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ABSTRACT
Delivery of goods into urban areas constitutes an important issue for logistics service providers. One recent evolution
in urban logistics involves the usage of drones in the delivery process. Delivery by drones offers new possibilities,
but also induces new challenging routing problems. In this paper, we address a heuristic solution of the so-called
Parallel Drone Scheduling Traveling Salesman Problem, recently introduced by Murray and Chu [19]. In this
problem, deliveries are split between a vehicle and one or several drones. The vehicle performs a classical delivery
tour from the depot, while the drones are constrained to perform back and forth trips. The objective is to minimize
the completion time. We propose to solve the problem with an original iterative two-step heuristic, composed of: a
coding step that transforms a solution into a customer sequence, and a decoding step that decomposes the customer
sequence into a tour for the vehicle and series of trips for the drone(s). Decoding is expressed as a bicriteria shortest
path problem and is carried out by dynamic programming. Experiments conducted on benchmark instances from
the literature confirm the efficiency of the approach and give some insights on this drone delivery system.
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1 INTRODUCTION
Last mile logistics has become a popular area of interest for retailers. Companies are always searching for fast and
cost-efficient ways to deliver goods to their customers. It is from this perspective that in 2013, the chief executive
officer of the largest online retailer Amazon revealed a revolutionary project of the company called Prime Air [1], a
drone designed to deliver packages in just 30 minutes (Fig. 1). In August 2014, Google followed by revealing its
drone delivery project called wing, with experiments run in Australia. In September 2014, DHL Express launched its
parcelcopter, a helicopter-style drone which could deliver medications and urgently needed goods to the remote
North Sea island of Juist [2]. In 2015, the online retailer Alibaba tested the usage of drones to deliver online orders
of tea to customers in China [16]. In April 2016, Autralia post started testing the usage of remotely piloted drones
internally for parcel delivery, with the support of the Civil Aviation Safety Authority [3]. In July 2016, convenience
store chain 7-eleven made their first commercial delivery with drone, partnered with the drone start-up Flirtey[17].
United Parcel Service (UPS) company is testing drones to deliver medicine to an island near Boston [20]. Still in
july 2016, the first humanitarian drone called Zipline arrived in Rwanda. Zipline is a drone of about 10 kilos that is
capable of carrying 1.3 kilos of medicines or blood [4]. In August 2016, Domino’s Pizza announced their intention
to extend to France their experiments on pizza delivery by drone, as initiated in New Zealand [5]. Many other
companies not mentioned above have launched similar projects.

Previously exclusively used in military applications, drones are becoming a part of the last mile delivery concept
which can significantly accelerate delivery times and reduce human intervention. Indeed, drones are lightweight,
they consume less energy than standard vehicles and they are not subject to congestion problems since they do
not follow the road network. On the other hand, drones are limited in terms of endurance, capacity and payload.
Despite several regulatory and safety standards barriers, the idea of using Unmanned Aerial Vehicle (UAV) for
parcel delivery is gaining ground. Companies that want to use drones in their delivery process are confronted by
air control administrations like the FAA 1 in the United States or the DGAC2 in France. The scientific community is
getting more and more interested in investigating the design of drone delivery systems.

In this paper, we are interested in the development of efficient solution methods for a specific drone delivery
system. The remainder of the paper is organized as follows. In Section 2, we present the related literature. In Section
3, we formally describe the problem addressed in this paper and provide an integer linear programming formulation.
We propose a heuristic to solve the problem in Section 4. In Section 5, we discuss the results obtained from our
computational experiments. Finally, we conclude with some directions for future researches in Section 6.

Figure 1 Amazon Prime Air (source: amazon.com)

1Federal Aviation Administration
2Direction Générale de l’Aviation Civile
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2 RELATEDWORK
The problem of parcel delivery with drone has received increasing attention these last years. Murray and Chu [19]
introduced the Flying Sidekick Traveling Salesman Problem (FSTSP) and the Parallel Drone Scheduling Traveling
Salesman Problem (PDSTSP). In both problems, the optimization criterion is the minimization of the completion
time, i.e., the time elapsed between the beginning and the end of the delivery process.

In the FSTSP, deliveries are performed by a single vehicle and a single drone working in tandem. The vehicle
carries the drone and when the vehicle is at a customer location, it can decide to launch the drone to visit another
customer location. After this drone delivery, the vehicle will then have to retrieve the drone at another customer
location. Formally, a drone trip is represented as a triplet < i, j,k > where i is the launching point, j is the service
point and k is the rendez-vous point (i , j, j , k and i , k). Figure 2 shows an illustration of the synchronization
mechanism in the FSTSP. The authors proposed a Mixed-Integer Linear Programming (MILP) formulation and a
heuristic that first constructs a TSP tour visiting all the customer locations and next, repeatedly run a relocation
procedure to assign some customer requests to the drone.

Figure 2 FSTSP: Illustration of the synchronization mechanism (source [19])

The second problem introduced by Murray and Chu [19], the PDSTSP, simplifies the FSTSP setting by relaxing
the synchronization issue between the vehicle and the drone. Conversely, it considers a fleet of drones instead of a
single drone. The vehicle visits a subset of customers with a TSP tour and the drones serve the remaining customers
directly from the depot with back and forth trips. Again, the authors proposed a MILP formulation and a heuristic.
The principle of the heuristic is to partition the set of customers into two subsets (a vehicle set and a drone set). Then,
a TSP tour is computed for the customers assigned to the vehicle and a Parallel Machine Scheduling (PMS) problem
is solved to assign customer requests (jobs) to drones (machines). At the end, an improvement step is performed
to reassign customers either to the drone set or to the vehicle set in order to better balance vehicle and drones
activities.
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In his Master Thesis, Ponza [21] addresses the FSTSP and proposes a simulated annealing heuristic.

Wang et al. [23] studied an extension of the FSTSP called the Vehicle Routing Problem with Drones (VRPD) in
which they considered a homogeneous fleet of trucks, each one of them carrying several identical drones. A drone
launched from a truck must be picked up by the same truck at the same or at a different location. The objective is
still to minimize the completion time. The authors proposed worst-case analyses and obtained theoretical bounds
on the benefits achieved using drones.

