
HAL Id: hal-01951942
https://hal.science/hal-01951942

Preprint submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster cofactorization with ECM using mixed
representations

Cyril Bouvier, Laurent Imbert

To cite this version:
Cyril Bouvier, Laurent Imbert. Faster cofactorization with ECM using mixed representations. 2019.
�hal-01951942�

https://hal.science/hal-01951942
https://hal.archives-ouvertes.fr

Faster cofactorization with ECM using mixed
representations

Cyril Bouvier and Laurent Imbert

LIRMM, CNRS, Univ. Montpellier, France

Abstract. This paper introduces a novel implementation of the ellip-
tic curve factoring method specifically designed for medium-size integers
such as those arising by billions in the cofactorization step of the Num-
ber Field Sieve. In this context, our algorithm requires fewer modular
multiplications than any other publicly available implementation. The
main ingredients are: the use of batches of primes, fast point tripling,
optimal double-base decompositions and Lucas chains, and a good mix
of Edwards and Montgomery representations.

Keywords: Elliptic curve method, cofactorization, double-base representation,
twisted Edwards curve, Montgomery curve, CADO-NFS

1 Introduction

The Elliptic Curve Method (ECM) invented by H. W. Lenstra Jr. in 1985 [18]
is probably the most versatile algorithm for integer factorization. It remains the
asymptotically fastest known method for finding medium-size prime factors of
large integers. The 50 largest factors found with ECM have 68 to 83 digits; they
are recorded in [26]. ECM is also a core ingredient of the Number Field Sieve
(NFS) [17], the most efficient general purpose algorithm for factoring “hard”
composite integers of the form N = pq with p, q ≈

√
N . ECM is equally essential

in all NFS variants for computing discrete logarithms over finite fields. In NFS
and its variants, ECM is used as a subroutine of the sieving phase. It is also
employed in the descent phase for discrete logarithms computations. Together
with other factoring algorithms such as the Quadratic Sieve, p − 1 or p + 1,
it is extensively used in the so-called cofactorization step. This important step
consists of breaking into primes billions of composite integers of a hundred-ish
bits that are known to have no small prime factor. The time spent in ECM
for these medium-size, yet hard to factor integers is therefore substantial. For
example, with CADO-NFS [24], the cofactorization time for a 200-digit RSA
number represents between 15 % and 22 % of the sieving phase. According to [9],
cofactorization represented roughly one third of the sieving phase and 5% to 20%
of the total wall-clock time in the current world-record factorization of a 768-bit
RSA number [16]. For larger factorization or discrete logarithm computations,
Bos and Kleinjung anticipate that the time spent in cofactorization, notably
ECM, becomes more and more important [9].

1

Since its invention, ECM has been the subject of many improvements [27]. It
has been shown that the choice of “good” elliptic curve representations and pa-
rameters plays an important role in both the efficiency of ECM and its probabil-
ity of success. Historically, Lenstra considered short Weierstrass curves together
with Jacobian coordinates. Then, Montgomery introduced a new model for el-
liptic curves together with a system of coordinates perfectly suited to ECM [22].
Montgomery curves have been the best option for about twenty five years. This
setting is used in GMP-ECM [28], a state-of-the-art implementation of ECM.
More than twenty five years later, building over the works of Edwards [13], Bern-
stein et al. proposed an efficient implementation of ECM using twisted Edwards
curves [4]. Yet, there is no clear general answer to the question of which curve
model is best suited to ECM.

In this work, we propose an algorithm specifically designed for the medium-
size integers that occur in the cofactorization step of NFS. We extend ideas
from Dixon and Lenstra [12] and from Bos and Kleinjung [9] by processing
the scalar of the first stage of ECM by batches of primes. Unlike [9] and [15]
which only consider NAF decompositions for these batches, we take advantage
of the fastest known tripling formula on twisted Edwards curves [6] together
with optimal double-base decompositions. Finally, we also use Lucas chains
by exploiting the birational equivalence between twisted Edwards curves and
Montgomery curves and by switching from one model to the other when appro-
priate. Our algorithm performs fewer modular multiplications than any other
publicly available implementation. Our results are implemented in the CADO-
NFS software [24]. Updates and more detailed data will be posted online at
http://eco.lirmm.net/double-base_ECM/.

2 Preliminaries

In this section, we present the basics of ECM. Then we recall the definitions of
Montgomery curves and twisted Edwards curves together with the associated
point representations and arithmetic operations.

In order to compare the cost of the different elliptic operations and scalar
multiplication algorithms, we count the number of modular multiplications (M)
and squarings (S). To ease the comparisons, we assume that both operations take
the same time (i.e. 1S = 1M) as in other ECM implementation papers [4,9,15].1

2.1 The Elliptic Curve Method

Lenstra’s elliptic curve method [18] is often viewed as a generalization of Pollard’s
p−1 algorithm in the sense that it exploits the possible smoothness of the order
of an elliptic curve defined over an unknown prime divisor of a given composite
integer N .
1 This claim is also supported by our experiments with CADO-NFS modular arith-
metic functions for 64-bit, 96-bit and 128-bit integers.

2

http://eco.lirmm.net/double-base_ECM/

ECM starts by choosing an elliptic curve E over Z/NZ and a point P on
E. In practice, one usually selects a “random” curve EQ : y2 = x3 + ax + b
over Q together with a nontorsion point P ′ on EQ, and then reduces the curve
parameters a, b and the coordinates of P ′ modulo N to get E and P . Unlike
elliptic curves defined over finite fields, the set of points E(Z/NZ) contains non-
affine points that are different from the point at infinity, i.e., projective points
(X : Y : Z) with Z 6= 0 and Z not invertible modulo N . For these “special”
points, gcd(N,Z) gives a factor of N . The purpose of ECM is thus to produce
these “special” points with a reasonably high probability and at reasonably low
cost.

Let p be an unknown prime dividing N , and let Ep be the curve defined over
Fp by reducing the equation of E modulo p. The goal of ECM is to produce
(virtually) the point at infinity on Ep while carrying-out all the computations
on E. ECM does so by computing Q = [k]P ∈ E for a fixed scalar k. It achieves
its goal whenever #Ep divides k. To that end, k is chosen such that, #Ep | k
whenever #Ep is B1-powersmooth for a carefully chosen bound B1. (An integer
is B-powersmooth if none of the prime powers dividing that integer is greater
than B.) Most current implementations use k = lcm(2, 3, 4, . . . , B1) as it offers
an excellent balance between efficiency and probability of success. For B1 ∈ N,
we have:

k = lcm(2, 3, 4, . . . , B1) =
∏

p prime ≤B1

pblogp(B1)c (1)

In the following, the multiset composed of all primes p less than or equal to B1,
each occurring exactly blogp(B1)c times, is denotedMB1 .

The approach described so far is often referred to as “stage 1”. There is a
“stage 2” continuation for ECM which takes as input an integer bound B2 ≥ B1
and succeeds if the order #Ep is B1-powersmooth except for one prime factor
which may lie between B1 and B2.

