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Abstract—A private information retrieval (PIR) scheme allows
a user to retrieve a file from a database without revealing any
information on the file being requested. As of now, PIR schemes
have been proposed for several kinds of storage systems, includ-
ing replicated and MDS-coded systems. However, the problem
of constructing PIR schemes on regenerating codes has been
sparsely considered.

A regenerating code is a storage code whose codewords are
distributed among nodes, enabling efficient storage of files, as
well as low-bandwidth retrieval of files and repair of nodes.
Minimum-bandwidth regenerating (MBR) codes define a family
of regenerating codes allowing a node repair with optimal
bandwidth. Rashmi, Shah, and Kumar obtained a large family
of MBR codes using the product-matrix (PM) construction.

In this work, a new PIR scheme over PM-MBR codes is
designed. The inherent redundancy of the PM structure is used to
reduce the download communication complexity of the scheme.
A lower bound on the PIR capacity of MBR-coded PIR schemes
is derived, showing an interesting storage space vs. PIR rate
trade-off compared to existing PIR schemes with the same
reconstruction capability. The present scheme also outperforms
a recent PM-MBR PIR construction of Dorkson and Ng.

I. INTRODUCTION

Private information retrieval (PIR) allows a user to retrieve
a file from a storage system without revealing which file she
is interested in. The PIR problem was introduced by Chor,
Goldreich, Kushilevitz and Sudan [1]], [2]: given a tuple of
files X = (X*!,...,X7F) replicated over n > 2 servers,
the goal is to retrieve a file X7/ without revealing the index
feA{l,...,F} to the servers. While first constructions [3[|—
[5] mostly aimed at decreasing the overall communication
complexity of the protocol, recent works only focused on the
PIR rate, namely the ratio of downloaded information bits to
the total number of downloaded bits. Sun and Jafar [6], [[7]
proved that the maximum PIR rate (called the PIR capacity)
for F replicated files is (1 —1/n)/(1 — 1/n%").

Many works also considered the PIR model where data is
not replicated, but coded and distributed over multiple servers,

*: Both authors contributed equally to this manuscript.

see e.g. [8]-[17]. Symmetric PIR schemes were considered
in [18], [19]. Moreover, the capacity of [n, k]-MDS-coded
PIR schemes was found by Banawan and Ulukus [10]. This
capacity converges exponentially fast to 1 — k/n for an
unbounded number of files (F' — oo) [9).

The present work will focus on the case of regenerating
codes as storage codes. Regenerating codes are a class of
codes dedicated to distributed storage, achieving the optimal
trade-off between the bandwidth needed for a node repair
and the amount of data each node needs to store. These
codes were pioneered by Dimakis ef al. [20] who notably
produced a cut-set bound on the parameters of the codes. This
bound materializes two interesting optimal settings: one for
which the repair communication cost is minimized, called the
minimum-bandwidth regenerating (MBR) point, and one for
which the nodes store the least data, called the minimum-
storage regenerating (MSR) point. Rashmi er al. [21] then
proposed optimal constructions for these two specific settings,
based on the so-called product-matrix (PM) framework. Many
other works followed for the construction of MBR/MSR codes,
including [22[]-[26].

Main contributions. We propose a PIR scheme for the PM-
MBR construction of Rashmi et al. [21]. We use symmetry
and redundancy inherent to the PM framework as a way to
decrease the number of symbols downloaded from the servers.
As a consequence, we outperform the recent construction of
PIR schemes over PM codes given by Dorkson and Ng in [27],
[28]], which represent the only existing works on PIR schemes
for MBR codes.

We achieve a PIR rate strictly larger than 1 — k/n, where n
is the number of servers and k is the reconstruction parameter,
i.e., the minimum number of servers to be contacted in order to
retrieve a file. This is achieved at the cost of an increased stor-
age space requirement, allowing for efficient repair. Though
we do not manage to compute the PIR capacity for MBR
codes, our construction incurs a lower bound on it, and we
can compare the PIR rate we obtained with achievable PIR
rates over other storage systems with the same reconstruction



parameter. Notice that the techniques presented in this paper
also apply to the MSR setting, but reaches, in that case, a
lower PIR rate than the PIR capacity of MDS and MSR storage
systems [29], [30].

Organization. Section [lI] introduces notation and defini-
tions of private information retrieval, regenerating codes and
product-matrix codes. The proposed PIR scheme is presented
and analyzed in Section including an example with small
parameters. Finally, a comparison of the PIR rate with some
bounds and with PIR rates of other constructions is provided
in Section [[V1

II. PRELIMINARIES
A. Notation and definitions

We let F; denote the finite field with ¢ elements. Given two
vectors a,b € FZ, their component-wise product is defined
as axb = (ar1by,...,anb,) € IB‘Z. This operation easily
extends to higher dimensional objects, such as matrices or
arrays. Given a subset Z C {1,...,n} =: [1,n], the tuple a|z
is obtained by restricting a to coordinates in Z.

Let 1 < k < n. The Reed-Solomon code of dimension
k with distinct evaluation points @ = (z1,...,%,), where
x; € Fg, is defined by

RS]C(CL') = {(f(l'l)’ .- 7f<xn))7 f € FQ[XL

degfgk—l}QIFZ.