In [6], Agatz et al. introduced another variant of the FSTSP that they called the Traveling Salesman Problem with
Drone (TSP-D). Contrary to the FSTSP, the launching point of a drone and the rendezvous point with the vehicle
are not necessarily different. Furthermore, the objective is to find the shortest tour to serve all customer locations
either by the vehicle or the drone. The authors proposed an Integer Programming (IP) formulation and a route first -
cluster second heuristic.

Ha et al. [12] adopted the name TSP-D for the FSTSP. They proposed a cluster first - route second and a route first
- cluster second heuristic. In [13], the same authors investigated a different objective function: the minimization
of the total transportation cost for both the vehicle and the drone. They coined this problem as min-cost TSP-D.
They proposed a MILP model and two heuristics: one based on a Greedy Randomized Adaptive Search Procedure
(GRASP) and another one called TSP-LS adapted from the work of Murray and Chu [19].

Dorling et al. [8] introduced a very different problem that they called Drone Delivery Problem (DDP). They
considered two variants of the DDP: the Minimum Cost Drone Delivery Problem (MC-DDP) that aims at minimizing
the total delivery cost and the Minimum Time Drone Delivery Problem (MT-DDP) that aims at minimizing the total
delivery time. In these problems, deliveries are only performed by drones, and the energy consumption is explicitly
considered for the drones, taking into account their payload. The authors established the relationship with the
Multi-Trip Vehicle Routing Problem (MTVRP). They proposed a MILP formulation and a Simulated Annealing (SA)
heuristic.

Ulmer and Thomas [22] studied a dynamic variant of the PDSTSP. They called their problem Same-Day Delivery
Routing Problem with Heterogeneous Fleets (SDDPHF). The SDDPHF considers two fleets of vehicles and drones
that deliver goods from the depot to customers who dynamically request services. When a new customer request
arrives, a dispatcher has to decide whether or not to accept the customer for the same-day delivery and determine
the according assignment and routing decisions. The SDDPHF takes into account a time window for each request,
the loading time for both vehicles and drones, the time to drop off a package from a vehicle or a drone as well as
the recharging or battery swap time for drones. The objective is to maximize the expected number of customers
served the same day. To solve the problem, the authors proposed an adaptive dynamic programming approach
called parametric policy function approximation (PFA).

Table 1 gives a summary of the main papers on drone delivery problems found in the literature.

In connection with the literature on drone delivery, we can also mention the Carrier-Vehicle TSP, addressed by
Garonne et al. [10] or Gambella et al. [9]. In this problem, two vehicles with different capabilities cooperate. The
carrier is slow but has a virtually infinite operating range. Its role is to deploy and recover a second vehicle, typically
an aircraft, which is faster but has a reduced operating range.

3 THE PARALLEL DRONE SCHEDULING TRAVELING SALESMAN
PROBLEM

In this paper, we focus on the PDSTSP, presented in [19], that we found more relevant on a short term in view of
actual delivery practices and that has yet drawn less attention in the literature. The PDSTSP is formally defined
below.
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Reference Problem Vehicles Drones Synchro. Solution method

Murray and Chu [19] FSTSP 1 1 Yes MILP, HeuristicsPDSTSP 1 n No
Wang et al. [23] VRPD m n Yes
Agatz et al. [6] TSP-D 1 1 Yes IP, Route first - Cluster second
Ha et al. [12] TSP-D(FSTSP) 1 1 Yes Cluster first - Route second, Route

first - Cluster second
Ha et al. [13] min-cost TSP-D 1 1 Yes MILP, GRASP, TSP-LS
Dorling et al. [8] DDPs 0 n No MILP, SA
Marlin et al. [22] SDDPHF m n No Adaptive dynamic programming

(PFA)
Table 1 Optimization of drone delivery systems

3.1 Problem definition and notation
We consider a complete directed graph G = (N ∪ {0},A) where N = {1, . . . ,n} is a customer set and 0 is the depot.
A vehicle and a fleet of M drones are available to deliver parcels to customers. The vehicle delivers customers
with a single tour starting from the depot, visiting a subset of customers and returning back to the depot. Drones
operate back and forth trips between the depot and the customers, delivering a single customer in each trip. Not
all customers are eligible for drone delivery, because of practical constraints such as the limited payload or the
flying range of drones. The subset of customers that can be served by a drone is denoted Nd . These customers are
consistently called drone-eligible in the rest of the paper. Figure 3 depicts a solution of the PDSTSP on an instance
with 10 customers, among which 5 are drone-eligible.

depot

1

2

3

4

5

6
7

8

9

10

vehicle

drone 1

drone 2
Not drone-eligible

Drone-eligible

Legend:

Figure 3 A set of 10 customers served by 1 vehicle and 2 drones.

A travel time di j is incurred when the vehicle goes through an arc (i, j) ∈ A. A travel time d̂i is incurred when a
drone serves a customer i ∈ Nd . Assuming that both the vehicle and the drones can start from the depot at time 0,
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the objective of the PDSTSP is to minimize the delivery completion time, i.e., the time at which the vehicle and all
drones are back to the depot, with the service of all customers carried out.

3.2 MILP formulation
In this section, we express the PDSTSP with a MILP formulation. We introduce the following binary decision
variables :

• zi = 1 if customer i is visited by the vehicle, 0 if it is visited by the drone (i ∈ N );
• xi j = 1 if arc (i, j) belongs to the vehicle tour, 0 otherwise ((i, j) ∈ A);
• yim = 1 if customer i is assigned to dronem, 0 otherwise (i ∈ Nd , 1 ≤ m ≤ M).

In addition, we introduce a nonnegative variable T that represents the completion time.