In this article, we focus on the use of ECM as a subroutine of the NFS
algorithm. In this case, the values of B1 and B2 are relatively small and usually
hardcoded. For example, in CADO-NFS [24], the ECM computations are done
with a predefined set of values for B1 and B2 (some possible values for B1 are
105, 601 and 3517). In this context, it may be worthwhile to perform some
precomputations on the hardcoded values.

2.2 Montgomery curves

Historically, the elliptic curve method was implemented using short Weierstrass
curves. Montgomery curves were described in [22] to improve the efficiency of
ECM by reducing the cost of elliptic operations. Montgomery curves are used in
many implementations of ECM, for example in GMP-ECM [28], the most-widely
used ECM implementation.

Definition 1 (Montgomery curve). Let K be a field and A,B ∈ K such that
B(A2 − 4) 6= 0. A Montgomery curve, denoted EM

A,B, is an elliptic curve whose

3

affine points are all (x, y) ∈ K2 such that

By2 = x3 +Ax2 + x. (2)

In practice, projective coordinates (X : Y : Z) are used to avoid field in-
versions. Montgomery proposed to drop the Y coordinate, performing the com-
putations on X and Z only. In the so-called XZ coordinate system, a point is
denoted (X : : Z). An immediate consequence is that one cannot distinguish
between a point and its opposite. This implies that, given two distinct points on
the curve, one can compute their sum, only if one knows their difference. This
new operation is called a differential addition.

As seen in Table 1, XZ coordinates on Montgomery curves allow for very
fast point doubling and differential addition. However, the condition imposed
by the use of a differential addition forces to use specific scalar multiplication
algorithms (see Section 3.3).

Note that the doubling formula is often accounted for 2M + 2S plus one
multiplication by a small constant. Yet, this operation count is relevant only
when the curve coefficient A is chosen such that (A+2)/4 is small. In Table 1 we
report a cost of 5M for dDBL because our choice of parameterization prevents
us from assigning any particular value to (A + 2)/4. We give more details in
Section 2.5.

Table 1. Arithmetic cost of elliptic operations for Montgomery curves in XZ coordi-
nates under the assumption 1S = 1M

Elliptic Operation Notation Input → Output Cost

Differential Addition dADD XZ → XZ 4M + 2S = 6M
Doubling dDBL XZ → XZ 3M + 2S = 5M

2.3 Twisted Edwards curves

In [13] Edwards introduced a new normal form for elliptic curves which, among
other advantages, benefit from fast elliptic operations. These curves have been
generalized by Bernstein et al. [2]. A new coordinate system with a faster group
law was introduced in [14], and their usage in ECM was considered in [4,3].

Definition 2 (Twisted Edwards curve). Let K be a field and let a, d ∈ K
such that ad(a − d) 6= 0. A twisted Edwards curve, denoted EE

a,d, is an elliptic
curve whose affine points are all (x, y) ∈ K2 such that

ax2 + y2 = 1 + dx2y2. (3)

4

In practice, the fastest formulas are obtained using a combination of three
coordinates systems denoted projective, completed and extended. Input and out-
put points are always represented in extended or projective coordinates, whereas
completed coordinates are mainly used as an internal format. In the following,
we shall use the best known formula from [14] for point doubling and point
addition on twisted Edwards curves. Besides, an important feature of twisted
Edwards curves is the existence of an efficient formula for point tripling [6].

In this article, we only consider twisted Edwards curves with a = −1. These
curves allow for faster arithmetic and enjoy good torsion properties with regard
to their use in ECM [1]. (See Section 2.5 for more details.) The input and out-
put formats as well as the costs of the different elliptic operations that will be
considered in the following are summarized in Table 2.

Table 2. Arithmetic cost of elliptic operations for twisted Edwards curves with a = −1
under the assumption 1S = 1M

Elliptic Operation Notation Input → Output Cost

Addition
ADDcomp ext. → comp. 4M
ADD ext. → proj. 7M
ADDε ext. → ext. 8M

Doubling DBL ext. or proj. → proj. 3M + 4S = 7M
DBLε ext. or proj. → ext. 4M + 4S = 8M

Tripling TPL ext. or proj. → proj. 9M + 3S = 12M
TPLε ext. or proj. → ext. 11M + 3S = 14M

Contrary to Montgomery curves, twisted Edwards curves have a true elliptic
addition. Hence the scalar multiplication can be computed using every generic
algorithm available.

2.4 The best of both worlds

The best choice between Montgomery and Edwards curves for implementing the
first stage of ECM depends on many parameters on top of which are the size
of k (which depends on B1), the memory available to store precomputed values,
and the scalar multiplication algorithm used to compute [k]P . In this article,
we exploit the best of both worlds by mixing twisted Edwards and Montgomery
representations. We exploit a result from [2] which states that every twisted Ed-
wards curve is birationally equivalent over its base field to a Montgomery curve.
To the best of our knowledge, mixing Edwards and Montgomery representations
was first suggested in [10] to speed-up arithmetic on elliptic curves in the x-
coordinate-only setting. More recently, the idea has also been employed in the
SIDH context [19].

5

Let K be a field with char(K) 6= 2. According to [2, Theorem 3.2], every
twisted Edwards curve EE

a,d defined over K is birationally equivalent over K to
the Montgomery curve EM

A,B , where A = 2(a+d)(a−d) and B = 4/(a−d). The
map

(x, y) 7→ ((1 + y)/(1− y), (1 + y)/(1− y)x) (4)

is a birational equivalence from EE
a,d to EM

A,B . (see [2, page 4] for a proof.) Using
this map, we define a partial addition formula, denoted ADDM, which takes two
points in extended coordinates on a twisted Edwards curve and computes their
sum in XZ coordinates on the equivalent Montgomery curve. We express ADDM
as the composition of the group law on the completed twisted Edwards curve
E

E

a,d and a partial conversion map, where

E
E

a,d = {((X : Z), (Y : T)) ∈ P1 ×P1 : aX2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2}.

(See [8] for more details on completed twisted Edwards curves and [3] for their
usage in the ECM context.)

Given two points in extended coordinates on a twisted Edwards curve, the el-
liptic operation denoted ADDcomp computes their sum in completed coordinates
((X : Z), (Y : T)) in 4M. Then, given that point in completed coordinates, one
gets a representative in extended coordinates in another 4M using the map

((X : Z), (Y : T)) 7→ (XT : Y Z : ZT : XY). (5)

If only projective coordinates are needed, one simply omits the product XY .
Observe that in the addition formulas on twisted Edwards curves introduced
in [14] and recorded in Bernstein and Lange’s Explicit Formula Database [7],
the completed coordinates of the sum correspond to the four intermediate values
((E : G), (H : F)).