It is well-known that RSy (x) is maximum-distance separable
(MDS), and that RS;(z) C RSy (x) for every j < k. There-
fore there exists a basis I' = {v1,...,7%} of RSk(x) such
that, for every j < k and every subset Z C {1,...,n} of size
|Z| > j, the family I'%9) == {(v1)z,..., (7;)z} is a basis of
RS;(x7) C IF!]I‘. For instance, one can take a degree-ordered
monomial basis, explicitly given by v, = (mjl, cooxl) e Fy-

The Vandermonde matrix with distinct basis elements x €
F? is the n x k matrix ¥ € F2*% such that W; ; = ! for
1<i<nand1 < j < k. We know that ¥ generates the code
RSk (x) by columns. More precisely, these columns form the
monomial basis we mentioned earlier. Notation is summarized
in Table [

B. Private information retrieval

Let C be a linear code of length n, and let us consider a
storage system where n servers jointly store F' > 2 codewords
C',...,CF corresponding to files X', ..., X, The i-th
server stores (C}, ..., CF), i.e. the collection of i-th symbols
of all files.

Assume now that a user wants to retrieve a specific file
X/, for some 1 < fo < F. In a private information
retrieval (PIR) scheme, she sends gqueries Q1,...,Q, to
servers, which compute responses Ry, ..., R, accordingly.
We say the scheme achieves information-theoretic PIR against
non-colluding servers if the following holds:

Privacy: H(fo | Qi) = H(fo),
Recovery: H(XP |Ry,...,R,,Q,...

1=1,...,n.

7Qn7f0):0'

TABLE I
NOMENCLATURE

Regenerating code
Number of files
Number of servers
Reconstruction parameter of the regenerat-
ing code
Repair parameter of the regenerating code
Number of symbols in a regenerating code-
word
« Storage capacity of a single server
Jéj Repair-bandwidth of a single server
X = (XT,...,XT) | Set of files (database)
X 7o Specific file requested by the user
M7 Redundant arrangement of the file X/ in a
matrix (see PM framework)
o]l Regenerating codeword associated to X7,
as stored on the DSS

Eol ST Bes| QN

&) &

CTs s-th stripe of the codeword C7
Chsl., 4] j-th column of C/+%
CT5[i, ] i-th row of C7>5 (stored by the i-th server)
CT3[4, 4] (i,4)-th symbol of stripe CT+
Qy {-th query sent to servers
p Rate of a PIR scheme
H(") Entropy function

Here, H(-) denotes the entropy function. Concerning the
recovery constraint, it is also desirable that the user is able
to reconstruct X /o efficiently from Ry,..., R,. We finally
define the (download) PIR rate of a scheme by p = %
The PIR capacity of a family of storage systems is the

maximum achievable PIR rate.

C. Regenerating codes

Regenerating codes were introduced by Dimakis et al. in
the context of distributed storage [20]. In an (n, k, d, B, «, 3)
regenerating code, a coded version of a file of size B is stored
on n servers (or nodes), each storing o symbols, with the
two following additional constraints. First, any external user
must be able to retrieve any file by contacting any subset of
k servers. Second, any failed server must be repairable by
contacting any subset of d > k servers and downloading /3
symbols from each, i.e., v := Sd symbols in total. Parameters
of regenerating codes are sometimes shortly denoted (n, k, d),
but one should take care that d is not the minimum distance
of the code, and k is not the dimension of the code.

Dimakis et al. [20] proved that any storage (erasure) code
must satisfy the so-called cut-set bound

k—1
B< Zmin{a, (d—1)8}, (1
i=0

and codes achieving this bound are called regenerating codes.
The authors also proved that equality in (I) defines a trade-
off between parameters o and v = fd, which cannot be
minimized simultaneously. Optimal codes minimizing v = 3d
reach the minimum-bandwidth regeneration (MBR) point,
while those minimizing « attain the minimum-storage regen-
eration (MSR) point.

D. Product-Matrix MBR codes

In this work, we focus on MBR codes built by Rashmi et
al. in [21] through the product-matrix (PM) framework. This



construction allows us to set 5 = 1, without loss of generality,
since PM-MBR codes with 5 # 1 can be built from PM-
MBR codes with 5 = 1 by striping files, see [21, Sect. I-C.].
File striping commonly refers to slicing files into subfiles; for
instance a file of SN symbols can be sliced into 3 stripes
(or subfiles) of N symbols each. In this setting we get the
following constraints on the parameters:

k(k+1)
.

The construction of Rashmi et al. [21]] can be presented as
follows. The symbols of a file X € IF(? are arranged ina d X d

matrix s T

where S is a k x k symmetric matrix containing @ distinct
file symbols, and T is a k x (d — k) matrix containing the
remaining k(d—k) file symbols. Notice that M is a symmetric
matrix. Let now ¥ be an n x d Vandermonde matrix over F,.

The codeword associated to file X is defined as
C:=¥M cF}*"

Let C be the set of all possible codewords C' of the latter
form. Notice that C is an [nd, B] linear code over F,. In
practice, the i-th row Ci,-] of a codeword C € C is stored
on server S;, for ¢ = 1,...,n, and contains at most o« = d
information symbols. Let us now rewrite the example given
by the authors in [21] Sec. IV.A.].