The model is:

minimize T (1)

subject to

T ≥
∑
(i, j)∈A

di jxi j (2)

T ≥
∑
i ∈Nd

d̂iyim (1 ≤ m ≤ M) (3)

zi = 1 (i ∈ N \ Nd ) (4)∑
(i, j)∈A

xi j = zi (i ∈ N ) (5)∑
1≤m≤M

yim = 1 − zi (i ∈ Nd ) (6)∑
(0, j)∈A

x0j ≤ 1 (7)∑
(i, j)∈A

xi j =
∑
(k,i)∈A

xki (i ∈ N ) (8)∑
i ∈S

∑
j<S

xi j ≥
∑
i ∈S

zi + 1 − |S | (S ⊆ N , S , ∅) (9)

zi ∈ {0, 1} (i ∈ N ) (10)
xi j ∈ {0, 1} ((i, j) ∈ A) (11)
yim ∈ {0, 1} (i ∈ Nd , 1 ≤ m ≤ M) (12)

T ≥ 0 (13)

The objective (1) is to minimize the completion time T . Constraints (2) and (3) give lower bounds on T expressed
using vehicle assignment and drone assignment variables. Constraints (4) ensure that all the customers that are
not drone-eligible are served by the vehicle. Constraints (5) and (6) guarantee that every customer is served either
by the vehicle or a drone, exactly once. Constraint (7) stipulates that the vehicle leaves the depot at most once.
Constraints (8) ensure flow conservation for the vehicle tour. Subtour elimination constraints are provided by (9).
These constraints ensure that given a non empty subset of customers S ⊆ N , if all the customers in S are visited by
the vehicle, there is at least one outgoing arc from S . Finally, constraints (10) to (13) define the decision variables.
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4 ITERATIVE TWO-STEP HEURISTIC
The PDSTSP can be considered as a bilevel problem in which:

• at the first level, customers are partitioned between the vehicle and the fleet of drones;
• the second level manages the routing optimization, which consists in solving two NP-Hard problems, namely:
a TSP for the vehicle and a Parallel Machine Scheduling (PMS) problem for drones.

Our iterative two-step heuristic alternates between these two levels. Given a solution of the PDSTSP, a coding
step transforms this solution into a customer sequence. Then, a decoding step decomposes this sequence into a tour
for the vehicle and series of trips for the drones. These tours / trips are optimized and the process is repeated. The
general solution framework does not depend on the number of drones, but the decoding procedure does. When
M = 1, i.e., a single drone is available, the decoding scheme is exact. WhenM > 1, it is heuristically extended.

In Section 4.1, we describe the general scheme of the heuristic. The decoding procedure is detailed in Section
4.2 when M = 1. We explain how it is adapted to M > 1 in Section 4.3. In these sections, we adopt the following
notation. A solution S is represented as a vector ofM + 1 customer sequences (τvehicle ,τ1, . . . ,τM ), where τvehicle
indicates the visit order of the customers for the vehicle and τ1 to τM this order for theM drones. We denote c1(S)
the completion time for the vehicle in solution S and c2(S) the completion time for the fleet of drones. Finally,
c(S) = max(c1(S), c2(S)) is the solution cost.

4.1 General scheme of the iterative two-step heuristic
The general scheme of our heuristic is summarized in Algorithm 1 and is explained hereafter.

Algorithm 1 General scheme of the iterative two-step heuristic
1: τ ← solveTSP()
2: bestSol ← (τ , ∅, . . . , ∅)
3: while bestSol is improved do
4: (τvehicle ,τdrones ) ← split(τ )

5: τ
opt
vehicle ← reoptimizeTSP(τvehicle )

6: (τ
opt
1 , . . . ,τ

opt
M ) ← optimizePMS(τdrones )

7: if solution (τ optvehicle ,τ
opt
1 , . . . ,τ

opt
M ) is better than bestSol then

8: bestSol ← (τ
opt
vehicle ,τ

opt
1 , . . . ,τ

opt
M )

9: τ ← bestInsertion(τ
opt
vehicle ,τ

opt
1 , . . . ,τ

opt
M )

10: end if
11: end while

In lines 1 and 2, we build a giant TSP tour τ visiting the depot and all the customers. For that matter, we apply a
nearest-neighbor construction procedure. The TSP tour provides a starting solution (τ , ∅, . . . , ∅) for our algorithm,
where all the customers are visited by the vehicle in the order of sequence τ and no customer is assigned to the
drones.

The main part of the algorithm is given by lines 4 to 9 that are repeated as long as they enable finding better
solutions. A solution S is considered to be better than another solution S ′ if one of the two following conditions
hold:

• c(S) < c(S ′)
• or c(S) = c(S ′) and min(c1(S), c2(S)) < min(c1(S ′), c2(S ′))
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Decoding procedure split on Line 4 decomposes τ in two complementary subsequences: one assigned to the vehicle
(τvehicle ) and one assigned to the fleet of drones (τdrones ). This procedure, which is central in the algorithm, is detailed
below. Vehicle route τvehicle is then reoptimized, with Helsgaun’s implementation of Lin-Kernighan heuristic [14]
(Line 5) and a PMS solution is obtained from τdrones (see Section 4.3). The new solution (τ optvehicle ,τ

opt
1 , . . . ,τ

opt
M ) is

compared with bestSol and the latter is updated if needed. Finally, in this case, all the customers from τ
opt
1 , . . . ,τ

opt
M

are reinserted in τ optvehicle , in this order and with a best insertion policy (Line 9). Otherwise the algorithm stops.

Note that whenM = 1, the PMS problem is trivial, hence one can replace Line 6 with τ opt1 ← τdrones .

4.2 Decoding procedure whenM = 1
We first consider the caseM = 1. Procedure split(τ ) computes the best partition of the customer set between the
vehicle and the unique drone with the constraint that the customers in the vehicle tour follows the same order as in
sequence τ . This problem is modeled as a bicriteria shortest path problem [7] in an acyclic directed graph and is
solved by dynamic programming.