For X 6= 0, the composition of the maps (4) and (5) is well defined. The map

((X : Z), (Y : T)) 7−→ (T + Y : Z(T + Y)/X : T − Y) (6)

sends points on a completed twisted Edwards curve with X 6= 0 to projective
points on the equivalent Montgomery curve. For XZ coordinates, one simply
omits the second coordinate:

((X : Z), (Y : T)) 7−→ (T + Y : : T − Y). (7)

Therefore, when defined, the operation ADDM, which takes as input two
points of a twisted Edwards curves in extended coordinates and computes their
sum on the equivalent Montgomery curves in XZ coordinates, costs only 4M
(see Table 3).

Let us now focus on the points for which (6) is not defined. The completed
points with X = 0 correspond on EE

a,d to (0,−1), the affine point of order 2,
or (0, 1) the point at infinity. Using (7), the completed point ((0 : 1), (−1, 1)) of
order 2 is mapped to the point (0 : : 1) of order 2 on the Montgomery curve. In
this case, the mapping to XZ coordinates is thus well defined.

6

However, the map (7) sends the completed point at infinity ((0 : 1), (1 : 1)) to
the point (2 : : 0) on the Montgomery curve, which is different from (0 : 1 : 0), the
point at infinity on EM

A,B . Nevertheless, in our context, using the point (2 : : 0)
in place of the point at infinity (0 : : 0) is sufficient. Indeed, for all prime p
dividing N , if the computations on the Edwards curve produce the point at
infinity modulo p, what is important is that the map (7) returns a point on
the equivalent Montgomery curve with Z ≡ 0 (mod p). From the formulas for
dDBL and dADD, it is easy to see that the remaining computations on the
Montgomery curve also produce a point with Z ≡ 0 (mod p). We have thus
preserved the fact that p should divide the greatest common divisor between N
and the Z-coordinate of the final point.

Table 3. New elliptic operation to switch from twisted Edwards curves to Montgomery
curves

Elliptic Operation Notation Input → Output Cost

Add & Switch ADDM Twisted Edwards ext. → Montgomery XZ 4M

Note that after an ADDM, moving back to the twisted Edwards curve is
not possible since the map (7) is not invertible, as the Y coordinate on the
Montgomery curve is “lost”. Nevertheless, as will be explained in Section 3, we
easily cincumvert this obstacle by processing all the computations on the twisted
Edwards curve before moving to the equivalent Montgomery curve for finalizing
the scalar multiplication. Therefore, we never need to convert a point from XZ
Montgomery back to the equivalent twisted Edwards curve.

2.5 Parameterization

In order to improve the probability of success of the ECM algorithm, we need
to be able to generate curves with good torsion properties. Infinite families of
curves with a rational or elliptic parametrization are used in the context of ECM
to generate many different curves. Many of the best families for twisted Edwards
curves have a = −1. So, restricting ourselves to twisted Edwards curves with
a = −1 not only improves the arithmetic cost but also allows us to use curves
with good torsion properties [1].

In practice, we use the parameterization from [3, Theorem 5.4] to generate a
twisted Edwards curve with a = −1. We only need to compute the coefficients
of the starting point in extended coordinates as the curve parameter d is never
used in the formulæ. For the equivalent Montgomery curve, we solely compute
the curve coefficient A since B is never used in the formulæ.

Using the parametrization from [3, Theorem 5.4] prevents us from choosing
the curve coefficient A of the associated Montgomery curve. By choosing A such
that (A + 2)/4 is small, we could have replaced, in the doubling formula, a

7

multiplication by a multiplication by a small constant. In our context, i.e., using
medium-size integers, the arithmetic gain is not significant. Thus, we favored
better torsion properties over a slightly lower theoretical arithmetic cost.

3 Scalar multiplication

After choosing a smoothness bound B1 and a point P on an elliptic curve E,
the core of the first stage of ECM consists of multiplying P by the scalar

k = lcm(2, 3, 4, . . . , B1) =
∏

p prime ≤B1

pblogp(B1)c

An elementary algorithm for computing [k]P thus consists of performing, for
each prime p ≤ B1, exactly blogp(B1)c scalar multiplications by p. These scalar
multiplications may be computed using any addition chain compatible with the
chosen curve E. If one uses the traditional binary addition chain, the number
of point doublings depends on the bitlength of p, whereas the number of point
additions is determined by its Hamming weight w(p). Reducing the number of
point additions by lowering the density of non-zero digits in the representation
of the scalar is the core of many efficient scalar multiplication algorithms.

In the ECM context, the scalar k is entirely determined by the smoothness
bound B1. We may therefore derive much more efficient algorithms for com-
puting [k]P . For example, instead of considering the primes pi one at a time,
one may multiply some of them together such that the weight of the product
w(
∏

i pi) is lower than the sum of the individual weights
∑

i w(pi). This idea was
first proposed by Dixon and Lenstra [12]. As an example, they give three primes
p1 = 1028107, p2 = 1030639, p3 = 1097101, of respective Hamming weights 10,
16 and 11, such that their product has Hamming weight 8. Beyond this example,
the idea is advantageous only if one can find “good” recombinations for all the
prime factors of k. Dixon and Lenstra used a greedy approach to find combi-
nation of primes by triples and managed to divide the overall number of point
additions by roughly three. At that time, finding such a partition of the multiset
MB1 by triples was the best they could hope for. Surprisingly, they did not
consider signed-digit representations to further reduce the overall cost. Clearly,
their approach becomes unpractical for larger B1 values and/or more general
prime recombinations. Twenty years after Dixon and Lenstra’s paper, Bos and
Kleinjung managed to generalize the idea to arbitrary recombinations of primes
and to extend its applicability to much larger B1 values [9]. Considering all pos-
sible partitions of MB1 being totally out of reach, they opted for the opposite
strategy. A huge quantity of integers with very low density of non-zero digits in
NAF form was first tested for smoothness. Then, among those integers that were
B1-powersmooth, a greedy algorithm was used to find a partition ofMB1 such
that the cost of the resulting sequence of operations was minimal. For B1 = 256,
the best chain found led to a scalar multiplication algorithm which require 361

8

doublings and only 38 additions. The decomposition of k = lcm(2, . . . , 256) into
15 batches of prime-products and their NAF expansions2 are given in Table 4.

