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A 3-D Model for a Multilayered Body Loaded Normally and Tangentially Against a Rigid Body: Application to Specific Coatings

Coatings are increasingly used to improve the mechanical and tribological behavior of surfaces. It is necessary to develop models to gui�e the initial choice � f coa�ingl substrate combinations that can withstand the applied loads. A three-dimensional model of an elastic multilayered body, loaded both normally and tangentially against an elliptical rigid body (partial sliding, rolling I sliding conditions), is presented he�e. This model is based on linear elasticity theory, integral transforms, Fast Fourier Transform, and unilateral contact analysis with friction. Normal and tangential con tact conditions between the two bodies are first determined and then used to calculate the multilayered body stress field. One application is given here: �he inJ!-uence � f the mechanical properties of coating and substrate, as well as coating thickness, is studied on contact conditions, internal stresses, and potential failure mechanisms.

Introduction

In many engineering applications, protective coatings are in creasingly used to extend the fatigue life of mechanical compo nents in contact [START_REF] Chang | A Compar ison of Fatigue Failure Morphology Between TiN Coated and Uncoated Lubri cated Rollers[END_REF] and to provide low friction coefficients and wear resistance of tribological surface proper ties ( Komvopoulos, 1987). A great deal of research is underway to evaluate the performance of coatings and their failure mecha nisms. The analysis of the contact and internal stresses i ? a multilayered body is therefore of great practical and analytical importance. The purpose of this paper is .

to present a model capable of solving the normal and tangential contact � roblem and to determine the internal stresses for a 3-D mult1layered body configuration.

At a relatively early stage in the history of continuum me chanics, Hertz ( 1880) was the first to solve the contact problem of frictionless elastic homogeneous bodies under normal load ing. Using the same model, [START_REF] Cattaneo | Sul contatto di due carpi elastici[END_REF] and .

Mindlin

( 1949) treated the case in which the bodies are subjected to both tangential and normal forces. [START_REF] Kalker | The Contact Between Wheel and Rail[END_REF] proposed a method based on a Simplex algorithm (Conry and Seireg, 1971) to solve the 3-D contact problem under rolling conditions. How ever none of methods take into account the finite thickness of laye;ed bodies, nor can then be used to guide the choice of coatings. Only the use of numerical solutions is possible �or lay � r � d configurations. The case of an elastic layer overlaymg a ngid substrate was treated by Hannah ( 1951 ) and Bentall and John son ( 1968), using, respectively, Coker and Filon general stress functions, and a Fourier transform of [START_REF] Sneddon | Computation of Stress and Displacements in a Layered Elastic Medium[END_REF] stress functions. Chen ( 1971) was one of the first to solve the problem of an elastic layer perfectly bonded to an elastic substrate. [START_REF] Gupta | Stress Distributions in Plane Strain Layered Elastic Solids Subjected to Arbitrary Boundary Loading[END_REF] proposed a general solution for the plane strain contact problem of layered solids. The latter authors showed that contact pressure distribution may deviate signifi cantly from that obtained previously by Hertz, depending on the finite thickness and the elastic properties of the layer and the substrate. In 1988, Komvopoulos using the Finite Element Method (FEM), presented a 2-D contact solution under com plete sliding conditions for a stiff. layer over .

an elastic substrate. He studied the influence of fnct10n coeffi cient on contact and internal stresses for different coating thickness and also defi ned a minimal value of this thickness to minimize Von Mises's maximal value within the substrate. [START_REF] Leroy | Thermomechanical Be havior of Multilayered Media: Theory[END_REF] used an original half analytical and half numerical approach to ana lyze the thermomechanical behavior of a multilayered half plane. They used a Fast Fourier Transform algorithm (B � igham, 197 4) that avoids singularity problems encountered durmg nu merical integration of the inverse transform, and reduces calcu lation time. Their application focused on an elastic layer bonded to an elastic substrate, subjected to both load and temperature at the contact surface.