Definition of the acyclic graph. We introduceGτ = (V τ ,Aτ ) an acyclic graph defined as follows.V τ = {0, 1, 2, . . . ,n,n+
1} represents the set of customers completed by two copies of the depot: the original depot 0 and its copy n + 1. In
the bicreteria shortest path problem, 0 will be the origin and n + 1 the destination. Given i and j in V τ , with i , j,
arc (i, j) exists in Aτ if and only if the two following conditions are both satisfied:

• i = 0, or j = n + 1, or i is before j in τ (in the three cases we note i <τ j)
• all the customers between i and j in τ are drone-eligible: i <τ k <τ j ⇒ k ∈ Nd

With every arc (i, j) ∈ Aτ , we associate a cost vector (c1i j , c2i j ). The first cost component c1i j represents the cost
incurred for the vehicle if it travels directly from i to j: c1i j = di j . The second cost component c2i j represents the
corresponding cost induced for the drone. If the vehicle travels directly from i to j, all customers k in-between
(which by definition of Aτ are all drone-eligible) are assigned to the drone: c2i j =

∑
{k ∈V τ : i<τ k<τ j }

d̂k .

Figure 4 shows an illustrative example for an instance with 5 customers. Customers 2 and 4 are not drone-eligible.
The vehicle travel cost matrix is reported in Table 2(a) in which we add the copy of the depot (node 6). Table 2(b)
presents the drone-trip costs for drone-eligible customers. We assume τ = (1, 2, 3, 4, 5).

0 1 2 3 4 5 6
0 0 8 8 11 6 8 0
1 0 10 7 10 12 8
2 0 13 8 6 8
3 0 11 7 11
4 0 5 6
5 0 8
6 0

(a) Vehicle cost matrix di j

Customer 1 3 5
Drone cost 16 12 20
(b) Drone cost vector d̂i

Table 2 Illustrative instance

The set of paths from 0 to n + 1 in Gτ exactly matches the set of acceptable routes for the vehicle that can be
extracted from sequence τ . Furthermore, given a path P , the cost vector (c1(P), c2(P)) = (

∑
(i, j)∈P c

1
i j ,

∑
(i, j)∈P c

2
i j )

corresponds to the costs of the vehicle and the drone, if the route of the vehicle follows P and the remaining
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0 1 2 3 4 5 6
8,0 10,0 13,0 11,0 5,0 8,0

8,16 8,12 6,20

Figure 4 Graph Gτ for the instance of tables 2(a) and 2(b), with τ = (1, 2, 3, 4, 5).

customers are assigned to the drone. Taking again the example depicted with Figure 4, path P = (0, 2, 4, 5, 6) should
be interpreted as a solution S with a vehicle tour (0, 2, 4, 5, 0) and customers 1 and 3 assigned to the drone; c1(P) = 29,
c2(P) = 28, c(S) = max(29, 28) = 29.

For that reason, the aim of the split procedure is to find the path P from 0 to n + 1 in Gτ that minimizes
max(c1(P), c2(P)). We now describe the dynamic programming procedure developed to compute this path.

Dynamic programming scheme. To understand the procedure applied to find that shortest path, let us first consider
the following definitions:

• partial path: a path going from 0 (origin depot) to any node i of graph Gτ ;
• label: the cost vector (c1, c2) of a partial path calculated by adding the costs of the crossed arcs.

The shortest path is found by applying the procedure described in Algorithm 2. The principle is to progressively
associate a list of labels L(i) with each node i of Gτ . At the initialization, L(i) is set to ∅ for every node i (Line 1).
The procedure then starts by assigning label (0, 0) to L(0) (Line 2).

The procedure goes through the graph from the origin depot node 0 to the destination depot node n + 1 by
following the order defined in sequence τ . Function increment on Line 5 is introduced for this purpose. For a given
vertex i , list L(i) is constructed by adding a new label for every label in the list of labels of a predecessor node
(Lines 6-13). The new label is simply defined by adding the arc cost (Line 8). In order to limit the number of labels
generated in the lists as the procedure advance in the graph, some bounding mechanisms (Line 9) and a dominance
rule (Line 10) are introduced. These two components are detailed below.

At the end, the shortest path is retrieved through a backtrack mechanism considering the best label found in
L(n + 1). This shortest path constitutes the vehicle tour τvehicle and the nodes out of the path are assigned to the
drone.

Dominance rule. The dominance rule is very simple. A label La = (c1a , c2a) dominates a label Lb = (c1b , c
2
b ) if (c

1
a < c1b

and c2a ≤ c2b ) or (c
1
a ≤ c1b and c2a < c2b ). Before adding a new label to a list of label, dominance tests are tried with

all the labels in the list, both to check whether the new label should be discarded or if an existing label should be
removed.

The dominance rule guarantees that the number of labels attached to a node is limited by the number of values
that can take label components c1 or c2. As this number can still be very large, bounding mechanisms are helpful to
limit the combinatorial explosion.

Upper bound generation. The bounding mechanisms rely on the computation of several upper bounds. A first
upper boundUB1 is given by the value of the best solution found so far. A second upper boundUB2 is obtained by
applying Algorithm 2 with the following modifications:

• the bounding mechanisms of Line 9 are not considered;
• the dominance rule is changed to: La dominates Lb if c(La) ≤ c(Lb ); with this new rule, a single label is kept
at each node of the graph.
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Algorithm 2 Procedure split(τ )
1: L(i) ← ∅ for 0 ≤ i ≤ n + 1
2: L(0) ← {(0, 0)}
3: i ← 0
4: while i <τ n + 1 do
5: increment i
6: for all j such that arc (j, i) ∈ Aτ do
7: for all label L ∈ L(j) do
8: L′← (c1(L) + c1ji , c

2(L) + c2ji )
9: if L′ is not pruned with the bounding mechanisms then
10: L(i) ← addWithDominance(L(i),L′)
11: end if
12: end for
13: end for
14: end while
15: bestLabel ← label L in L(n + 1) with minimum completion time max(c1(L), c2(L))
16: τvehicle ← path that led to label bestLabel
17: τdrones ← nodes that are not in the path

0 1 2 3 4 5 6
8,0 10,0 13,0 11,0 5,0 8,0

8,16 8,12 6,20

(0,0) (8,0) (8,16) (21,16) (16,28) (21,28) (29,28)UB2:

(0,0) (8,0) (18,0) (18,12) (29,12) (34,12) (42,12)UB3:

Figure 5 Upper bounds for the graph of Figure 4.