Table 4. An example of the best chain found for B1 = 256 (see [9])

Batches of prime-products NAF expansion Cost

23 · 89 211 − 20 86 M
83 · 197 214 − 25 − 20 115 M
191 · 193 215 + 212 − 20 122 M
13 · 19 · 199 215 + 214 + 20 122 M
5 · 13 · 37 · 109 218 + 20 135 M
32 · 7 · 53 · 157 219 − 26 − 20 150 M
103 · 137 · 223 221 + 220 + 210 + 20 172 M
5 · 61 · 149 · 179 223 − 218 + 213 − 20 186 M
3 · 5 · 29 · 43 · 113 · 127 228 − 20 205 M
3 · 7 · 11 · 167 · 173 · 181 230 + 227 + 211 + 20 235 M
3 · 47 · 59 · 67 · 73 · 211 233 − 222 − 219 + 28 + 26 − 20 272 M
11 · 31 · 79 · 101 · 131 · 241 236 + 234 + 218 + 22 + 20 285 M
17 · 107 · 139 · 163 · 229 · 233 241 − 224 − 213 − 29 − 20 320 M
41 · 71 · 97 · 151 · 227 · 239 · 251 249 + 244 + 236 + 232 − 23 − 20 383 M
28 28 56 M

Total 2844 M

In the following, we shall use the term “block” to denote a batch of prime-
products such as those given in Table 4. For each block, Dixon and Lenstra simply
used addition chains, whereas Bos and Kleinjung took advantage of addition-
subtraction chains through NAF decompositions. In this work, we consider more
general decompositions in order to further reduce the overall cost. More precisely,
we use three types of representations: double-base expansions, double-base chains
(which contain NAF) and a subset of Lucas addition chains.

As an example, let us consider the primes p1 = 100003, p2 = 100019 and
p3 = 109831. Using the NAF decomposition, computing [p1]P requires 9 DBL,
7 DBLε, 6 ADD and 1 ADDε, resulting in 169 M. Similarly, [p2]P and [p3]P
require 169M and 168M respectively. The NAF representation of their product
only requires 447 M, i.e. 59 fewer multiplications than the cost of considering
p1, p2 and p3 independently.

2 You may have observed that two of the given expansions do not satisfy the non-
adjacent form, with two consecutive ones in their most significant positions. This is
simply because evaluating 3P as 4P − P is more expensive than 2P + P .

9

Let us now consider the following double-base representations of the same
three primes. We have:

100003 = 21531 + 2931 + 2631 − 2331 − 22 − 1 (8)
100019 = 21531 + 2931 + 2631 − 2231 − 1 (9)
109831 = 21233 − 2831 + 23 − 1 (10)

Using (8), one may thus compute [p1]P with 10 DBL, 5 DBLε, 1 TPL, 4 ADD
and 1 ADDε for a total cost of 158 M. Using (9) and (10), [p2]P and [p3]P
requires 150 M and 145 M respectively. On twisted Edwards curves, the usage
of triplings is thus already advantageous. Yet, the following double-base chain
for their product

(((((2231 + 1)2631 − 1)21433 − 1)2431 − 1)2433 − 1)2431 − 1, (11)

leads to a chain for computing [p1p2p3]P with 28 DBL, 6 DBLε, 10 TPL, 6 ADD
and 1 ADDε, for a total cost of 407 M. This represents an extra 40 M saving
compared to the NAF-based approach.

In the next sections, we detail the generation of double-base expansions and
double-base chains (which includes NAF) that are both compatible with twisted
Edwards curves. We also present our strategy for generating a subset of Lucas
chains for use with Montgomery curves.

3.1 Generation of double-base expansions

Let n be a positive integer, and let α, β be two pairwise integers. A double-base
expansion of n can be seen as a partition of n into distinct parts of the form
αaβb. In this work, we solely consider the special case (α, β) = (2, 3) and we
extend the usual notion of partition by allowing the parts to be either positive
or negative, such that

n =
m∑

i=0
±2di3ti , (12)

where (di, ti) 6= (dj , tj) for every 0 ≤ i < j ≤ m. Following the usual convention
for integer partitions, we assume that the parts form a non-increasing3 sequence
so that |2di3ti | > |2dj 3tj | for all 0 ≤ i < j ≤ m. The length of a double-base
expansion is equal to the number of parts in (12). Examples of double-base
expansions of lengths 6, 5 and 4 respectively are given in (8), (9) and (10).

Given a double-base expansion for n as in (12), one can compute [n]P with
D = maxi di doublings, T = maxi ti triplings and at most m additions using
an algorithm by Meloni and Hasan [23]. Their algorithm is inspired by Yao’s
method [25] and requires the evaluation and storage of at most m elliptic curve
points.

In order to limit the amount of additional storage in the resulting algorithms,
we generated double-base expansions with at most 4 terms, i.e. for m varying
3 in this case a decreasing sequence since the parts are distincts.

10

from 1 to 3. In practice, the memory requirements for the resulting algorithms
are very low (see Section 5) and comparable to Bos and Kleinjung’s low storage
setting.

In fact, setting such a low value for the maximal length of double-base ex-
pansions was necessary to reduce computational workload. Indeed, without any
restrictions, the total number of double-base chains with m+ 1 terms and such
that D ≤ Dmax and T ≤ Tmax is equal to

2m+1
(

(Dmax + 1)(Tmax + 1)
m+ 1

)
.

In our context, it was clearly more appropriate to let D and T cover larger ranges
than to increase m. In Table 5, we give the parameters for m, D and T that we
considered.

A few observations can be made to avoid generating the same double-base
expansion more than once. First, notice that a double-base expansion for n im-
mediately provides a double-base expansion for −n by switching the sign of all
the parts in (12). Hence, by imposing the sign of one of the terms, we generated
only double-base expansions for positive integers; hence dividing the work effort
by a factor two. We also noticed that a double-base expansion for n is easily
converted into a double-base expansion for any integer of the form n× 2a3b, by
adding a (resp. b) to each di (resp. ti). Therefore, we only generated double-base
expansions whose terms have no common factors. Given D > 0 and T > 0, the
number of double-base expansions of length m + 1 satisfying the above condi-
tions can be computed exactly using a classical inclusion-exclusion principle. For
completeness, we give the exact formula in Appendix A. In Table 5, we give the
total number of double-base expansions that we generated for m = 1, 2, 3 and
different intervals for D and T . For each double-base expansion, we tested the
corresponding integer for 213-powersmoothness. We then evaluated the cost of
Meloni and Hasan’s scalar multiplication algorithm for those remaining double-
base expansions. Unlike NAF decompositions, the double-base number system
is highly redundant. For each value of m, we removed duplicates by keeping only
double-base expansions of minimal cost. Yet, there might still exist duplicates
for different values of m. Finally, we observed that it is always faster to process
the powers of 2 after switching to Montgomery XZ coordinates. Thus, in order
to reduce memory and speed-up the combination step (see Section 4), we filtered
out all blocks corresponding to even integers. In Table 5, the column #db-exp
gives the numbers of different double-base expansions that we generated for
each value of m, the column #pow.smooth is the number of those expansions
which corresponded to B1-powersmooth integers, and the column #uniq (odd)
accounts only for expansions of minimal costs corresponding to odd integers.

As seen in Table 5, for m = 3, we had to drastically reduce the upper bounds
on D and T . Indeed, allowing D and T to span the intervals of values used
for m < 3 would have required the generation of around 1.84 · 1014 expansions.
Nonetheless, in order to generate more integers of potential interest, we consid-
ered a subset of double-base expansions, namely double-base chains.