Naturally, the problem has been extended to 3-D layered confi gurations. [START_REF] Goodman | Infl uence of an Elastic Layer on the Tangential Compliance of Bodies in Contact[END_REF] propose . ct a solution for an elastic layer overlaying a rigid substrate. Chm and Hart nett (1983) solved the normal problem of a sphere over an elastic substrate using Hankel transforms. O'Sullivan and King ( 1988) presented a new solution for a layered half space under sliding conditions. More recently, [START_REF] Kuo | Contact Stress Analysis of a Layered Trans versely Isotropic Halfspace[END_REF] investi gated a method based on Hankel transforms to solve the contact problem between a spherical indenter and a multilayered trans versely isotropic structure bonded to an elastic half space. Very recently, Nogi and Kato ( 1997), using Fast Fourier Transforms, have extended O'Sullivan and King's method to formulate a contact solution in the Fourier domain for rough surfaces of a layered half space. [START_REF] Ju | FFT Thermoelastic Solutions for Moving Heat Sources[END_REF] use the Fourier trans form to study thermomechanical problems in a spatial Fourier transform domain.

Although these theories take into account a layer over an elastic substrate, there is a lack of models for solving the ellip tical contact problem under normal and tangential loading con ditions, and furthermore, to analyze multilayered body behavior. In this paper, a rigid ellipsoid over a smooth elastic multilayered body is considered. The method is based o � integral transforms and a Fourier algorithm to avoid singulanty problems and to reduce calculation time. This model has the advantage, com-pared to previous 3-D methods, of accounting for multicoated bodies subjected to any loading conditions and not to only complete sliding conditions. As a first step, results under normal loading conditions are presented for an ellipsoid over a layered half-space. They are compared to previous 3-D methods en countered in the literature. The aim is to solve the normal and tangential contact prob lems between a rigid ellipsoid and the first layer of an elastic multilayered body (Fig. 1 ) . Pressure and traction distributions at the two body contact surfaces are then used as data to calcu late the subsurface stress field. The ellipsoid is defined by two radii of curvatures (Rx1 and Rx2), and the multilayered body by the number of layers ( n) (Fig. 1 ) . Each layer ( i) is isotropic, linearly elastic, smooth and homogeneous, and is characterized by its mechanical properties (E;, v;) and finite thickness (e; ). The interfacial boundary conditions between layers i and i + 1 are either a perfect bonding (Fig. 2 The contact problem is then solved classically. Finally the inter nal stress field is calculated.

2.1 Contact Problem and Stress Field Formulation.

2.1.1

Influence C oefficient Formulation. The first step in the contact solution is to establish the surface displacements at a point M due to uniform pressure and/ or traction centered at point N (see Fig. 3). The basic concept of this 3-D influence coefficient formulation is based on the Fourier transform with respect to space variables x 1 and x2• In practice, this is done by the Fast Fourier Transform (FFT) technique [START_REF] Brigham | The Fast Fourier Transform[END_REF]. The FFT algorithm presents the advantage of computing the discrete Fourier transform much more rapidly than other avail-The contact solution consists in determining normal and tangen tial pressure distributions that satisfy the boundary conditions inside and outside the a priori unknown contact area. First, a potential contact area is defined. It is discretized into cells where unit and uniform pressure and tractions may act. A new ap proach for the influence coefficient formulation is proposed here. It is based on the original method founded on Fourier techniques, already used by [START_REF] Leroy | Thermomechanical Be havior of Multilayered Media: Theory[END_REF] for 2-D solution.

Nomenclature a " "' ( i, j, k, l) = infl uence coefficient term representing de flection along direction

x" at node (k, I, 0) due to unit pressure or trac tion along direction Xm centered at node ( i, j, 0) (mm•MPa -1 ) a, b = semi-axes of the contact area along directions x 1 and x2, respectively, (mm) 

A 1 , B 1 , C 1 , D1 , 
(mm-1 ) [lnfl] =influence coefficient ma trix [3 X 3] (mm.MPa-1 ) K 1 = calculation constant (K 1 =(A.+ 3µ)/( c 1 ( 'A. + µ))) (mm) P = normal force ( N) p ( i, j, 0) = pressure distribution at node (i,j, 0) (MPa) Rx1, Rx2 = ellipsoid radii (mm) sx; (i,j) =velocity at node (i,j, 0)
along direction X; (mm/ s) SIG/, SIG! =stress field at node (k, !, m) at the lower ( -) or upper ( +) border of layer i (MPa)