The third upper bound UB3 results from the following greedy heuristic. The nodes are considered in the order
defined by <τ . Nodes are added to the vehicle tour τvehicle except when the two following conditions hold: node i
is drone-eligible and adding i to the drone does not increase the completion time of the current partial solution. In
this case, node i is assigned to the drone.UB is set as the best (minimal) upper bound among these three bounds:
UB = min(UB1,UB2,UB3).

Figure 5 represents the application of these algorithms to computeUB2 andUB3 on the example introduced with
Figure 4. Assuming that no previous solution is known (UB1 = +∞), we obtainUB2 = 29,UB3 = 42 andUB = 29.

Lower bound generation. We introduce two lower bounds, LBtot (i) and LBveh(i), at each customer node of the
graph. Lower bound LBtot (i) indicates the minimal total cost c1(P) + c2(P) of any path P between i and n + 1 in
Gτ . Lower bound LBveh(i) indicates the minimal vehicle cost c1(P) of any path P between i and n + 1 in Gτ . Both
bounds are computed simultaneously with a backward exploration of the acyclic (topologically-ordered) graph Gτ .

Figure 6 details these lower bounds on the example introduced with Figure 4.

Bounding mechanisms. We define the three following bounding rules:

• R1: prune label L if c2(L) ≥ UB
• R2: prune label L if c1(L) + LBveh(i) ≥ UB
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0 1 2 3 4 5 6
8,0 10,0 13,0 11,0 5,0 8,0

8,16 8,12 6,20

0
0

8
8

6
13

17
24

14
33

24
43

22
51

LBveh(i):
LBtot (i):

Figure 6 Lower bounds for the graph of Figure 4.

• R3: prune label L if c1(L) + c2(L) + LBtot (i) ≥ 2 ×UB

Rule R1 identifies labels whose completion time is already at leastUB, because of the customers already assigned
to the drone. Rule R2 identifies labels whose vehicle tour cannot finish beforeUB, because of the subtour already
assigned to the vehicle and the minimal remaining path to n + 1. Rule R3 considers both the vehicle and drone
completion times. It is based on the fact that whatever the path P extending the subpath associated with L to
n + 1, the completion time of the resulting solution is max(c1(L) + c1(P), c2(L) + c2(P)) ≥ c1(L)+c1(P )+c2(L)+c2(P )

2 ≥
c1(L)+c2(L)+LBtot (i)

2 .

Hence, none of the labels for which R1, R2 or R3 holds, can result in a solution better than UB. They can be
pruned.

Figure 7 illustrates the split subroutine on the graph presented in Figure 4. List L(i) is reported under every node
i . In Figure 7(a), the bounding mechanisms are not applied. Labels can only be removed by dominance. Dominated
labels are crossed out. In Figure 7(b), the bounding mechanisms are reinserted. The bounding rule(s) enabling to
delete a label is reported on the right of the strikethrough label.

In both cases, the optimal path and the associated labels are represented in red. The optimal decomposition is to
assign customer sequence (2, 4, 5) to the vehicle and customers (1, 3) to the drone. The cost of this solution is 29.

4.3 Decoding procedure whenM > 1
WhenM > 1, the preceding decomposition scheme could naturally be adapted by defining labels of sizeM+1, where
the first field represents the vehicle cost and the followingM fields represent the cost for each drone. This would
however induce a more complex labeling algorithm and, above all, many more labels, with probably intractable
computing times except for fairly small instances. We preferred to handle this situation with a different approach.

We reproduce exactly Algorithm 2 with the sole modification that arc costs c2i j are divided by M . This change
simulates the fact that the total drone delivery time can be shared equally between theM drones. In other words, it
also means that the PMS problem is relaxed, allowing both preemption of tasks and parallel execution of these tasks.

Sequence τdrones returned by procedure split is then transformed into a feasible PMS solution (τ opt1 , . . . ,τ
opt
M )

with a greedy heuristic. We propose to apply the well known Longest Processing Time (LPT) heuristic [24]. In LPT,
the tasks (drone deliveries) are first sorted in the decreasing order of their processing time (d̂i ). Then, they are
successively assigned to the drone with the minimal current completion time.

5 EXPERIMENTS AND RESULTS
We conducted two sets of experiments. In the first set, we evaluate the efficiency of our heuristic on Murray and
Chu [19]’s benchmark instances and present some further analyzes. As far as we know, these instances are the only
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Figure 7 Illustration of the split procedure on the graph of Figure 4, without or with the boundingmech-
anisms.

ones existing for this problem. Unfortunately, they are of small size (10 to 20 customers) and it is difficult to draw
definitive conclusions with them. For this reason, we introduced instances of larger size on which we conducted
a second set of experiments. In this second set, we investigate in more details the behavior of our heuristic and
analyze the benefits of using drones.

The environment used for the computational work is Intel core(TM) i5-6200U CPU @ 2.30Ghz 2.40Ghz; 8GB
RAM; Windows 10; 64 bits. C++ language is used for the implementation part.

For the experiments, we considered two different ways of applying our two-step heuristic:

(1) Single-start two-stepH: the algorithm is executed exactly as it is described in Section 4.
(2) Multi-start two-stepH: the algorithm is repeated several times, with a randomized initialization and until

a time limit is reached. Randomization is introduced in the nearest neighbor heuristic, by randomly selecting
one of the K closest neighbors instead of the closest. The solution returned is the best solution among all
the solutions found. In the experiments, we arbitrarily set K = 3. The computing time limit depends on the
experiments and is indicated when needed.

5.1 First set of experiments: Murray and Chu’s instances
Murray and Chu [19]’s instances were generated with either 10 or 20 customers. The vehicle and drone speeds
were fixed at the same speed of 25 miles/h. However, distances were computed with a Manhattan distance for the
vehicle and with an Euclidean distance for the drones. The depot location was selected as being either near the
center of all customers, near the edge of the customer region, or at the origin. Customer locations were generated
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such that either 20%, 40%, 60% or 80% of all customers were located within the drone’s range from the depot, with
the drone having a flight endurance of 30 min. Finally 10-20% of customers were arbitrarily set as not drone-eligible
because of excessive parcel weights. Each of the above parameter settings was repeated 10 times, resulting in 120
instances with 10 customers and 120 instances with 20 customers. All these instances were solved with a single
truck and either 1, 2 or 3 available UAVs, resulting in 720 test instances. For these instances, completion times are
indicated in minutes.