Example 1 (PM-MBR code). Consider the setting (n, k,d) =
(6,3,4) over ;. The original file contains B = 9 symbols.
Let ¢ = (1,2,3,4,5,6) € FS. The generator (Vandermonde)
matrix and the message matrix are then given as:

a=d and B=k(d—-k)+

mip Mm2 Mm3 mr

M = mz2 M4 M5 Mg

’ T lms ms me mo
me ms mog 0

=
O TR W=
[EONNE O (O Ny
o Rl e

III. A PIR SCHEME FOR PRODUCT-MATRIX MBR CODES

In this section, we consider a PM-MBR code C over F,
with parameters (n, k, d). Recall that C is a linear code over
F, of length nd and dimension B = k(d — k) + %

A. System setup

We consider a database X containing F files X', ... X
For every f € {1,...,F}, the file X7 is subdivided into
S > 1 stripes (or subdivisions), such that each stripe consists
of B=k(d—k)+ @ information symbols.

Fors =1,...,S, the s-th stripe of file X/ is then organized

in a matrix M7>* such that

M7’ = (MP*[i, 5]) e Fixd.

1<ij<d
Following the PM framework, every stripe M7+ must follow
the form given in (2), and is encoded into a codeword C/+* €
C. Explicitly, the j-th column vector of C/* is given by:
d
CHol gl =Y M [r, jl,

r=1

codeword
C’.,d] € RSa(z)
B in d-th column
-rl il and 1st stripe

CL, 1, L S-th stripe C/15 e ¢
the data stored by

server Sy

the whole coded message
cit2 e s
associated to file X/*?

s ) - — .-
n

Fig. 1. An illustration of the arrangement of files, stripes and codewords in the
storage system. A system of n servers stores coded files represented by S x
d X n cuboids (in the figure, only three of them are represented). Foreground
(red) blocks represent data stored by the first server. The horizontal block (in
green) in the middle cuboid represents a stripe, which lies in the regenerating
code C. Top right block (in blue) is a column of a stripe, and lies in an MDS
code.

where we recall that T = {~1,...,~4} denotes a suitable basis
for sequences of Reed-Solomon codes (see Section [[I-A)). Due
to the shape of message matrices M/ %, one can also remark
that C/*[-, j] € RSk(x) for every j > k + 1. Tllustration of
the storage system is given in Figure [I]

B. Intuition

The idea behind the constructed PIR scheme is to take
advantage of the symmetric property of matrices M/* as a
way to reuse information, in order to decrease the download
complexity of the scheme. We add that the servers are assumed
not to collude. In this scheme, each file is divided into
S = n—k stripes. The user generates a set of k£ queries to the
servers, similarly to the scheme in [[13]. A query is defined as
an S x F-tuple of matrices that is sent by the user to retrieve
information. Randomness is embedded in the queries as a way
to hide the identity of requested file, in a similar manner to
one-time padding. Naturally, if privacy were not a concern, a
retrieval query for file X0 would be the tuple of matrices
with zero-matrices everywhere, except for index f = fj.

Queries are then sent to servers which project them on their
stored data in the following way. For the last d — k columns,
since each of these columns stores file stripes encoded using
an [n, k] MDS code, servers are asked to project all the queries
on the data they hold, similarly to [13]]. For each of the other
columns, stripes contain information already retrieved from
the previously used columns, due to the nature of the product-
matrix construction. Thus, from server S;, down to server Sy,
servers are asked to project on their stored data a smaller
subset of the initial set of queries. This still enables the user
to reconstruct the requested file, due to the fact that she had
peeled off some randomness and information symbols from
previous columns. Moreover, it allows her to run locally a
more efficient PIR scheme, since the punctured queries apply
to an MDS code with lower information rate. More details are
given in the upcoming sections.
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Fig. 2. Re fpresentatlon of the mask matrix K, (on the left) and the retrieval
pattern E,°*® (on the right).

C. The PIR scheme

In this section, we describe the PIR scheme explicitly. Let
us assume that the user wants to retrieve a file X /o, for some
1 < fo < F. We fix the number of stripes to S = n — k, and
we consider a k-tuple of queries @ = (Q1,...,Q), such
that for each £ € {1,...,k}, query Q is an F x S tuple of
matrices Q)" € F7x4,

For each 1 < i < n, the collection of i-th rows of matrices
Q;’° € FQXd are sent to server S;. The response R, € IF;LXd
is then defined as:

F n—k

Ro=Y Y Q@ xCf.

f=1s=1
Throughout the paper, we will use > s instead of

PO Fe1 e ~F as an abuse of notation.
Generation of Q. Let us denote by 1 € F7'*? the all-one
matrix. For £ € {1,...,k} we define the mask K, € Fy*? as

follows:
. 0 ifj<flori+j<k-—1,
KZ[ZM]] = / . J
1  otherwise.

Let us fix fo € {1,..., F'} the index of the required file. We

define the retrieval pattern E}* € F2*? by:
E[*=0 if f#fo
and for every j,
. 1 ifi=k+s—0+1,
Etfo’ [i,7] = .
0 otherwise.