tx1 (i,j, 0), tx2 (i, j, 0) = tangential pressure distri bution at node (i, j, 0) along x1 or x2 axis (MPa) Tx1, Tx2 = tangential forces along x1 or x2 axis (N) u( (k, !, m) = u{ (m) =displacement in layer j along X; axis at node ( k, l, m) (mm) Equilibrium equations (Eq. ( 1)), stress-displacement rela tions (Eqs. (2-3)) and biharmonic equations (Eq. ( 4)) are written for the layer k (Timoshenko and Goodier, 1970):

for i = 1, 3; j = 1, 3 (1) au k au k at=(A. + 2µ)-' +X. L, -1 for i=l,3;j=l, 3 (2) OXj }*i OXj k_ (au7 auj ) aij - µ a + a X 1 X; for i =1= j ��u7 = 0 for i = l, 3 (3) 
(4)

The application of an integral transform to ( 1-4) has the effect of removing partial derivatives with respect to the space variables considered. The space variables considered here are x1 and x2• The Fourier integral transform associated with the x1 and x2 variables for a function h(x 1 , x2, x3) is defined by:

+co+o:i h(f,., g,, X3) = J J h(x 1 , X2, X3) X exp(-i27r(f,.x1 + g,x2))dx 1 dx2 (5)
Equations ( 1) and ( 4) are Fourier transformed to obtain Eqs. ( 6) -( 9) ( i is a pure imaginary, E; , the frequency in the Fourier domain along direction X; ) • unir force (ij,O) induces deflecrion at node (k,1,0)

Fig. 3 Contact problem formulation d 4 u1 2 d 2 u} 4 /i • --2/3 -+ f3 u = 0 for z = 1 3 (9)
dx1 dx�

I >
Equations ( 6) -( 9) are then solved to determine general dis placement expressions ( Eqs. ( 10) -( 12)) in the frequency do main ( i pure imaginary) :

ut(E 1 , E2, X3) = i((Ak + Bkx3) exp(,8x3) +(Ck+ Dkx3) exp(-f3x3)) (10) u�(Ei. E2, x3) = i ( ( Ek + � Bkx3 ) exp(,8x3)
where

/3 = �(d + d)
These expressions depend on six integral constants (Ak> Bk>

Ck> Dk> Ek> and Fk) determined by the boundary conditions at the lower and upper faces of layer k (Fig. 4). Displacement and stress expressions are then obtained in matrix form (relations 13 and 14), using the stress-displacement relations and displace ment expressions in the frequency domain.

where: Relations 13 and 14 are obtained for each layer. A matrix assembly between layers k and k _±_lj §_ then performed to remove the vectors (DEPk, SIGk, DEPt+1, and SIGt+1) . This assembly is obtained by taking into account the boundary condi tions between the layers (see appendix 2). The case of two adhesive layers is detailed in Appendix 3. The assembly of two layers is then considered as only one layer with boundary conditions at the upper and lower faces respectively (DEPt, SIG n and ( DEP k+ 1 , SIG k+ 1 ) . The method of layer assembly is applied to the (n -1) interfaces and yields a system of equations (Eqs. ( 15) and ( 16)) which links the transforms of the displacements and stresses of the surface ( DEP i, SIG i) to those of the lower face of layer n (DEP;, SIG;;-) . Displacements due to any distribution of normal and tangen tial tractions are obtained from (17) by superposition. This relation will be used for the contact solution. The influence coefficient matrix depends on frequencies, number of layers, their thicknesses and mechanical properties, and interfacial boundary conditions. It needs to be computed only once during the contact simulation for each frequency couple. Symmetries leading to reduction in matrix size are taken into account. An inverse Fast Fourier Transform algorithm is used to obtain in fluence coefficients in the real domain. This algorithm avoids singularity problems encountered during numerical integration of the inverse transform and is inexpensive in computer time when compared to the direct integration method in the inverse transform. This is essentially due to the fact that the periodicity of trigonometric functions is taken into account. The next step is now concerned with the contact solution.

DEP: = [DSd SIGt + [DDk]DEP;; (13 

Contact Solution.

The contact problem solution is split into two parts: a normal and a tangential problem solution. The direct method is used. The two bodies are pressed together by a force P over an area of initially unknown semi-axes a and b. Sliding and rolling conditions can be considered:

• two tangential loads along X1 and X2 axes are applied to the ellipsoid. Coulomb's law of friction is used.