Before analyzing the performance of our heuristic, let us recall the principle of Murray and Chu [19]’s PDSTSP
heuristic. Their idea is to first assume that the drones will serve all the drone-eligible customers and that all
remaining customers will be delivered by the vehicle. Based on this partition, a TSP and a PMS are solved for the
vehicle and the drones, respectively. An improvement step reassigns individual customers to either a drone or the
vehicle if it allows decreasing the overall completion time. This improvement step is implemented as follows. If
the completion time for the drones exceeds the duration of the vehicle tour, a customer is moved from a drone
to the vehicle. The move affording the greatest net savings is chosen. If no move yields a savings in the overall
completion time a swap is investigated. The swap operator explores all pairwise exchanges of customers between
the drones and the vehicle. If the completion time for the vehicle determines the overall completion time, the swap
operator is again employed. The process of reallocating customers between the drones and the vehicle is repeated
as long as improvements are carried out. Three TSP solution methods were evaluated for computing the vehicle
tour, namely: integer programming (with the guarantee that the optimal TSP solution is obtained), the savings
heuristic [18], and the nearest neighbor heuristic. Similarly, two PMS solution methods were evaluated for the
drones: integer programming (exact solution) and the longest processing time (LPT) heuristic [24]. In Murray and
Chu’s experiments, mixed integer linear programs were solved with Gurobi version 5.6.0.

Table 3 presents a summary on the performance of our heuristics compared to Murray and Chu’s. The first four
lines correspond to Murray and Chu’s methods. Note that we ignored the less efficient among their methods in this
table. The fifth line provides information on the computation of exact solutions by Murray and Chu with their IP
formulation. The results obtained with our two-step heuristic are presented for both single-start two-stepH and
multi-start two-stepH, with a time limit of 3 seconds for the latter. Columns #Sol give the number of times each
method found the best solution among all methods. Columns Gap give the average and maximal gaps to these best
solutions, for each method. Columns Runtime report computing times, in seconds.

Table 3 Comparison with Murray and Chu results

Solution approach 10 Customers 20 Customers
Gap (%) Runtime (s) Gap (%) Runtime (s)
Avg Max Avg Max #Sol Avg Max Avg Max #Sol

IP/IP 0.12 10.13 2.4856 29.97 299 0.31 23.47 495 21510 302
IP/LPT 0.12 10.13 2.3093 28.85 300 0.41 23.47 498 21521 292
Savings/IP 1.57 20.68 0.2373 8.26 209 3.57 18.83 3.721 80.68 87
Savings/LPT 1.58 20.68 0.0003 0.01 209 3.98 18.83 0.008 0.07 80
Exact (IP) 0.3194 2.02 360 77.775 180.00 352

Single-start two-stepH 0.12 8.51 0.1660 0.32 278 0.51 23.47 0.210 0.56 225
Multi-start two-stepH 0.02 4.45 3.2060 3.26 313 0.15 23.47 3.072 3.32 337

Regarding best solutions, Murray and Chu [19] indicate that their IP formulation was able to find the optimal
solution for all of the 10-customer instances but was not able to solve in the imparted time 87 of the 360 20-customer
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instances. Column #Sol however shows that for these 87 instances, IP still found the best solution among all tried
methods in all cases except 8.

We observe that the single-start version of the two-step heuristic and the Savings/LPT are both extremely fast. In
comparable amounts of time, single-start two-stepH is able to achieve far better optimality gaps than Savings/LPT.
Regarding the multi-start version, we can notice that with a time limit of only 3 seconds, the two-step heuristic
yields very small optimality gaps. The IP/IP and IP/LPT methods are also effective but very slow. In general, this
comparison shows that our two-step descent algorithm is able to converge very quickly towards very good solutions,
at least for small instances with 10 or 20 customers.

Table 4 and Table 5 show in more details the behavior of Multi-start two-stepH with 1, 2 or 3 drones for instances
with 10 and 20 customers, respectively.

Table 4 Multi-start two-stepH (time limit: 3 sec) performance on 10 customer instances

1 drone 2 drones 3 drones
AVG Gap (%) 0.00 0.05 0.00
MAX Gap (%) 0.00 4.45 0.19
AVG Obj. 114.07 105.09 91.90
#SplitCall 2 2 2
#Start (3 sec) 17 19 8

Table 5 Multi-start two-stepH (time limit: 3 sec) performance on 20 customer instances

1 drone 2 drones 3 drones
AVG Gap (%) 0.20 0.06 0.18
MAX Gap (%) 23.47 2.41 6.33
AVG Obj. 141.90 139.93 139.82
#SplitCall 2 2 2
#Start (3 sec) 15 16 15

We notice that the average completion time value decreases when the number of drones increases. This is a
logical expected result but it greatly depends on the number of drone-eligible customers and it is not always very
significant. At some points, indeed, all the drone-eligible customers might be assigned to drones; then, if the vehicle
tours is longer than drone tours, adding new drones does not help. Results also show that the split procedure is
called 2 times on average.

Seeing that our decoding scheme is optimal whenM = 1 (a single drone) while it is not whenM > 1, we could
have also expected larger gaps for instances with several drones. This is however not clearly observed with these
results, probably showing the quality of the approximation introduced in the multiple-drones case.

5.2 Second set of experiments: new instances generated from TSPLIB
To evaluate our heuristic on larger instances, we generated another set of instances by using TSPLIB files att48.tsp,
berlin52.tsp, eil101.tsp, gr120.tsp, pr152.tsp and gr229.tsp. The number in the file name corresponds to the number of
customers which are represented by their coordinates x and y. To stay consistent with Murray and Chu’s instances,
we used the Manhattan distance for the vehicle trip and the Euclidean distance for the drone trip. From each file, we
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generated what we call a reference instance and several instances that can be derived from this reference instance
by changing some parameters. These instances are characterized by:

• The position of the depot: A fictitious point was added to represent the depot. The depot location was
selected as being either near the center of all customers (x0 = maxi∈N (xi )−mini∈N (xi )

2 , y0 = maxi∈N (yi )−mini∈N (yi )
2 )

or at the left-bottom corner of the region (x0 = mini ∈N (xi ), y0 = mini ∈N (yi )). In reference instances, the
depot is located at the center.

