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1 Introduction

During the past several years, sharp inequalities involving trigonometric and
hyperbolic functions have received a lot of attention. Thanks to their use-
fulness in all areas of mathematics. Old and new such inequalities, as well as
refinements of the so-called Jordan’s, Cusa-Huygens and Wilker inequalities,
can be found in [2–11], and the references therein.

In this note, we focus our attention on the following famous results
proved by [9, Lemma 1 page 67] and [11, Lemma 1 page 148].

Lemma 1. [9, Lemma 1], [11, Lemma 1] For x ∈ (0, π/2), we have

sin(x)sinh(x) 6 x2, cos(x)cosh(x) 6 1.

The proof of Lemma 1 is based on the studies of appropriate functions.
The first inequality is also known in the form sin(x)/x 6 x/sinh(x) or
sin(x) 6 x2/sinh(x). In this note, we develop refinements of the two in-
equalities in Lemma 1 by using infinite products and applying the method-
ology developed in [1]. Sharp lower bounds of various nature are also estab-
lished, with graphical supports.
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2 Main results

In the following result, we propose a double inequality for sin(x)sinh(x),
implying sin(x)sinh(x) 6 x2 for the upper bound.

Proposition 1. For x ∈ (0, α) and α ∈ (0, π), we have

x2exp(−βx4) 6 sin(x)sinh(x) 6 x2exp

(
−x

4

90

)
,

with β = −ln(sin(α)sinh(α)/α2)/α4.

Proof of Proposition 1. We have the following infinite products:

sin(x)

x
=

+∞∏
k=1

(
1− x2

π2k2

)
,

sinh(x)

x
=

+∞∏
k=1

(
1 +

x2

π2k2

)
.

Therefore, using the inequality 1 + y 6 ey for y ∈ R and ζ(4) =
+∞∑
k=1

(1/k4) =

π4/90, we have

sin(x)sinh(x) = x2
+∞∏
k=1

(
1− x2

π2k2

) +∞∏
k=1

(
1 +

x2

π2k2

)

= x2
+∞∏
k=1

(
1− x4

π4k4

)
6 x2

+∞∏
k=1

exp

(
− x4

π4k4

)
= x2exp

(
−x

4

π4
ζ(4)

)
= x2exp

(
−x

4

90

)
.

For the lower bound, using the Bernoulli inequality, i.e. for u, v ∈ (0, 1), we
have 1− uv > (1− v)u, we obtain, for x ∈ (0, α),

sin(x)sinh(x) = x2
+∞∏
k=1

(
1− x4

α4

α4

π4k4

)
> x2

+∞∏
k=1

(
1− α4

π4k4

)x4/α4

= x2

[
+∞∏
k=1

(
1− α4

π4k4

)]x4/α4

= x2
[
sin(α)sinh(α)

α2

]x4/α4

= x2exp(−βx4).

This ends the proof of Proposition 1.

The proposition below proposes a tight polynomial lower bound for
sin(x)sinh(x).
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Proposition 2. For x ∈ (0, π), we have

x2
(

1− x4

π4

)π4/90

6 sin(x)sinh(x).

Proof of Proposition 2. Using the Bernoulli inequality, i.e. for u, v ∈ (0, 1),
we have 1− uv > (1− v)u, and ζ(4) = π4/90, we have

sin(x)sinh(x) = x2
+∞∏
k=1

(
1− x4

π4k4

)
> x2

+∞∏
k=1

(
1− x4

π4

)1/k4

= x2
(

1− x4

π4

)ζ(4)
= x2

(
1− x4

π4

)π4/90

.

This ends the proof of Proposition 2.

Figure 1 illustrates the sharpness of the bounds in Propositions 1 and
2 for x ∈ (0, 3). We see that these inequalities are sharp, particularly for
x ∈ (0, 1.5). At least for x ∈ (1.5, 1), the lower bound in Proposition 2 is
clearly more sharp to the one in Proposition 1.
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sin(x)sinh(x)
x2exp(− x4 90)
x2exp(− βx4)
x2(1 − x4 π4)(π4 90)

Figure 1: Graphs of the functions in Propositions 1 and 2 for x ∈ (0, 3).

Similarly, the following result determines a double inequality for cos(x)cosh(x),
implying cos(x)cosh(x) 6 1 for the upper bound.
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Proposition 3. For x ∈ (0, α) and α ∈ (0, π/2), we have

exp(−γx4) 6 cos(x)cosh(x) 6 exp

(
−x

4

6

)
,

with γ = −ln(cos(α)cosh(α))/α4.

Proof of Proposition 3. We have the following infinite products:

cos(x) =

+∞∏
k=1

(
1− 4x2

π2(2k − 1)2

)
, cosh(x) =

+∞∏
k=1

(
1 +

4x2

π2(2k − 1)2

)
.