• rolling contact conditions (spin, creep coefficient along x1 and x2 axes, etc ... ) hold (Kalker, 1990).

The classical contact solution is used: normal and tangential problems are uncoupled and solved in tum. The potential con tact area is discretized into regular rectangular cells (n1 *n 2) on which the pressure and tractions are assumed to be constant equations of contacting bodies and boundary equations (18,21,22,24,26,27,28,29) and inequalities (19,20,23,25) in and outside the contact area for normal (Fig. 5) and tangential contact conditions. Thus, at the central point of an area ( i, j):

Normal conditions: u 3 1 1 ( i' j' 0) + u j ( i' j' 0) = 83 -d (i' j' 0)
within the contact area u31 1 (i,j, 0) + uj(i,j, 0) > 83 -d(i,j, 0) outside the contact area p (i, j, 0) > 0 within the contact area p ( i, j, 0) = 0 outside the contact area

J 1J33(i,j, O)dS = P traction equilibrium r,
Tangential conditions (generalities)

lt(i,j, O)I < µ 1 p(i,j, 0) stick zone lt(i,j, O)I = µ 1 p(i,j, 0) slip zone (u[(i,j, 0) -u! 11 (i,j, O))tx1 (i,j, 0) + slip zone (ui(i,j, 0) -u2 11 (i,j, O))tx2(i,j, 0) < 0 (u[(i,j, 0) -u! 11 (i,j, O))txz(i,j, 0) + (u�(i,j, 0) -u2 11 (i,j, O))tx1 (i,j, 0) = 0
Partial slip (for i = 1, 2) slip zone (uj 1 1(i,j, 0) -uJ(i, j, 0)) = 8; stick zone

J IJ;3(i,j, O)dS = Txi traction equilibrium r,.
Rolling conditions (for i = 1, 2)

. IV c x2 ( au J' 1 (i, j, 0) au) ( i, j, 0) uW,j, 0) = LL a33(i,j, k, l)p(i,j, 0) (30)

) SX; = -,X; -'{J -+ -�"-'-�--'- C ax1 ax, (18) (19) 
i=l J=l

2 n , n 2 u l ( i' j' 0) = L L L alp ( i' j' k' l) txp ( i' j' 0) 1 = 1, 2 (31) 
Normal and tangential contact problems are solved using classical unilateral analysis with friction, following [START_REF] Kalker | The Contact Between Wheel and Rail[END_REF], [START_REF] Mindlin | Compliance of Elastic Bodies in Contact[END_REF][START_REF] Gattina | Contacts de corps elastiques, effets tangentiels et nor maux, formulation et resolution des problemes inverses et directs[END_REF]. Normal and tan gential traction distributions, contact area, stick and slip zone (Fig. 3). The solution of a discrete contact problem is therefore The tangential contact problem formulation does not present convergence difficulties whatever the loading conditions, are due to the use of the Newton-Raphson method [START_REF] Gattina | Contacts de corps elastiques, effets tangentiels et nor maux, formulation et resolution des problemes inverses et directs[END_REF]. Note further that the maximum number of iterations is not ex cessive (""' 10).

2.1.3 Subsurface Stress Field Determination. Pressure and traction distributions are used as data for the calculation of the total stress field at node (i, j, l) . Subsurface stresses and displacements produced by unit pressure and tractions at. the contact surface are expressed in the Fourier domain. Therefore partial assembly of the layers is performed to obtain SIGk (i , j, l), depending on SIGt(k, m, 0) (relation 32), by using relations 13 and 14, the boundary conditions at interfaces and at the lower border of layer n (see Appendix 2).

SIGj(i,j, l) = [Mat]SIGi(k, m, 0) (32)
An inverse transform is then performed to obtain the stress field in the spatial domain due to unit pressure or traction. The total stress field at ( i, j, I) is then built up by superposition of stresses induced by all pressures and tractions at the contact surface.

2.2 Tests. Different configurations were investigated to test the validity and the accuracy of the model.

1. The matrix assembly was tested. A layer of thickness, e, was modeled, on the one hand, as a single layer and, on the other hand, as a multilayered body composed of 10 layers with identical mechanical properties. Perfectly bonded conditions were considered at each internal interface. No difference was obtained in the contact solution and the subsurface stress field (no discontinuity at internal interfaces) between both models.