Notice that 7 is well-defined since s ranges in {1,...,n —k}
and ¢ ranges 1n {1,...,k}. Figure I proposes an 111ustrat10n
of matrices K Js and E 0,8

Finally, queries Q are deﬁned as follows. For every ¢, s, f,
symbols \;’° € T, are picked uniformly at random and
independently. Then, we set:

Q) =(\"1+El")xK,.

Server responses to queries. Due to the shape of mask
matrices, one can reduce the download communication com-
plexity of the scheme. Indeed, the i-th server must produce

only response symbols corresponding to ones in row ¢ of

masks K7,..., Kj. Fori <k we get
— i(i — 1)
k(d—k+1 k=0 =k(d—k+1i)—
(@ =kt D) 3ok = ) = kld =k i) = =5

ones in ¢-th rows. Similarly, for ¢ > k the i-th server must
compute only dk — k(k — 1)/2 response symbols.

Recovery of X fo, The recovery is run column-wise, from
column d down to column 1. For each step j, 1 < j < d, the
goal is to retrieve column vectors M /o-*[., j] along with some
random vectors.

o Forj e {k+1,...,d}. A precise description of the recov-
ery algorithm is given in the proof of Lemmal(l} In short,
it consists of running, independently on each column,
the reconstruction of the PIR scheme over an MDS code
described in [[13]]. Indeed, the part of the database corre-
sponding to the j-th column — namely C-, j] — can be
viewed as an [n, k] MDS-coded database. This procedure
allows the user to recover striped columns M /o[-, 5] of
the desired file, but she can also collect random vectors
S ASMIS[ ] € Fr forall 1 < 0 < k.

e For j € {1,...,k}. At step j, one can assume that for
every j' > j + 1, the user has already collected

- M/o:s[. '] for every 5, €{1,...,S5}, and

- random vectors ), ’SM fis [ J'] € Fyy for every

1<¢<Ek.

Since matrices M ¥ are symmetric, the user knows
PP /\{’st’s[i,j] for every j +1 < i < d and every
1 < ¢ < j. Informally, this knowledge allows her to run
an [n — k + j,j]-MDS-PIR scheme on the data stored
on the j-th column. The retrieval process is described
precisely in the proof of Lemma [2| It ensures that the
user can retrieve M/0:%[., j] for all s, and random vectors
>t A M5, 4] for every 1 < € < j.

We start by giving a simple example before diving into

technical proofs.

Example 2. We use the (6,3,4) PM-MBR regenerating code
described in Example (I} For this purpose, the files are divided
into S = n — k = 3 stripes, and the user sends k = 3 query
vectors:

For f = fo, the first ({ = 1) query vector
1 2 3 ] .
(Q{O’ ,Q{O’ ,Q{“’ ) consists of matrices:
0 0 uy
0 Ul uy
u1 uy ug
ur+1 wur+1 wup+1 u1+1
uy uy uq
u1 Ul Ul
0 0 v 1)1
0 v v
vy vy vy
v1 v1 v1
vi+1 vi+1 v +1 'Ul+1
U1 U1 vl
and

0 0 w1

0 w1 w1

w1 w1 w1y wl
w1 w1 w1

w1 wi wi

wr+1 wi+1 wp+1 w1+1



TABLE II
RESPONSES TO THE FIRST QUERY IN EXAMPLE[Z]

Response column R [-, 4]
Server S1 Z?:1 S5 )\{’SCf»S[l,4]
Server Sy ZJ};:1 S ACTE2, 4]
Server S3 2?21 Zg’zl )\{’SCfv? [3,4]
Server S4 Z?:1 S 3 ASCT s[4, 4] + CFo 1[4, 4]
Server S5 Zf:zl S /\{’SCfvS[S, 4] + Cfo:2[5, 4]
Server S5 | S5y o0y M °CH[6,4] + CT03[6, 4]

where (uy,v1,w;) = ()\{0’1,/\{0’2,)\{0’3). Queries for [ #+
fo can be derived from previous matrices by removing the
“4+1” pattern. Similarly, the second ({ = 2) query vector

,1 0,2 0,3\
(@, Q. Q) is:
0 0 ug u 0 0 V2 V2
0 U2 (%) U2 0 v2 V2 v2
0 ug + 1 uo + 1 ug + 1 0 Vo Vo Vo
0 U Uuo U ’ 0 wva+1 wvo+4+1 wa+1 ’
0 Ug Uug ug 0 vy Vo Vo
0 U2 U2 uo 0 vo V2 vo
and
0 0 w2 w2
0 w2 w2 wo
0 wa wa wo
0 wo wo wo ?
0 we+1 w2+1 wa+1
0 w2 w2 wa

where (ug,ve,ws) = ()\fo’l )\fO’Q )\fo’ ), and the third (¢ =
3) query vector (Q§", Q" 7Q30 3) s:

0 0 u3 u3 0o 0 v3 v3
0 0 wus+1 wus+1 0o 0 v3 v3
0 0 us us 0 0 w3+1 vy + 1
0 0 us us ) 0 O v3 v3 ?
0 O u3 u3 0O O v3 v3
0 0 u3 u3 0 0 v3 v3
and

0O O w3 w3

0 0 ws w3

0 0 ws ws

0 0 ws3+1 wz+1 ’

0 0 w3 w3

0 0 ws ws

where (uz, vz, w3) = ()\go’l,)\go’2,)\§°’3).

e Decodability: Decoding is done iteratively from column
d =4 to column 1.