11

Table 5. Data on generated double-base expansions for B1 = 213

m D T #db-exp #pow.smooth #uniq (odd) CPU time

1 0 – 255 0 – 127 1.30 · 105 1.15 · 103 1.06 · 103 0 h
2 0 – 255 0 – 127 6.37 · 109 4.09 · 105 2.97 · 105 3 h
3 0 – 128 0 – 64 3.04 · 1012 1.64 · 108 9.04 · 107 1048 h

Total 3.04 · 1012 1.64 · 108 1051 h

3.2 Generation of double-base chains

A double-base chain for n is a double-base expansion as in (12) with divisibility
conditions on the parts. More precisely, we impose that 2di3ti � 2di+13ti+1 for
i ≥ 0, where � denotes the divisibility order, i.e. x � y ⇐⇒ y|x. All the
double-base expansions given in the previous example are in fact double-base
chains. The use of double-base chains for elliptic curve scalar multiplication was
first introduced by Dimitrov et al. [11].

Given a double-base chain for n, one can compute [n]P with m additions,
D = d0 doublings and T = t0 triplings using a natural decomposition à la Horner
as in (11). Unlike double-base expansions, the subsequent scalar multiplication
algorithm does not require any additional storage.

The divisibility condition on the parts allows us to generate double-base
chains for much larger values for m,D and T . As for double-base expansions,
we only generated double-base chains for positive integers by fixing the sign of
the first part 2d03t0 . We also restricted our generation to double-base chains
whose terms have no common factors, i.e. such that the smallest part 2dm3tm =
±1. Under these conditions, the number of double-base chains with exactly D
doublings, T triplings and m additions is given by:

2m
m−1∑
i=0

(−1)m−i+1
(

m

i+ 1

)(
D + i

D

)(
T + i

T

)
.

In Table 6 we give the number of double-base chains that we generated for dif-
ferent set of parametersm,D and T . Observe that double-base chains with T = 0
correspond to NAF expansions. In total, we generated more than 2.57 · 1013

double-base chains, among which 2.29 · 1010 corresponded to B1-powersmooth
integers, in approximately 9000 CPU hours.

3.3 Generation of Lucas chains

As seen in Section 2.2, Montgomery curves only admit a differential addition.
Therefore the previous constructions (double-base expansions and chains) cannot
be used to perform scalar multiplication. Instead, one uses Lucas chains.

Let n be a positive integer. A Lucas chain of length ` for n is a sequence of
integers (c0, c1, . . . , c`) such that c0 = 1, c` = n, and for every 1 ≤ i ≤ `, either

12

Table 6. Data on generated double-base chains with smoothness bound 213

m D T #db-chains #pow.smooth #uniq (odd) CPU time

1 0 – 255 0 – 127 6.55 · 104 4.35 · 102 3.93 · 102 0 h
2 0 – 255 0 – 127 1.09 · 109 3.82 · 104 2.82 · 104 1 h
3 0 – 220 0 – 110 3.41 · 1012 2.67 · 106 1.54 · 106 1653 h
3 221 – 255 0 7.84 · 106 0 0 0 h
4 0 – 75 0 – 40 3.20 · 1012 1.43 · 108 5.99 · 107 1013 h
4 76 – 255 0 2.73 · 109 5.46 · 102 3.12 · 102 1 h
5 0 – 50 0 – 10 2.86 · 1011 1.86 · 109 4.25 · 108 68 h
5 51 – 255 0 2.76 · 1011 2.98 · 105 2.06 · 105 121 h
6 0 – 25 0 – 10 2.35 · 1011 1.68 · 1010 9.04 · 108 171 h
6 26 – 200 0 5.27 · 1012 3.01 · 107 1.33 · 107 2204 h
7 0 – 115 0 5.61 · 1012 3.68 · 108 1.19 · 108 1596 h
8 0 – 80 0 7.42 · 1012 3.66 · 109 9.09 · 108 2240 h

Total 2.57 · 1013 2.29 · 1010 9068 h

it exists j < i such that ci = 2cj (doubling step), or there exist j0, j1, jd < i such
that ci = cj0 + cj1 and cjd

= ±(cj0 − cj1) (addition step).
Using a Lucas chain for n, [n]P can be obtained by computing [ci]P , for

1 ≤ i ≤ `. When an addition step is encountered, the definition ensures that the
difference of the two operands is already available. In general, Lucas chains are
longer than binary, NAF, or double-base chains. Nevertheless, they sometimes
lead to fast scalar multiplication algorithms since the cost of a differential addi-
tion is smaller than that of a plain addition.

The PRAC algorithm proposed by Montgomery [21] provides an efficient way
to generate Lucas chains for any given integer n. It works by applying rules to
a set of 3 points A, B and C, starting with A = [2]P , B = C = P . The rule
to apply is chosen from a set of 9 rules based on two auxiliary integers d and e,
starting with d = n−bn/φe and e = 2bn/φe−n, where φ is the golden ratio. The
two following invariants are maintained throughout the algorithm: ±C = A−B
and [n]P = [d]A+ [e]B.

We produced Lucas chains of length up to 13 by generating all possible
combinations of PRAC rules up to that length. Observe that the nine rules from
PRAC are not uniform regarding the type and number of curve operations they
gather. For example, rule #2 consists of 2 doublings and 2 additions, whereas
rule #4 only performs 1 addition. Consequently, the exhaustive generation of
PRAC chains of length up to 13 allowed us to generate integers of size up to 26
bits. As there was lots of duplicates, we only kept the best Lucas chains for all
odd integers before testing for smoothness. Data on the Lucas chains that we
generated is given in Table 7.

13

Table 7. Data on generated Lucas chains for B1 = 213. Only Lucas chains correspond-
ing to odd integers were considered

#PRAC rules #Lucas chains #uniq #pow.smooth CPU time

13 2.08 · 1019 1.25 · 107 4.63 · 106 741 h

4 Combination of blocks for ECM stage 1

Let B be the set of all blocks generated with one of the method described in the
previous section. For each block b ∈ B, we define n(b) as the integer associated
to b, and Mb as the multiset composed of the prime factors (counted with
multiplicity) of n(b). We also define the arithmetic cost of b, denoted cost(b),
as the sum of the costs of the elliptic operations used to compute the scalar
multiplication by n(b) using the algorithm associated to b. The arithmetic cost
per bit, denoted acpb(b), is defined as cost(b)/ log2(n(b)).

By extension, we use the same notations for a set of blocks. Let A ⊂ B.
Then n(A) =

∏
b∈A n(b),MA =

⋃
b∈AMb, acpb(A) = cost(A)/ log2(n(A)). For

the arithmetic cost, we need to take into account the switch from the twisted
Edwards curve to the Montgomery curve, if necessary. Thus

cost(A) =
∑
b∈A

cost(b) + δ(A) (cost(ADDM)− cost(ADDε))︸ ︷︷ ︸
−4M

,

where

δ(A) =
{

1 if A contains at least 1 PRAC block
0 otherwise

In practice, it is always cheaper to process the blog2 B1c occurrences of the
prime 2 inMB1 using PRAC blocks. Therefore, we always switch from a twisted
Edwards curve to the equivalent Montgomery curve at some point. Yet, the
computations performed on the Montgomery curve are not restricted to the
powers of 2. The PRAC blocks used in our best combinations often contains a
few primes greater than 2 (see Table 8 and the data recorded at http://eco.
lirmm.net/double-base_ECM/).