2. Additional comparisons were made between those results and those:

• of [START_REF] Kalker | Three Dimensional Elastic Bodies in Rolling Contact[END_REF] and [START_REF] Johnson | Contact Mechanics[END_REF] for a half space under rolling contact and partial slip conditions for testing the contact problem solution and the stress field determi nation.

• obtained by using the Finite Element Method (Nastran Ideas) for a 3-D single layer stress field under one normal loading condition.

• of O'Sullivan and King (1988) concerning layered half space under sliding conditions. Differences do not exceed 5 percent for all comparisons.

2.3 Computer Time. This 3-D influence coefficient for mulation based on Fourier integral transforms and FFT permits considering complex sliding and rolling contact conditions, var ious layer interfacial boundary conditions and multilayered body configurations. The contact solution and stress field deter mination are, moreover, performed accurately thanks to grid refinement and do not require considerable memory size and computer time.

For instance, a single layer subjected to one normal load and having large dimensions compared to those of the final contact region, was modeled according to FEM using ABAQUS soft ware by [START_REF] Sassi | Etude tridimensionnelle des contact elastiques sans frottement par la methode des elements finis[END_REF]. These authors solved the normal contact problem and determined stress field within the layer described by 8153 nodes: 144 contact nodes are localised within the contact area. Subsurface stresses are determined along 10 planes parallel to the contact surface. Their calculation takes 110 minutes on an HP 9000-720. This layered configuration is modeled here according to a grid specified by 128 X 128 X 17 nodes along x1, x2 and x3 axes. This grid was also defined in order to obtain 144 contact nodes. The contact solution and internal stresses require 28 CPU minutes on an HP 9000-715. Our computer system is twice as fast; although we used a more refined mesh, this leads to a calculation twice as fast.

2.4 General Remarks About the Model. A 3-D influ ence coefficient formulation has been presented in this paper. Some points can be pointed out: 1. A half numerical and half analytical method has been presented to determine infl uence coefficients in a multi layered half-space or body configuration. No limits on layer thickness are formulated with regard to accuracy: layers of thickness ranging from a micrometer to several centimeters can be considered, as well as successive thin thick layer configuration. 2. The FFT technique is applicable strictly to periodic con tacts. For this reason, the grid must extend sufficiently far beyond the contact area in order to eliminate periodic effects in the solution. For instance, the grid size along direction X; ( i = 1, 2) , must be five times greater than the contact half width along direction X; so that the contact solution is not disturbed. But contact periodicity has a more significant effect on tensile stresses than on contact stresses. The computation of the internal stresses conse quently needs a grid size along direction X; about 30 times the contact area half width along direction x; . As demonstrated in part 2.3, a large grid does not increase computer time compared to FEM.

3. The direct method requires O(N�) operations to solve the contact problem, where Ne represents the number of contact points. The method developed by [START_REF] Nogi | Infl uence of a Hard Surface Layer on the Limit of Elastic Contact-Part I: Analysis Using a Real Surface Model[END_REF] solves the problem of O(N log2 N) complexity, where N is the total number of points considered at the contact surface. The difference in computational time used by both methods depends on Ne and N. An increase in Ne may lead to longer computer time using the direct method than Nogi and Kato's formulation. Brigham (197 4) observed the time required to compute 1-D sum mation by both the direct and FFT approaches, as a func tion of N. He showed that both methods are competitive if N does not exceed 64. But as the aim of our model is to solve a smooth contact problem, a great number of contact points is not necessary to ensure good accuracy of 1 percent ( "'='200 points). No significant difference in computer time between Nogi and Kato'.s method and the one presented here is obtained for this range of contact node number. 4. The method presented here is adapted to further develop ments, such as for instance, taking into account hysteresis effects between two bodies.

Application to Specific Coatings

Coating thickness and mechanical properties have a great influence on surface contact conditions (in comparison to un coated cases) and on internal stresses. Designing against the risk of debonding requires knowledge of these variables.