* 4-th column. Responses to the first query are listed in

Table

The column vector Ry[-,4] represented in Table 2| can
be viewed as a random linear combination of codewords
CFs[-,4] € RS3(z) C FC, corrupted with 3 erasures.
Precisely, let us denote the random message

3

m: ZZ)\féMﬁ

f=1s=1

4] e Fy,

the random codeword
F 3

a:=¥m= ZZ)\fSCfS

f=1s=1

| € RS3(x),

and the erasure vector

b= (0,0,0,C70:1[4, 4], C/o-2[5, 4], C/o3[6,4]) .

Also, let V|, 1.3] be the submatrix of ¥ formed by its three
first columns. Note that we have Ri[-,4] = a + b and

Ry, 4)j1:3) = ajji3) = W[, 1.3)M[1:3), Since my = by =
by = b3 = 0.

The submatrix W[, 1.3) is invertible, hence one can recover
my(1.3]- Then, one can successively get m since my = 0,

a = ¥m, and b = Ry[-,4] — a. Notice that the recovery of
a and b succeeds because RS3(x) has dimension 3 and is
MDS, and the erasure vector b has weight at most 6 — 3 = 3.

For Ry|-, 4], the reasoning is similar, except that the erasure
vector is now

b’ = (0,0,C701[3,4],CT0-2[4, 4], 0T[5, 4],0) "

Hence its support is {3,4,5}, so we need to use W\, (1.2.6}]
instead of W[, 1.3). Then, the user can also extract

3
ZZch’ 4] € RS3()
f=1s=1

by solving a linear system, and gets b'.
Following the same reasoning, from Rs|-,

F 3
S Ao

f=1s=

4] the user gets

4] € RS3(x)

—

and
(0,C702[2,4], CF03(3, 4], CPo-1[4,4],0,0) T

Now notice that for each s € {1,2,3}, the user has
recovered 3 symbols of Cf0:[. 4] (the coordinates of these
symbols depend on s). Since CYo-*[. 4] is the encoded
version of MYo:*[. 4] in RS3(x), an MDS code of di-
mension 3, the user can recover the 3 message symbols
M7oss[1,4), M7Fo-s[2, 4], MFo-5[3 4],

Finally, the user also retrieves random symbols

F 3

DD oMM i)
f=1s=1
for every £ € {1,2,3} and every i € {1,2,3}.
The retrieval described above achieves a PIR rate of 3/6.

* 3-rd column. Here the (column) storage code is a
[6,4] MDS code since the third column of message matrices
M5 has 4 non-zero entries. However, conditioned on the
information retrieved from column 4, it can be regarded as
a [6,3] MDS storage code. Namely, recall that M7*[3,4] =
M7-5[4,3] for every f,s. Hence, from the previous decoding
step, the user knows M7o5[4,3] for every s € {1,2,3}, as
well as random symbols

F 3

SN Al M4,

f=1s=1

Sor every ¢ € {1,2,3}.



Now, the user can write

Ri[-,3) = ®po i (3O N ML 3])
fs

+ (Z )‘578va8[4’ 3]) \I’[*,4:4] + béa
f,s

where W1, .. denotes the sub-Vandermonde matrix with
columns from a to b, and b, is an erasure vector con-
taining some desired information. For instance, we have
by = (0,0,C%01[3,3],Cfo:l[4,3],CTo:1[5,3],0)T. By sub-
tracting (3_; )\{’SMf’S[él, 3]) W1, 4:4) from Ryl-,3], the user
can thus recover by as an erasure corrupting the [6,3] MDS
codeword W, 1.3 (> ¢ )\g’SvaS[.7 3]). She can then deduce
Mo:s[. 3] for every s € {1,2,3}, along with randomness
Do fs A M5 3] for every € € {1,2,3)}, with a rate 3/6.

Notice that the decoding could be performed precisely
because the user is able to use some information previously
collected during the decoding of the 4-th column.

x 2-nd column. For this column, server Sy does not
send any response. Using the same techniques as for 3rd
column, the user can represent responses Ry[-,3] as a sum
of 3 components: (i) previously collected information

Z )\5"3 (Mf’s[47 2| (1.5,4:4) + M7P[3, 2]‘1’[1:573:3])
fs

since M¥2[4,2] = M7*[2,4] and M'*[3,2] = M/*[2,3]
are known, (ii) a codeword from a [5,2] MDS code

Z )\578 (Mf’s[la 2]W(1:5,0:0) + M2, 2]‘1’[1:5,2:2])’
fys

and (iii) an erasure containing symbols of the requested file.
Similarly to 4-th and 3-rd columns, by solving linear systems,
the user retrieves requested data M'0-*[- 3] for every s, and
random symbols 3 ; . )\Z’SMf’S[-,?)] for every (. Here the
retrieval rate is 3/5.