Let B1 > 0 be the smoothness bound for ECM stage 1. The combination
algorithms presented in the next sections consist of finding a subset S of B such
that

⋃
b∈SMb =MB1 , or equivalently

∏
b∈S n(b) = k, which minimizes cost(S).

4.1 Bos–Kleinjung algorithm

In 2012, Bos and Kleinjung describe a fast algorithm to compute a non-optimal
solution (see [9, Algorithm 1]). The algorithm can be sketched as follow: start
with M = MB1 and S = ∅. Repeat until M 6= ∅: pick the “best” block b ∈ B
such that Mb ⊆ M and the ratio dbl(b)/ add(b) is large enough (where dbl(b)

14

http://eco.lirmm.net/double-base_ECM/
http://eco.lirmm.net/double-base_ECM/

and add(b) denote the number of doublings and additions in the NAF chain used
to represent n(b)). Then, add b in S and subtractMb fromM. Once the loop is
exited, the algorithm returns S. The bound on dbl(b)/ add(b) can be decreased
during the algorithm if no block satisfies both conditions.

At each iteration, the “best” block is chosen with the help of a score function.
This function is defined to favor blocks whose multisets share many large factors
with the current multisetM of remaining factors. For a multisetM and a block
b such thatMb 6= ∅ andMb ⊆M, the score function is defined by4:

score(b,M) =
dlog2(max(M))e∑

`=1
a`(M)6=0

a`(Mb)
a`(M) , (13)

where
a`(M) = #{p ∈M | dlog2(p)e = `}

#M .

By default, the “best” block is the one which minimizes the score function.
In [9], a randomized version of the algorithm is also presented. The random-

ization is used to generate lots of different sets of solution and, hopefully, to
improve the cost of the best one. Given an integer 0 < x < 1, the randomized
version selects the block with the smallest score with probability x or, with prob-
ability 1 − x, skip it and repeat this procedure for the block with the second
smallest score and so on.

4.2 Our algorithm

In a recent work, the authors of [15] replaced the ratio dbl(b)/ add(b) from Bos
and Kleinjung’s algorithm by the function

κ(b) = log2(n(b))
dbl(b) + 8/7 add(b)− log2(n(b)) ,

in order to take into account the bitlength of n(b). This function κ produces
slightly better results than Bos and Kleinjung’s algorithm (see Table 9 in the
“no storage” context). Yet, it is not readily adapted to our setting since it
makes it difficult to take into account the costs of triplings and the fact that
we use both twisted Edwards and Montgomery curves. For our combination
algorithm, we consider a more generic function based on the arithmetic cost
per bit of a block (acpb) as defined at the beginning of Section 4. Notice
that on twisted Edwards curves, the function κ used by the authors of [15]
is closely related to the arithmetic cost per bits of a NAF block. Indeed, we have
acpb(b) ' (7 dbl(b) + 8 add(b))/ log2(n(b)) = 7/κ(b) + 7.

For our combination algorithm, we decided not to use the score function
from Bos and Kleinjung’s algorithm as we observed that it does not always
4 There is a small mistake in the definition given in [9] which we were able to correct
thanks to the examples following the definition.

15

achieve its goal to favor blocks with many large factors. For example, let us
consider B1 = 256 and two blocks b1 and b2 such thatMb1 = {233, 193, 163} and
Mb2 = {233, 193, 179, 109, 103, 73}. We would like the score function to favor the
block b2 since it contains more factors of sizes similar to the size of the elements of
b1. Yet, using (13), one gets score(b1,MB1) = 3.043 and score(b2,MB1) = 4.214,
which means that the algorithm would select b1 instead of b2. Moreover, if b3 is
the best block that we could imagine withMb3 =MB1 , then its score would be
worse than the two previous one, with score(b3,MB1) = 8.

We observed that using an algorithm similar the Bos and Kleinjung’s algo-
rithm where we always choose the block with the smallest arithmetic cost per
bit did not yield better results than [9] or [15]. Thus, we tried a more exhaustive
approch. A complete exhaustive search was totally out of reach, even for not-
so-large values of B1. However, the information provided by the previous results
allowed us to envisage a somewhat exhaustive strategy.

Recall that our goal is to construct a subset S of B which minimizes cost(S)
and satisfies

⋃
b∈SMb =MB1 .

In order to reduce the enumeration depth, our first heuristic was to bound
the number of blocks in the solution set S. This constraint is rather natural as
we want to favor blocks with many factors.

To further speed up our combination algorithm, we try to reduce the width
of each step in the enumeration. First, notice that we can very easily obtain
an upper bound on the arithmetic cost of the best solution set, for example by
running the algorithms from Bos and Kleinjung [9] or from Ishii et al. [15] using
our set of blocks B. Then, we can use the following observation. Let C be an
upper bound on the arithmetic cost of the best solution set and let S0 ⊆ B
be a partial solution, i.e., such that

⋃
b∈S0
Mb MB1 . Then a solution set S

containing S0 satisfies cost(S) < C, only if S \ S0 contains at least one block
whose arithmetic cost per bit is not greater than

acpbmax = C − (cost(S0) + (1− δ(S0))(cost(ADDM)− cost(ADDε)))
log2(n(MB1))− log2(n(S0)) . (14)

If we build our solution sets by adding blocks by increasing value of their arith-
metic cost per bit, Equation (14) provides an upper bound for the arithmetic cost
per bit of the next block that can be added to a partial solution set. A pseudo-
code version of our combination algorithm is described in Algorithm 1 and an im-
plementation in C is available at http://eco.lirmm.net/double-base_ECM/.

In Table 8, we give the best combination produced with Algorithm 1 for
B1 = 256. The resulting scalar multiplication algorithm requires 96 fewer mul-
tiplications than the best result from Bos and Kleinjung (see Table 4).

5 Results and comparison

In this section, we compare the cost of our implementation of ECM with the
following implementations:

16

http://eco.lirmm.net/double-base_ECM/

Algorithm 1 combine
Input: a set of blocks B, a positive integer B1, a bound ` on the length and an upper

bound C on the arithmetic cost
Output: the solution set S with minimal cost such that #S ≤ `, cost(S) < C and
MS =MB1 ; or Failure if not such set exists

1: function Enum_rec(S0,Mrem, Brem)
2: S ← Failure . by convention, we define cost(Failure) to be C
3: Bnew ← Brem
4: acpbmax ← value obtained using Equation (14) with S0,MB1 and C
5: for all b ∈ Brem do
6: if acpb(b) > acpbmax then
7: break from the for loop
8: else if Mb ⊆Mrem then
9: Snew ← S0 ∪ {b}
10: Mnew ←Mrem \Mb

11: if Mnew = ∅ and cost(Snew) < cost(S) then
12: S ← Snew
13: else if Mnew 6= ∅ and #Snew < ` then
14: Srec ← Enum_rec(Snew,Mnew, Bnew)
15: if cost(Srec) < cost(S) then
16: S ← Srec

17: Bnew ← Bnew \ {b}
18: return S

19: Sort B by increasing value of acpb
20: return Enum_rec(∅,MB1 , B)

17

Table 8. The best set of blocks computed with our algorithm for B1 = 256. Type c
corresponds to double-base chains, type e to double-base expansions and type m to
blocks processed on the Mongomery model.