As a first study, the infl uence of one coating over an elastic substrate on the normal contact solution and stress field is ana lyzed. Results are then compared with those obtained using 2-D models [START_REF] Gupta | Contact Stress Between an Elastic Cylin der and a Layered Elastic Solid[END_REF][START_REF] Leroy | Modelisation thermoelastique des revetements de surface utilises dans les contacts non lubrifies[END_REF][START_REF] Mao | A Numerical Model for the Dry Sliding Contact of Layered Elastic Bodies with Rough Surfaces[END_REF][START_REF] Komvopoulos | Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface[END_REF]) and 3-D models (O'Sullivan and King, 1988[START_REF] Chiu | A Numerical Solution for Layered Solid Contact Problems With Application to Bearings[END_REF].

The main difference between this study and previous ones is that it considers a rigid ellipsoid (Rx 1 = 120 mm and Rx2 = 200 mm) pressed on an elastic coated medium. The coating is defined by its thickness (e 1 ) and material properties (El and 1/1 ) . It is perfectly bonded to the substrate whose Young modu lus (£2), Poisson's coefficient (v 2 ) , and thickness (e2) are constant and equal, respectively, to 200 GPa, 0.3, and 50 mm. The contact surface is described by 128 X 128 cells; the lengths along directions x 1 and x2 in which the Fourier transform is applied, depend on the coating/substrate configuration. One normal load, P of 200 N is considered.

Results obtained for coating/ substrate configurations are compared to a reference case, corresponding to the uncoated substrate. Results obtained in the reference case are indicated by the subscript 0.

Influence of Coating Parameters on Normal Contact

Solution. Maximal pressure Pmax and contact area size varia tions (A) (see Fig. 5) are studied for different coating/substrate configurations. Contact area size (A) is determined following Eq. ( 33). This numerical expression was preferred to a mathe matical expression because of an imperfect elliptical form of contact area for the layered configuration, (33) where Ne: number of contact points, !:!.x;: length of the cell along direction X; • A configuration is defined by the coating finite thickness, e1

and the Young modulus ratio between the coating and the sub strate: El/E2. These variations are compared to those (Pmax0 , a0, b0, A0) for the reference case. Variations of Pmax/Pmax0 and A/A0 are presented versus e1/(A0)

1
1 2 in Figs. 6 and7, re spectively.

As reported in these figures, variations of Pmax/ Pmax0 and A I Ao depend on ratio El I E2. When a stiff coating overlays the substrate, Pmax increases and A decreases with the increase of e1 /(A0) 1 12 , while reciprocally, an increase in e1/(Ao)

1 12 leads to a decrease in Pmax and a decrease in A for a soft layer bonded to a substrate. O' Sullivan and King ( 1988) and [START_REF] Chiu | A Numerical Solution for Layered Solid Contact Problems With Application to Bearings[END_REF] described the similar variations of Pmax and the contact area for a spherical layered configuration.

Furthermore, for a 2-D coating/substrate configuration, [START_REF] Gupta | Contact Stress Between an Elastic Cylin der and a Layered Elastic Solid[END_REF], [START_REF] Leroy | Modelisation thermoelastique des revetements de surface utilises dans les contacts non lubrifies[END_REF], [START_REF] Mao | A Numerical Model for the Dry Sliding Contact of Layered Elastic Bodies with Rough Surfaces[END_REF], and [START_REF] Komvopoulos | Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface[END_REF] described three kinds of behavior depending on the layer thickness and contact area size. Their results can be reformulated for a 3-D coating/ substrate configu ration under normal elliptical contact conditions, as follows:

1. e 1 I (Ao) 1 12 < 0. 05, when the coating thickness is very thin, no significant influence of the coating on the contact solu tion is noted. Pmax and A are approximately equal to Pmax0 and Ao.

2. 0.05 < e1/(A0) 1 1 2 < 1.5, when the coating becomes thicker, P max increases or decreases depending on ratio E 1 I E 2 .

Ell E2 > 1 leads to a stiffer coating/ substrate configuration than the reference case. As in a half-plane approximation, the configuration with the stiffest mechanical properties has the greatest Pmax values and the smallest contact area. This leads to Pmax/Pmax0 > 1 and A/A0 < 1. Reciprocally, El/E2 < 1 defines a softer coating/substrate configuration than the refer ence case. Pmax/ Pmax0 and Al A0 are respectively smaller and greater than 1. 3.2 Stress Field Analysis. Attention is focused on stresses at the coating/substrate interface and on Von Mises stresses in coating and substrate. Attempts at relating stresses to phenomena such as risk of debonding and delamination are presented in first subpart.

