqueness of controls satisfying requirements are established. It remains to check that the constructive controls give the null-controllability at the time T 2 -δ if δ is small enough. Indeed, by (79) and (80), we have

Since S --= 0 k , it follows from (5) that

7 On the case C ≡ 0 -Proof of Proposition 1

Note that S ≡ 0 since C ≡ 0. We first construct a time independent feedback to reach the null-controllability at the time T opt . We begin with considering the case m > k. Condition a k ) can be written under the form

for some constant matrix M k of size 1 × (m -1) by considering [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = 1. Condition a k-1 ) can be written under the form (102) and

for some constant matrix M k-1 of size 1 × (m -2) by applying [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = 2 and using the Gaussian elimination method, etc. Finally, condition a 1 ) can be written under the form (102), (103), . . . , and

for some constant matrix M 2 of size 1 × (m -k) by applying [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = k and using the Gaussian elimination method if m > k; this condition is replaced by the one u m+1 = 0 in the case m = k. The matrices M 1 , • • • , M k can be obtained via the Gaussian elimination method starting with M 1 using condition [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = 1, and then with M 2 using condition ( 10) with i = 2, • • • , and finally with M k using condition [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] with i = k. We now choose the following feedback law u m+k (t, 1) = M k u k+1 t, x k+1 (-τ m+k , 0, 0) , . . . , u k+m-1 t, x k+m-1 (-τ m+k , 0, 0) , (105)

. . . u m+1 (t, 1) = M 1 u k+1 t, x k+1 (-τ m+1 , 0, 0) , . . . , u m t, x m+1 (-τ m+1 , 0, 0)

(this condition is replaced by the one u m+1 (t, 1) = 0 in the case k = m), and

Let us point out that, by Lemma 1, the closed-loop system of u given by ∂ t u = Σ∂ x u and the boundary conditions (105-108) is well-posed in the sense of Definition 1. With this law of feedback, conditions a k ), . . . , a 1 ) hold. It follows that

We also derive from (108) using the characteristic method and the fact C = 0 that

and from (105-107) (see also (102-104)) that

We then obtain

The null-controllability attained at the optimal time T opt now follows from (109) and (110). We next deal with the case m < k. The construction of a time independent feedback yielding a null-state at the time t = T opt in this case is based on the construction given in the case m = k obtained previously. Set û(t, x) = u k-m+1 , . . . u k+m T (t, x) in (0, T ) × (0, 1),

and B is the matrix formed from the last m rows of B.

Then û is a bounded broad solution of the system

with the boundary condition at 0 given by (û

Consider the time dependent feedback for û constructed previously. Then, as in Section 4.2.2, the null-controllability is attained at T opt for this feedback. The details are omitted. We next establish the second part of Proposition 1 by contradiction. We only deal with the case m ≥ k. We first consider the case T opt = max 1≤i≤k {τ i +τ i+m }. Fix T ∈ max 1≤i≤k τ i+m , T opt and let 1 ≤ i 0 ≤ k be such that τ i 0 + τ i 0 +m = T opt . Consider an initial datum u such that u i (t = 0, x) = 0 for x ∈ (0, 1) and for 1 ≤ i = i 0 + m ≤ k + m and u i 0 +m (t = 0, x) = 1 for x ∈ (0, 1). Assume that the null-controllability is attained at T . By the convention of λ j , one has, for some ε > 0 depending on Σ, u i 0 (t, 0) = u i 0 +1 (t, 0) = • • • = u k (t, 0) = 0 for t ∈ (T -τ i 0 , T -τ i 0 + ε).

As in (102), (103), and (104), we obtain, for t ∈ (T -τ i 0 , T -τ i 0 + ε), u m+k (t, 0) = M k (u k+1 , • • • , u m+k-1 ) T (t, 0), 

On the other hand, by using the characteristic method and the fact T < τ i 0 + τ i 0 +m , one has, for ε small enough, u i 0 +m (t, 0) = 1 for t ∈ (T -τ i 0 , T -τ i 0 + ε).