Blocks Type Cost

193 · 127 · 109 · 107 · 61 · 13 · 7 c 212 · 318 − 1 309 M
151 · 31 · 7 c 215 − 1 114 M
227 · 73 · 67 · 17 c 221 · 32 + 1 180 M
167 · 149 · 5 c 29 · 35 − 1 132 M
251 · 43 · 41 c 214 · 33 + 24 · 32 + 1 151 M
241 · 229 · 19 c 220 + 24 − 1 157 M
211 · 139 · 13 · 11 c 222 − 28 − 1 171 M
233 · 191 · 173 · 157 c 227 · 32 + 218 · 3− 1 230 M
223 · 137 · 103 · 83 · 37 c 230 · 32 + 211 − 1 251 M
179 · 101 · 97 · 47 · 29 · 23 · 5 c 238 − 23 − 1 283 M
181 · 131 · 89 · 59 · 11 c 224 · 34 + 217 · 34 − 28 − 1 241 M
239 · 199 · 197 · 163 · 113 · 79 · 71 · 53 e 246 · 36 + 242 + 214 + 33 421 M

Switch to Montgomery. Last addition in the above block is an ADDM −4 M

5 · 35 m 72 M
28 m 40 M

Total 2748 M

– the ECM code inside CADO-NFS [24] (version 2.3),
– the software EECM-MPFQ [5],
– the article “ECM at Work” [9],
– the article [15], referenced as “ECM on Kalray” in the following.

The ECM code inside CADO-NFS is the only implementation that uses
Montgomery curves. The other three use twisted Edwards curves with a = −1.
For “ECM at work”, we consider the two settings called no storage and low
storage as presented in the article. The cost comparison for the stage 1 of ECM
is given in Table 9. In Figure 1, we compare the arithmetic cost per bit of these
various implementations for more values of B1.

For curves with the same torsion as the ones we use (see Section 2.5), the
stage 1 of GMP-ECM is implemented with Montgomery curves and uses the same
algorithms as CADO-NFS. Thus, for theses curves, the stage 1 of GMP-ECM
and CADO-NFS have the same cost.

Regarding storage requirements, our implementation is also competitive. For
the blocks using Lucas chains on Montgomery curves, we only need three extra
points inXZ coordinates, in addition to the input and output points. For double-
base chains, we do not need any extra point and for double-base expansions, as
we only generated expansions with at most 4 terms, we need at most 4 additional

18

Table 9. Number of modular multiplication (M) for various implementations of ECM
(stage 1) and some commonly used smoothness bounds B1 assuming 1S = 1M

B1 = 256 512 1024 8192

CADO-NFS [24] 3091 6410 12916 104428
EECM-MPFQ [5] 3074 6135 12036 93040
ECM at Work (no storage) [9] 2844 5806 11508 91074
ECM on Kalray [15] 2843 5786 11468 90730
ECM at Work (low storage) [9] 2831 5740 11375 89991
this work 2748 5667 11257 89572

points in extended coordinates. So our storage requirements are similar to the
low storage setting of [9] and much lower than the hundred of points required
by EECM-MPFQ.

We note that the fact that the output of stage 1 is a point in XZ coordinates
on a Montgomery curve is not a burden for the stage 2 of the ECM algorithm.
The stage 2 from [15,9] is computed using a baby-step giant-step algorithm. A
complete description in the case of twisted Edwards curves is given in [20, Sec-
tion 3.2]. In CADO-NFS, the stage 2 also uses a baby-step giant-step algorithm,
but on Montgomery curves. Using the same approach, we managed to greatly
reduce the cost of stage 2 thanks to using finer parameters adjustments. More
precisely, the baby-step giant-step method for stage 2 of ECM is parameter-
ized by a value called ω, which in CADO-NFS was set to a constant value. We
observed that adjusting ω according to the values of B1 and B2 yields signifi-
cant speed-ups for large values of B1 and B2. The costs of the stage 2 for these
different implementations are given in Table 10.

Table 10. Number of modular multiplications (M) for ECM stage 2 assuming
1S = 1M

B1 = 256 512 1024 8192
B2 = 214 3 · 214 7 · 214 80 · 214

CADO-NFS [24] 2387 6120 13264 134761
ECM on Kalray [15] (based on [20]) 2538 5812 11410 91122
this work 2227 5160 10273 89866

In order to evaluate the practical impact of our approach, we implemented
our new algorithms for scalar multiplications in CADO-NFS. To assess the ef-
ficiency for large composite numbers, we run a small part of the sieving phase
for RSA-200 and RSA-220 with the default parameters and observed that the

19

 7.5

 7.6

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 8.4

 8.5

 8.6

 8.7

 8.8

 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Ar
ith

m
et

ic
 c

os
t p

er
 b

it

B1

cado-nfs 2.3.0
EECM-MPFQ

ECM at Work no storage
ECM for Kalray

ECM at Work low storage
Our work

Fig. 1. Arithmetic cost per bit for the scalar multiplication of ECM stage 1 of ECM
assuming 1S = 1M.

cofactorization time decreased by 5 % to 10 %, in accordance with our theoretical
estimates.

6 Conclusion

In the context of NFS cofactorization, ECM is used to break into primes bil-
lions of medium-size integers. In practice, only a few B1-values are used, mak-
ing it possible to precompute almost optimal algorithms for these customary
B1-values. Following the works from Dixon and Lenstra and Bos and Klein-
jung, we generated over 1019 chains of various types and combined them using
a quasi exhaustive approach. Our implementation uses both twisted Edwards
curves, through efficient double-base decompositions, and Montgomery curves.
For switching from one model to the other, we introduced a partial addition-
and-switch operation which computes the sum in Montgomery XZ coordinates
of two points given on an equivalent Edwards curve.

For B1 ≤ 8192, our implementation requires fewer modular multiplications
than any other publicly available implementation of ECM. It requires signifi-
cantly less memory than EECM-MPFQ. The arithmetic cost per bit of our im-
plementation is relatively stable, around 7.6M. Extending the current approach
based on prime batches and recombination, for example by considering extended
double-base expansions and chains, is possible. Yet, significant speed-ups seems
difficult to prefigure. For larger B1-values, our combination algorithm is likely

20

to become unpractical. However, it can be used iteratively to extend any current
best combination results.