• The percentage of drone-eligible customers: Instances were generated with either 0%, 20%, 40%, 60%,
80% or 100% of drone-eligible customers. We proceeded as follows. Let K be the target percentage of drone
eligible customers. We introduced L (L = 30%) the percentage of non-drone-eligible customers that are not
drone-eligible because of parcel weights. We selected these customers according to their index n: customers
not drone-eligible because of their parcel weight are customers such that n (mod ⌊ 1

(1−K )×L ⌋) = 0. Remaining
customers were then set as drone-eligible in the increasing order of their distance to the depot, until reaching
K% of drone-eligible customers. In reference instances, K = 80%.

• The drone speed: The drone can go at the same speed as the vehicle or 2, 3, 4 or 5 times faster. In this case,
vector d̂ is simply divided by the speed factor. In the reference instances, the speed factor is 2.

• The number of drones: The drone fleet can be composed of 1, 2, 3, 4 or 5 drones. In the reference instance,
a single drone is used.

Note that the method for generating drone-eligible customers might appear a little bit twisted, but it has the
advantage of being fully deterministic and easily reproducible.

The first goal with these new instances is to conduct some sensitivity analyzes. We compare solutions obtained
while changing the depot position, the percentage of drone-eligible customers, the drone speed factor and the
number of drones, respectively. For that purpose, we consider the 6 reference instances and construct new instances
by changing a single parameter at a time. The method used for these experiments is Multi-start two-stepH with a
time limit set to 5 minutes (a large amount of time is given so as to obtain optimality gaps as small as possible and
make the results more reliable).

Results are presented in tables 6 to 9. In these tables, columns labeled with C.T. indicate the value of the completion
time and columns labeled with #D.C. indicate the number of customers assigned to the drones.

Table 6 investigates the impact of the depot location. We observe that completion times are higher when the
depot is located at the left-bottom corner. Furthermore less customers are assigned to the drone. These observations
are consistent with expectations.

Table 6 Impact of depot position (80% of drone-eligible customers, 1 drone, speed factor 2)

Instance Center Corner
C.T. #D.C. C.T. #D.C.

att48 29954 17 33798 9
berlin52 6386.48 18 7830 8
eil101 564 28 650 19
gr120 1414 30 1730 18
pr152 76008 20 76556 19
gr229 1794.84 25 1913.74 9

In complement to this table, we also investigate if the drones tend to serve customers near the depot, in other
words if there are any “rules of thumb” that dictate which customers should be served by the drones. Figure 8 shows
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Figure 8 Results of the two-step heuristic for the 6 reference instances

the solutions obtained for our 6 reference instances (depot position: center, 80% of drone-eligible customers, drone
speed: 2, one drone). The depot is represented by a triangle. Customers that are not drone-eligible are represented by
squares and drone-eligible customers are represented by circles. The circle is in plain when the given drone-eligible
customer is served by the drone. Images show no clear correlation between the position of a drone-eligible customer
and its selection for a delivery by a drone.

Table 7 investigates the impact of the percentage of drone-eligible customers. The table shows that, in general,
completion times are improved when the percentage of drone-eligible customers increases. However, it does not
necessarily imply that the number of customers assigned to the drone increases (except of course for the case with
0 drone-eligible customers). Actually, at first, when a few customers are drone-eligible, they tend to be assigned to
the drone to relieves the vehicle. Then, when a good balance in vehicle and drone completion times is reached, two
conflicting phenomena are met: adding drone-eligible customers allows a better partition of the customers between
the vehicle and the drone, and thus should result in an higher number of drones visited per unit of time; but, it also
allows decreasing completion times, and thus should result in a smaller total number of customers assigned to the
drone.
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Table 7 Impact of the percentage of drone-eligible customers (depot at the center, 1 drone, speed factor
2)

Instance 0% 20% 40% 60% 80% 100%
C.T. #D.C. C.T. #D.C. C.T. #D.C. C.T. #D.C. C.T. #D.C. C.T. #D.C.

att48 42136 0 38662 7 31592 15 30788.80 16 29954 17 27784 16
berlin52 9675 0 9350 4 8300 15 7410 25 6386.48 18 6180 14
eil101 819 0 738 18 646 31 578 27 564 28 561.41 26
gr120 2006 0 1736 18 1624 25 1494 29 1414 30 1414.80 23
pr152 86596 0 82504 22 77372 23 76786 20 76008 20 74468 23
gr229 2020.16 0 1862.76 19 1828.02 22 1807.50 23 1794.84 25 1498.05 11

In Table 8 and Table 9, we vary the speed and number of drones, respectively. We can notice that when the speed
of the drone increases, the completion time is improved and the drone is able to visit more customers. Similar results
are obtained when increasing the number of drones. Actually, this is not a surprise seeing that in the algorithm,
changing the speed or the number of drones almost has the same effect. For example, the only difference between
solving an instance with 2 drones having a speed ratio 2 and an instance with 1 drone of speed ratio 4, concerns the
solution of the PMS. However, one should mention that when the number of drones increases the average number
of customers assigned to each drone decreases. Finally, in some cases, adding drones does not allow improving the
solution, for the reasons already developed in Section 5.1 (see att48 and berlin52).