3.2.1 Study of the Interface Between Coating and Substrate.

Stress field analysis at the interface gives information about potential phenomena such as the risk of debonding and delami nation. O'Sullivan and King (1988) considered a spherical in denter over an elastic substrate under complete sliding condi tions. The interface behavior is analyzed in terms of shear stresses. These authors showed that maintaining low interfacial shear stress is important, and for a layered medium the use of a compliant layer can be beneficial compared to a stiff layer. [START_REF] Komvopoulos | Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface[END_REF] and [START_REF] Leroy | Modelisation thermoelastique des revetements de surface utilises dans les contacts non lubrifies[END_REF] showed that the de bonding risk in 2-D layer/substrate configuration, can moreover be linked to the progression of tensile stresses at the interface.

Here, a normally loaded elliptical indenter is considered. At tention is focused on the progression of tensile stresses at the interface, as low values of shear stresses are obtained at the interface under normal loading. The coating is considered per fectly bonded to the substrate. Normal and tangential stresses ( er x 1x3, er x 2 x3, and er xJxJ) are continuous at the interface. As no equality exists concerning other stresses ( erx1x1, erx2x2• and O'xix2), discontinuities appear. Internal tensile stresses, erx1x1 and O" x2x2, behave differently versus directions x1 and x2 respectively due to elliptical contact conditions. As O'x 2 x 2 differences at the interface layer between coating and substrate are small com pared to erx i x i ones, they will not be studied here. erx1x1 variations at the coating (er�[, 1) and substrate ( O' ;r, 1) interface for differ ent coating thicknesses (e1 = 5, 250 and 800 µm) and material properties (El = 100, 400, and 600 GPa), are presented in a meridian plane of contact where the severest state of stress occurs (Fig. 8). Figures 9 and 10 represent, respectively, the influence of interface depth and material property on interface behavior.

The coating is subjected to different effects:

• a compression due to normal contact; this compression decreases within the coating thickness (Fig. 9)

• a lateral effect due to the difference of coating and sub strate mechanical properties, generating compressive and tractive stresses (Figs. 9 and 10). Further tractive stresses •are never obtained for Ell E2 < 1.

A coating interface situated close to the contact surface is mainly subjected to the first effect. As the coating thickness [START_REF] Komvopoulos | Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface[END_REF] and [START_REF] Leroy | Modelisation thermoelastique des revetements de surface utilises dans les contacts non lubrifies[END_REF]. According to the 3-D model, the interf � cial � on dition of displacement continuity versus X1 leads to d1scontmu ities in axixi• For e1 = 250 µm, substrate mainly governs the multilayered body behavior. Therefore the strain field at the interface ( Extxt) is approximately the same as those obtained at a depth of 250 µm in a half space having the same substrate material properties.

Further, axixt stresses at the interface may be expressed as a first approximation by a Jixt = EjExtxt. It gives the following relation between axixi interface stresses in the two layers and Young's modulus of each layer:

(34)

When Ell E2 is greater than I, the ratio between interfacial a 1 1 stresses becomes greater than I and leads to a 1ix1 > ax2xz stresses in the coating are obtained at the interface due to elliptical contact. This phenomenon induces flexion mech anisms at interface only along direction x1 (Fig. 11). If the difference between the energy induced by stresses at the in terface is greater than the interface energy limit, a debonding risk may appear and give rise to cracking. Designing against this debonding risk implies a change of interface depth through ratio e,JJ (A) . A decrease of this ratio will lead to a reduction in tractive axixi and, furthermore, to negative axixi stresses in the coating due to an interface depth closer to the contact surface. In addition, a reduction in the ratio e,JJ (A) may be obtained by a coating thickness decrease or a change in the normal loading condition. For example, an increase in normal load up to 500 N will increase the contact area and also reduce ratio e,JJ (A) .

As already shown by [START_REF] Komvopoulos | Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface[END_REF] and [START_REF] Leroy | Modelisation thermoelastique des revetements de surface utilises dans les contacts non lubrifies[END_REF] for 2-D configurations, tensile stresses at the layer interface leading to delamination depend on both the layer configuration (stiff-soft) and the interface depth location. For 3-D configurations, this remark still holds and, furthermore, can be encountered in two directions, x1 and X2 and in only one direction for, respectively, a spherical and an elliptical contact problem.