References

1. Barbulescu, R., Bos, J.W., Bouvier, C., Kleinjung, T., Montgomery, P.: Finding
ECM-friendly curves through a study of Galois properties. In: ANTS X: Proceed-
ings of the Tenth Algorithmic Number Theory Symposium. Open Book Series,
vol. 1, pp. 63–86 (2013). https://doi.org/10.2140/obs.2013.1.63

2. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Progress in Cryptology – AFRICACRYPT 2008. Lecture Notes in Com-
puter Science, vol. 5023, pp. 389–405. Springer (2008)

3. Bernstein, D.J., Birkner, P., Lange, T.: Starfish on strike. In: Progress in Cryp-
tology – LATINCRYPT 2010. Lecture Notes in Computer Science, vol. 6212, pp.
61–80. Springer (2010)

4. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: ECM using Edwards curves.
Mathematics of Computation 82, 1139–1179 (2013)

5. Bernstein, D.J., Birkner, P., Lange, T., Peters, C., et al.: EECM-MPFQ: ECM
using Edwards curves, http://eecm.cr.yp.to/index.html

6. Bernstein, D.J., Chuengsatiansup, C., Lange, T.: Double-base scalar multiplication
revisited. Cryptology ePrint Archive, Report 2017/037 (2017), https://eprint.
iacr.org/2017/037

7. Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.
hyperelliptic.org/EFD/, joint work by Daniel J. Bernstein and Tanja Lange,
building on work by many authors.

8. Bernstein, D.J., Lange, T.: A complete set of addition laws for incomplete Edwards
curves. Cryptology ePrint Archive, Report 2009/580 (2009), https://eprint.
iacr.org/2009/580

9. Bos, J.W., Kleinjung, T.: ECM at work. In: Advances in Cryptology – ASI-
ACRYPT 2012. pp. 467–484. No. 7658 in Lecture Notes in Computer Science,
Springer (2012)

10. Castryck, W., Galbraith, S., Farashahi, R.R.: Efficient arithmetic on elliptic curves
using a mixed Edwards–Montgomery representation. Cryptology ePrint Archive,
Report 2008/218 (2008), https://eprint.iacr.org/2008/218

11. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Advances in Cryptology, ASIACRYPT
2005. Lecture Notes in Computer Science, vol. 3788, pp. 59–78. Springer (2005).
https://doi.org/10.1007/11593447_4

12. Dixon, B., Lenstra, A.K.: Massively parallel elliptic curve factoring. In: Advances
in Cryptology – EUROCRYPT’ 92. Lecture Notes in Computer Science, vol. 658,
pp. 183–193. Springer (1992)

13. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Math-
ematical Society 44, 393–422 (July 2007)

14. Hisil, H., Wong, K.K.H., Carter, G., Dawson, E.: Twisted Edwards curves revisited.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 326–343. Springer (2008)

15. Ishii, M., Detrey, J., Gaudry, P., Inomata, A., Fujikawa, K.: Fast Modular
Arithmetic on the Kalray MPPA-256 Processor for an Energy-Efficient Im-
plementation of ECM. IEEE Transactions on Computers 66(12), 2019–2030

21

https://doi.org/10.2140/obs.2013.1.63
http://eecm.cr.yp.to/index.html
https://eprint.iacr.org/2017/037
https://eprint.iacr.org/2017/037
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
https://eprint.iacr.org/2009/580
https://eprint.iacr.org/2009/580
https://eprint.iacr.org/2008/218
https://doi.org/10.1007/11593447_4

(Dec 2017). https://doi.org/10.1109/TC.2017.2704082, https://hal.inria.fr/
hal-01299697

16. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zim-
mermann, P.: Factorization of a 768-bit rsa modulus. In: Rabin, T. (ed.) Advances
in Cryptology – CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223,
pp. 333–350. Springer (2010)

17. Lenstra, A.K., Lenstra, H.W. (eds.): The development of the number field sieve,
Lecture Notes in Mathematics, vol. 1554. Springer (1993)

18. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics
126(3), 679–673 (1987)

19. Meyer, M., Reith, S., Campos, F.: On hybrid SIDH schemes using Edwards
and Montgomery curve arithmetic. Cryptology ePrint Archive, Report 2017/1213
(2017), https://eprint.iacr.org/2017/1213

20. Miele, A.: On the Analysis of Public-Key Cryptologic Algorithms. Ph.D. thesis,
EPFL (2015)

21. Montgomery, P.L.: Evaluating recurrences of form Xm+n = f(Xm, Xn, Xm−n) via
Lucas chains. (Dec 1983), unpublished

22. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (Jan 1987)

23. Méloni, N., Hasan, M.A.: Elliptic curve scalar multiplication combining Yao’s al-
gorithm and double bases. In: Cryptographic Hardware and Embedded Systems,
CHES 2009. Lecture Notes in Computer Science, vol. 5747, pp. 304–316. Springer
(2009)

24. The CADO-NFS Development Team: CADO-NFS, An Implementation of the
Number Field Sieve Algorithm (2017), http://cado-nfs.gforge.inria.fr/, re-
lease 2.3.0

25. Yao, A.C.C.: On the evaluation of powers. SIAM Journal of Computing 5(1), 100–
103 (1976)

26. Zimmermann, P.: 50 largest factors found by ECM. https://members.loria.fr/
PZimmermann/records/top50.html

27. Zimmermann, P., Dodson, B.: 20 years of ECM. In: Algorithmic Number Theory.
ANTS 2006. Lecture Notes in Computer Science, vol. 4076, pp. 525–542. Springer
(2006)

28. Zimmermann, P., et al.: GMP-ECM (elliptic curve method for integer factoriza-
tion), https://gforge.inria.fr/projects/ecm/

A Counting double-base expansions
Number of double-base expansions of the form n = 2d03t0 +

∑m
i=1±2di3ti with

maxi di = D, maxi ti = T and whose terms have no common factors:

2m

[(
(D + 1)(T + 1)

m+ 1

)
− 2
(

(D + 1)T
m+ 1

)
− 2
(

(T + 1)D
m+ 1

)
+ 4
(
DT

m+ 1

)
+
(

(D + 1)(T − 1)
m+ 1

)
+
(

(T + 1)(D − 1)
m+ 1

)
−2
(

(D − 1)T
m+ 1

)
− 2
(

(T − 1)D
m+ 1

)
+
(

(D − 1)(T − 1)
m+ 1

)]
The proof is omitted. It follows a classical inclusion-exclusion principle.

22

https://doi.org/10.1109/TC.2017.2704082
https://hal.inria.fr/hal-01299697
https://hal.inria.fr/hal-01299697
https://eprint.iacr.org/2017/1213
http://cado-nfs.gforge.inria.fr/
https://members.loria.fr/PZimmermann/records/top50.html
https://members.loria.fr/PZimmermann/records/top50.html
https://gforge.inria.fr/projects/ecm/

	Faster cofactorization with ECM using mixed representations