Table 8 Impact of the drone speed (depot at the center, 80% of drone-eligible customers, 1 drone)

Instance 1 2 3 4 5
C.T. #D.C. C.T. #D.C. C.T. #D.C. C.T. #D.C. C.T. #D.C.

att48 33234 10 29954 17 29142 21 28686 24 28610 26
berlin52 7450 13 6386.48 18 5656.56 23 5290.65 31 5190 35
eil101 650 17 564 28 504 36 456 39 420.83 47
gr120 1592 18 1414 30 1289.27 37 1189.71 43 1112 50
pr152 80164 12 76008 20 72936 31 70412 41 67798 31
gr229 1865 13 1794.84 25 1735.16 36 1679.33 48 1642.04 58

Table 9 Impact of the number of drones (depot at the center, 80% of drone-eligible customers, speed
factor 2)

Instance 1 2 3 4 5
C.T. #D.C. C.T. #D.C. C.T. #D.C. C.T. #D.C. C.T. #D.C.

att48 29954 17 28686 24 28610 26 28610 26 28610 27
berlin52 6386.48 18 5299.81 31 5290 35 5190 35 5190 35
eil101 564 28 456 40 395 52 346.68 59 319.74 69
gr120 1414 30 1188.51 43 1044.65 54 946.04 65 880 73
pr152 76008 20 70244 42 65062.10 41 60027.40 56 56336.10 60
gr229 1794.84 25 1686.75 50 1603.90 66 1518.62 84 1483.68 98
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With further experiments, we analyze the behavior of our two-step heuristic general scheme. For these experiments,
we only consider the reference instance obtained from gr229.tsp and execute Single-start two-stepH. Results are
presented in Tables 10 and 11.

Table 10 presents the results obtained while varying the percentage of drone-eligible customers. It provides the
value of the completion time, the average number of calls to the split procedure, the average number of labels
generated in the split procedure (summed over all nodes and including labels eventually deleted by dominance or
with the bounding mechanisms) and the percentage of labels deleted with the bounding mechanisms.

Table 10 Impact of the percentage of drone-eligible customers on the behavior of Single-start two-sepH
(depot at the center, 1 drone, speed factor 2)

Drone-eligible C.T. #SplitCall #LabelsGenerated. LabelsDeleted (%)
0% 2020.16 0 0 0
20% 1867.60 3 9450 28.26
40% 1826.22 6 32969 53.10
60% 1812.84 6 139849 76.85
80% 1809.84 4 385309 88.43
100% 1500.45 4 3662748 99.05

Several interesting conclusions can be drawn from this table. First, one can observe an increase in the number of
calls to the split procedure following that of the number of drone-eligible customers. It indicates that, thanks to the
flexibility provided by the new drone-eligible customers, the method gets less easily trapped into a local optimum.
However, the method still converges quickly (a few iterations) and towards good-quality solutions: the gaps with
the solutions found in 5 minutes with Multi-start two-stepH (last line of Table 7) remain limited. Second, one can
see a quick increase in the number of generated labels. It can clearly be explained by the shape of graphGτ . Having
more drone-eligible customers favors longer arcs and result in more arcs in the graph, and thus more possibilities
for extending labels. Fortunately, bounding mechanisms are capable of getting rid of most of these labels: more
than 99% when all the customers are drone-eligible.

Table 11 investigates the quality of the approximation made in the split procedure when M > 1. It shows the
average and maximum gaps between the drone completion time found by the split procedure (assuming a single
drone with a speed multiplied byM) and the completion time obtained after having applied the LPT heuristic. We
observe that the gaps grow when the number of drones increases, but remain very limited.

Table 11 Average gap between the drone completion time found by the split procedure and the comple-
tion time found with the LPT heuristic

Number of drones 1 2 3 4 5
Avg Gap (%) 0 0.01 0.73 0.85 0.99
Max Gap (%) 0 0.01 1.41 1.35 1.86

Finally, with Table 12, we provide a benchmark set of best known solutions on our new instances, for future
researches. In this table, we consider our 6 references instances with a drone fleet size going from 1 to 5 drones.
It gives rise to a new instance set of 30 instances. The results provided in the table were obtained with a single
execution of Multi-start two-stepH with a time limit of 5 minutes.
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Table 12 Benchmark based on reference instances with 1 to 5 drones applying Multi-start two-setpH
with a time limit of 5 mins

1 2 3 4 5
att48 29954 28686 28610 28610 28610
berlin52 6386.48 5299.81 5190 5190 5190
eil101 564 456 395 346.68 319.74
gr120 1414 1188.51 1044.65 946.04 880
pr152 76008 70244 65062.10 60027.40 56336.10
gr229 1794.84 1686.75 1603.90 1518.62 1483.68

6 CONCLUSIONS
Drone deliveries look like the future: unmanned aerial vehicles rapidly delivering packages to our doors, eliminating
both waiting times and the cost of human labor.

In this paper, we studied the combination of vehicle and drones for parcel delivery in a approach without
synchronization between the vehicle and drones. We proposed an iterative two-steps heuristic that uses dynamic
programming for efficiently partitioning the customers between the vehicle and the drone fleet. Results are very
promising and permit a clear improvement over the existing literature.

Nevertheless, there are still a lot of possible improvements. First, we mainly focused in this study on the split
procedure. Clearly the quality of the results could be slightly improved by solving better the PMS that are repeatedly
solved in the solution scheme. In the current implementation, the algorithms used for solving these problems are
very simple. They have the advantage to be very quick, but it is certainly possible to gain in effectiveness with
a limited increase in computing times. Most importantly, the iterative algorithm could certainly beneficially be
inserted within a metaheuristic scheme. Multi-start two-stepH can already be interpreted as a GRASP, but more
promising metaheuristic schemes exist. Iterated Local search, or the hybridization with evolutionary algorithms,
would for example be natural candidates.

Apart from these issues, another clear limit in the evaluation of our method is the lack of lower bounds (except for
small instances for which the optimal solution is known). Developing an efficient solution method, as branch-and-cut
or branch-and-price, or finding tight lower bounds is certainly an important direction to follow. Branch-and-cut
solution procedures have been developed for other types of routing problems where a single truck selects and visits
a subset of customers (e.g., the Selective TSP [11] or the Profitable Tour Problem [15]). The valid inequalities and
separation algorithms used in these procedures could certainly be generalized to our problem.

Finally, more complex variants of the problem would certainly deserve to be addressed. Especially, a strong
limit in the problem definition is the presence of a single vehicle. Parcel delivery typically involves many vehicles.
Extending the problem to this setting would certainly be valuable, though raising new difficulties in the partitioning
subproblem.
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