Therefore, using the inequality 1 + y 6 ey for y ∈ R and
+∞∑
k=1

(1/(2k− 1)4) =

(15/16)ζ(4) = (15/16)(π4/90) = (1/16)(π4/6), we have

cos(x)cosh(x) =

+∞∏
k=1

(
1− 4x2

π2(2k − 1)2

) +∞∏
k=1

(
1 +

4x2

π2(2k − 1)2

)

=
+∞∏
k=1

(
1− 16x4

π4(2k − 1)4

)
6

+∞∏
k=1

exp

(
− 16x4

π4(2k − 1)4

)

= exp

(
−x4 16

π4

+∞∑
k=1

1

(2k − 1)4

)
= exp

(
−x

4

6

)
.

Using the Bernoulli inequality, i.e. for u, v ∈ (0, 1), we have 1−uv > (1−v)u,
we obtain, for x ∈ (0, α),

cos(x)cosh(x) =

+∞∏
k=1

(
1− x4

α4

16α4

π4(2k − 1)4

)
>

+∞∏
k=1

(
1− 16α4

π4(2k − 1)4

)x4/α4

=

[
+∞∏
k=1

(
1− 16α4

π4(2k − 1)4

)]x4/α4

= [cos(α)cosh(α)]x
4/α4

= exp(−γx4).

The proof of Proposition 3 is completed.

The proposition below presents a sharp polynomial lower bound for
cos(x)cosh(x).

Proposition 4. For x ∈ (0, π/2), we have(
1− 16x4

π4

)π4/96

6 cos(x)cosh(x).
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Proof of Proposition 4. Using the Bernoulli inequality, i.e. for u, v ∈ (0, 1),

we have 1− uv > (1− v)u, and
+∞∑
k=1

(1/(2k − 1)4) = π4/96, we have

cos(x)cosh(x) =

+∞∏
k=1

(
1− 16x4

π4(2k − 1)4

)
>

+∞∏
k=1

(
1− 16x4

π4

)1/(2k−1)4

=

(
1− 16x4

π4

)+∞∑
k=1

(1/(2k−1)4)
=

(
1− 16x4

π4

)π4/96

.

This ends the proof of Proposition 4.

Figure 2 illustrates the sharpness of the bounds in Propositions 3 and 4
for x ∈ (0, 1.5). At least for x ∈ (0.5, 1.5), we see that the lower bound in
Proposition 4 is clearly more sharp to the one in Proposition 3.
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Figure 2: Graphs of the functions in Propositions 3 and 4 for x ∈ (0, 1.5).

References

[1] Chesneau, C. and Bagul, Y. J. (2018). A note on some new bounds for
trigonometric functions using infinite products, hal-01934571.

[2] Guo, B.-N. and Qi, F. (2010). Sharpening and generalizations of Carl-
son’s inequality for the arc cosine function, Hacet. J. Math. Statist., 39,
3, 403-409

5



[3] Neuman, E. and Sndor, J. (2010). On some inequalities involving
trigonometric and hyperbolic functions with emphasis on the Cusa-
Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl., 13,
4, 715-723.

[4] Neuman, E. and Sándor, J. (2011). Optimal inequalities for hyperbolic
and trigonometirc functions. Bull. Math. Anal. Appl., 3, 3, 177-181.

[5] Qi, F., Cui, L.-H. and Xu, S.-L. (1999). Some inequalities constructed
by Tchebysheff’s integral inequality. Math. Inequal. Appl., 2, 4, 517-
528.

[6] Qi, F. and Guo, B.-N. (2012). Sharpening and generalizations of
Shafer’s inequality for the arc sine function. Integral Transforms Spec.
Funct., 23, 2, 129-134.

[7] Qi, F., Niu, D.-W. and Guo, B.-N. (2009). Refinements, generalizations,
and applications of Jordan’s inequality and related problems. J. Inequal.
Appl., Article ID 271923, 52 pages.

[8] Sándor, J. (2012). Two sharp inequalities for trigonometric and hyper-
bolic functions. Math. Inequal. Appl., 15, 2, 409-413.

[9] Sándor, J. (2011). Trigonometric and hyperbolic inequalities,
http://arxiv.org/pdf/1105.0859.pdf.

[10] Zhu, L. (2007). On Wilker-type inequalities. Math. Inequal. Appl., 10,
4, 727-731.

[11] Sándor J. and Gál R. O. (2012). On Cusa-Huygens type trigonometric
and hyperbolic inequalities. Acta Univ. Sapientiae, Mathematica, 4, 2,
145-153.

6