* 1-st column. Servers 1 and 2 do not send any response.
Analogously to steps 2 and 3, conditioned on previously
retrieved information, the restriction of the storage code to
servers 3 to 6 is equivalent to a [4,1] MDS code. This allows
the user to decode the last part of the file (M70*[1,1] for
every stripe s) at rate 3/4.

Finally, the PIR rate is p = % = % = 0.54. This
rate is larger than 1 — % =1- % = % = 0.5 which is the
asymptotic capacity of scalar MDS-coded PIR schemes, but
less than 1 — % =1- % = % = 0.625, the asymptotic

capacity of scalar MDS-coded [nd, B]-coded PIR schemes.

e Privacy: Each query received by a server is of the form

where z € F is uniformly random, and the number of zeroes
only depends on the server and the stripe index. Therefore,
the scheme is private.

Bl['aj] Bf['v.ﬂ Bk['a]]
0 0 0
: : Clotf2, )
0 Clon=Fin'— k41,
Clolk+2—4¢,4] 0
0 : :
Clo k4 1,5] | ClomnFin+1 4,5
: 0
Clom=Fn, 4] 0 0

Fig. 3. Representation of vectors By[-, j] introduced in Lemma for some
je{k+1,...,d}

D. Analysis

In this section, we prove the correctness of the PIR scheme
introduced in the previous section.

Lemma 1. Let j € {k + 1,...,d} be a column index.
Then, conditioned on (Ry[+,j], ..., Ri[+, j]), the following are
determined:
o the j-th column M70*[-, j] of the desired file, for every
stripe index s € {1,...,n —k};
o random vectors 3, )\g’st’S[-,j] € Fy for every 1 <
(< k.

Proof. Let us fix 1 < ¢ < k. Since K[, j]| is the all-one
vector, we have

R[4 =D NPCI [ 1+ Y Bl g« € ).
s, f s

We can now define

Byl j] =Y E{**[-,j]«C/o*[-,j] € Fy,

S

and we see (illustrated in Figure [3) that

3)

iG] ifi=k4 s — 041,
Byli, j] = { 0 otherwise.

In particular, vector By[-, j] is supported on Jp == {k + 2 —
l,...,n+1—{}, and therefore has weight at most n — k.
Now, let us introduce

Al j] =Y APCT0L ] € RS ().
s, f

Since Ryli, j] = A¢li, j] for i ¢ Jy, the user knows k symbols
of Ay[-, j] indexed by an information set [1, n]\ J; for RSy (x).
Hence she can recover Ay[-,j| entirely by solving a linear
system of rank k. The recovery of By[-, j] = Ry[-, j|— A¢[-, j]
easily follows.

Let us now recall that C¥*[-, j] € RSy (x) can be written
as Y.F_ M7#[r, j]v,. Therefore, expressing

d

Al =D DA M) |

r=1 \ s,f

in the basis {~v1,...
code RS;(x)

,¥ay C Ty of the Reed-Solomon
D RSk(x) allows us to retrieve every



scalar 3, )\z’f M%-5[r, §]. Finally, Equation (3) shows that
the knowledge of Bil-,j],..., Bg[-,j] corresponds to the
knowledge of k symbols of each of the (n — k) stripes
Ccfoll. j],...,C%om=F[. 4]. Since each stripe lies in the
MDS code RSk (x), it leads to the recovery of all message
stripes MPo1[. 4],... MFon=F[. 4], O
Lemma 2. Ler j € {1,...,k}. For convenience we set n' :=
n—k+jand T ={k—j+1,...,n} Forevery 1 <{ <},
we define

R([T,j] = Ryl jliz = (Relk—j+1.5],. .., Re[n, j]) € F7.
Then, conditioned on (Ry[Z,j],..., R;[Z,j]) and on
SOXEME ), forall j+1<r<d, 1<0<],
f,s
“)

the following are determined:
o column M'o:*[. j] of the desired file, for every stripe
index s € {1,...,n—k};
o random elements 3y, )\f’st’s[r, jl € IFZI forall 1 <
r < j.
Proof. Let us fix £ € {1,...,j} and define ' = x|z =
(Th—jy1,---,Tn) and 7, = (v,)z for every r € {1,...,d}.
We decompose Ry[Z, j] = A¢[Z,j] + Be|Z, j] where
AT, 5] =Y M"CT*[T,j] € RSq(a')
f,s
and
By[Z,j] =Y E[’[T,j]x CT[L,j] € FY

S

are defined similarly to Lemma [I} One can rewrite A[Z, j]
as follows:

d
AT ) =D N° (Z M [r, j] vi)
f,s r=1
J
=Y (oA M)

r=1 fs
d
20 (AT
r=j5+1 fys
Therefore, using (@) one can deduce
d
AT =Y (ZA{’SMf’S[r,j])'y;.
r=j+1 f,s

Le us now define

R;[Ivj] = RK[I?J] - A%[I’]]
= (AE[I7J] - AZ[I,]D +B€[I7J] .

The set {vi,...,7;} forms a basis of RS;(x’), hence
AJ[Z,j] = AJZL,j] — A)[Z,j] € RS;(x). Also remark
that the vector By[Z,j] € F'[;/ is supported on Jp = {k +
2—4,...,n+1—4} CZ. Since T\ J; has size j, it is an
information set for the MDS code RS;(«’), and one can thus
recover A} [Z, j] and By[Z, j] from R}/[Z, j].

Similarly to Lemma [I] one can easily see that for
each stripe s, codewords symbols C/0:*[Z,j] and, thus,
message symbols M/0*[T j] can be obtained from
B,[Z,j],...,B,[Z, j]. Notice that this determines M /0:*[-, j]
entirely thanks to (4). Finally, A}[Z, j] and A}[Z, j] allow to
reconstruct Ay[Z, j]. Similarly to the proof of Lemma [1} the
basis {71, ...,7;} of RS;(z) leads to the recovery of random
elements >, )\{’SMf’S[T, jleF,foreveryl <r ¢<j 0O

Theorem 1. The scheme proposed in Section is secure
against non-colluding servers. Its PIR rate is:

_ 3n—k)2d—-k+1)

© 6dn—3nk+3n—k2+1°
Proof. Lemma (1| and Lemma [2| ensure that the user retrieves
the correct file X /0 as long as the servers Sy, ..., S, follow
the protocol described in Section Since the servers are
assumed not to collude, the only way a server S; can learn
information about the identity fy of the required file, is from
its own set of queries Q[i,+] == (Q}*[i,*])s.1.s- For fixed i,
we have

Q-] =(0,...,0,2,...,2)

where z = )\g’sﬁ—l ifi+f =k+s+land f = fo,and z = /\5’5
otherwise. Since {)\i;’s} are i.i.d. uniform random variables
and also independent to fy, we have H(z|fy) = H(z),
hence the mutual information I(Q;°[i,]; fo) = 0. Therefore
H(fo|lQli,+]) = H(fo) and the scheme is private.

Let us now compute the PIR rate. The file X /0 consists of

(n—k)B = (n—k)(k(d — k) + k(k +1)/2)

symbols over F,. For columns j € {k+1,...,d}, the user
downloads k responses from each server Si,...,S,. Hence
she gets a total of nk(d — k) symbols for all these steps. For
columns j € {1,...,k}, the user downloads j responses from
servers Si_;11, ..., Sy, leading to a total of Z§=1 Jj(n—k+j)
symbols for those steps. Therefore, we get the following PIR
rate:

(n— ) (@ = k)l + E0)

_ 5
P ARkt jn—k+]) ®

3n—k)(2d—k+1)
6dn —3nk+3n—k24+1°

O

As a function of n, k, B, the PIR rate given in Theorem [I]
can be written as
k
1-u

p= 1 _ DG (6)
6nB

Indeed, starting from Equation (5) we get
(n—k)B (n—k)B
B+ Y i k) nB - HEREED
leading to the expected expression.
Our results also provide a lower bound on the capacity of
PIR schemes based on MBR codes. Notice that our achieved




rate does not depend on the number of files. Hence this rate
is achievable for any number of files.

Corollary 1. The capacity cypr of (n, k,d)-MBR-coded PIR
schemes satisfies:

_k
n

1— k(k+1)(k—1) °
6nB

CMBR =

Tightness of this bound is left as an open question.

IV. PIR RATE

Since the optimality of our construction remains undecided,
we propose some numerical and asymptotic analysis of the PIR
rate of our schemes.

A. Bounds on the PIR rate
Lemma 3. Let 1 < k < d < n such that k < n. The PIR rate
p of the scheme from Theorem [I] satisfies:

k B
1-2<p<l——.
n nd

Proof. If 1 < j <k, it is clear that n — k 4+ j < n. Using this
in Equation (), we get

>(n—k)((d—k)k+k(k+1)/2)_ _1_k
n(d—kk+nY 5, j n n’
The right-hand-side inequality is a bit more technical to

state. Using the expression of p given in Theorem [I] it is
equivalent to prove that

A = (nd — B)(6dn — 3nk + 3n — k? + 1)
—3(n—k)(2d—k+ 1)nd

is non-negative. A computation shows that
2A = (k — 1)[6n%d — (2nd — 2kd + k* — k)(3n + k + 1)].

If d = k, then we get 2A = k(k—1)(k+1)(n—(k+1)) >0
as long as n > k + 1 which must hold for non-degenerated
MBR codes.

If d > k+ 1, as it is for a non-trivial regenerating code,
then we get
2A = (k — 1)(d((k— 1)(4n + 2k + 3) + 2n + 2)
—(k—-D(k+1)(Bn+k+ 1))
> (k4+1)(k—1%*n+k+2)

+2(k+ 1)(k—1)(n+1)
>0.

O

B. Comparison with the multi-file PIR scheme of Dorkson and
Ng
In [27] Dorkson and Ng proposed a PIR scheme over PM-
MBR codes in the context of multi-file retrieval, i.e. any set of
p > 1 files Xfo, ... X/r-1 can be simultaneously retrieved.
In the current work, retrieving p files remains possible by
iterating the 1-file PIR protocol p times. Notice that this
routine achieves the same PIR rate as for a 1-file PIR scheme.
In the general case, the PIR rate obtained in [27] is p’ = %,
under the additional constraint that n = pk+ d. We notice that
p’ can be reformulated as follows:
, n—d B
pl=——

n—d B

kd”

For k < n (which is the case for non-degenerate PM-MBR
codes), this results into p’ < 1— % and using Lemmawe get
p' < p, where p is the PIR rate achieved in the current work.
We emphasize our improvement upon [27] with the numerical

and asymptotic analyses proposed in Figure

nd  n

C. Comparison with the asymptotic capacities of MDS-PIR
schemes

Families of (n, k, d)-MBR codes and [n, k]-MDS codes both
allow to retrieve files by contacting only k£ nodes among
n. MBR codes are less efficient in terms of storage, since
their information rate is B/(nd) < k/n. The additional
redundancy of MBR codes should thus lead to PIR schemes
with larger PIR rate. The goal of this section is to quantify
this improvement.

Our scheme is strongly linear [31]], [32], hence the retrieval
procedure and the PIR rate do not depend on the number of
files. Furthermore, as known PIR capacities converges to the
asymptotic capacity exponentially fast for F' — oo, we will
compare our PIR rate to the known asymptotic PIR capacities.

Let us outline three relevant comparisons with existing or
conjectured PIR capacities.

1) The asymptotic PIR capacity of [n,k]-MDS-coded
schemes is 1 — k/n [9]. As we have seen in Lemma
our PIR scheme over (n, k,d)-MBR codes has a better
PIR rate p. While PM-MBR codes are not MDS, this is
a relevant comparison in the case where any k out of
n servers must be able to recover any file. As Figure [3]
illustrates, we can trade off storage space for PIR rate.
Indeed, while MBR codes store more than a correspond-
ing MDS code, they has a better PIR rates when given
by the product matrix construction.

2) If we want to compare with PIR schemes over [nd, B]-
coded data, one can model each server storing a = d
symbols as a d-tuple of “virtual” or “sub”-servers storing
one symbol each. Using this representation, those d-tuples
of sub-servers collude with each other (since queries are
sent to actual servers For this reason, it is relevant to
compare the PIR rate of this scheme with the (conjec-
tured) asymptotic capacity of a PIR scheme for an [nd, B]

'Note that the assumption of full d-collusion is pessimistic since in this
setting, not any d servers can collude, rather there exist disjoint sets of
colluding servers that are known a priori, cf. [33].
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(a) PIR rate of both schemes with n = 10 and & = 3. For
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of p, since n = pk + d. The larger the p, the larger the
PIR rate of [27], but it remains bounded by the present
scheme for every admissible value of p.
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(b) PIR rate of both schemes, with an asymptotic number
of nodes n. Each curve represents a distinct value of
k/n € {0.1,...,0.9}, and we plot the PIR rate versus
d/n.

Fig. 4. Comparison between PIR rates of the multi-file PIR scheme in [27]] and the PIR scheme in the present paper.

MDS-coded storage system allowing collusion of servers
of size up to @ = d. For the very important class of
symbol-separated PIR schemes [32] this capacity is

] — B+d—1
nd .

L= (55"
It is conjectured that the capacity converges to 1 — Btli‘fi’l
as the number of files grows, even without the assumption
of symbol-separation [|14].
Finally, one can compare the PIR rate to 1 — %, which
is the asymptotic capacity of PIR schemes over [nd, B]-
linear codes without any collusion of servers. As the
specific collusion pattern [33] of our MBR PIR scheme
lies somewhere between no collusion and d-collusion, it
makes sense to compare to both.

3)

Example 3. In the PIR scheme presented in Example |2| each
file contains (n — k)B = 27 symbols, and the user needs to
download 18 4+ 18 + 10 + 4 = 50 symbols. Hence, the PIR
rate is p = 27/50 which is larger than 1 — k/n = 1/2, the
asymptotic PIR capacity of an [n, k] MDS code.

The conjectured asymptotic PIR capacity of d-colluding
[nd, B] MDS codes is also 1— 2251 = 1/2, and thus remains
below the PIR rate of the present construction. However,
the asymptotic capacity of non-colluding PIR schemes over
[nd, B]-linear codes remains larger (1— % = g ), as expected.

A comparison between the rate of the current PIR scheme
with the other relevant capacity expressions is shown in
Figure [5] for different values of n, k and d. We can see that
the PIR rate of our scheme is larger than the asymptotic PIR
capacity of an [n,k] MDS code, and for a reasonably high
value of d, the conjectured asymptotic PIR capacity of d-
colluding [nd, B] codes.

V. CONCLUSION

In this paper, a PIR scheme is built for the product-matrix
storage systems in the MBR setting. Using the symmetry

inherent to PM codes improves the download communication
complexity, achieving a PIR rate larger than 1 — k/n, ie.,
larger than the asymptotic PIR capacity of [n, k] MDS-coded
storage systems.

A main step forward in the topic would be to compute
the actual capacity of MBR-coded PIR schemes. Another
possible further work is to consider the setting of colluding
servers. A natural idea is to adapt the constructions of Freij-
Hollanti et al. [14], [16], [33], by replacing matrices )\5’51
by concatenations of Reed-Solomon codewords. However, the
extraction of the randomness — necessary to decrease the
communication cost of our schemes — cannot be done as
easily as in the non-colluding case, because projected random
symbols interfere with themselves.
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