3.2.2 Von Mises Stress Field Analysis. Coatings are gen erally used to unload the substrate. Previous studies [START_REF] Chiu | A Numerical Solution for Layered Solid Contact Problems With Application to Bearings[END_REF][START_REF] O'sullivan | Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Half-Space[END_REF][START_REF] Komvopoulos | Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Rigid Surface[END_REF] showed that a coating/substrate configuration does not necessarily lead to better behavior than an uncoated substrate configuration. This application is presented to confirm that simi lar conclusions can be drawn for elliptical contact geometry.

Ell E2 ranges from 0.5 to 3. Three coating thicknesses are considered. The results are reported in Table 1.

In the reference case, (a vmis )MAX is equal to 368 MPa. As reported in Table I, ( a umis )MAX in the substrate is not always smaller than ( ( aumis )MAx)0• A compliant coating of intermediate thickness unloads the substrate, but a stiff coating (El I E2 > 1) will overload the substrate for e, < 800 µm when El I E2 = 2. The increase in ( aumis )MAx in coating with e1, may be ex- As a first step, one application to a specific coating/substrate configuration was analyzed in this paper. Analysis of normal elliptical contact pressure distribution and subsurface stress field was performed. It led to similar conclusions to those obtained previously for 2-D and 3-D coating/substrate configurations:

an increase or decrease in maximal pressure and contact area depending on the mechanical properties of the coating, the exis tence of discontinuity in stresses at the interface between the coating and the substrate, tractive stresses which may lead to debonding risk and an increase of Von Mises stresses in the substrate for a stiff coating of medium thickness. The 3-D stress field approach is interesting in debonding risk analysis, as this risk may exist along one or two directions (for spherical loading conditions) (x1 and x2). A 2-D coating/substrate analysis may hide one of these directions, such as a 3-D analysis restricted to spherical contact geometry.

Further analyses are now required to understand the behavior of a multilayered body in order to eliminate incompatible layer combinations and to minimize fatigue phenomena during the life of the contact under given loading conditions (tangential loading conditions).

Studies are underway to use this model in biomechanics (Plu met and Dubourg, 1997) . Indeed, a gamma irradiation effect leads to different mechanical properties versus depth in steri lized tibial inserts and may be responsible for delamination in 

  (a)), an imperfect bonding or a complete sliding condition (Fig.2 ( b)). Boundary condi tions in terms of nil stresses or nil displacements (Fig.2 ( c)) can be applied at the lower border of the last layer (layer n).

Fig. 1

 1 Fig. 1 Geometry of 3-D multilayered body

  E1, F1 = integral coefficients of layer j d(k, 1, 0) =distance between ellip soid and layer 1 along axis x3 (mm) DEP t, DEP i = displacement field at node (k, l, m) at the [DS;], [SDJl, I lower ( -, x3 = 2: ek) or k�I i-1 upper ( +, X3 = 2: ek) k� I face of layer i (mm) [DD1] , [SS1] =matrices [3 X 3] relat ing displacement and stress fields at the lower and upper faces of layer j ([DS], MPa-1 , [SD], MPa) e1 = finite thickness of layer j (mm) f,., g, = Fourier transform fre quencies (along x1 and x2 axes )

  Fig. 2 lnterfacial boundary conditions

Fig. 4

 4 Fig. 4 Boundary conditions of layer k

  DEPt = [DSa] SIGt + [DDaJDEP;;-(15) SIG;;-= [SSa]SIGt + [SD,,]DEP;;-(16) Relation ( 17) is finally obtained straightforwardly from rela tions 15 and 16 and the boundary conditions at the lower face of layer n. It is written here in matrix form. It links surface displacements and unit contact pressure and/ or traction, taking into account the boundary conditions at both the layer interface and the lower face of layer n. DEpt = [lnfl]SIGt (17)

  formulation ( Eqs. (30) -(31)) of elastic defl ection is performed. The influence coefficient, apm ( i, j, k, I), is obtained in [Intl] after this latter is transformed inversely.

Fig. 5

 5 Fig. 5 Definition of parameters used in a normal contact problem solu a set of stresses and displacements which satisfies the elasticity tion

Fig. 6 Fig. 7

 67 Fig. 6 Maximal normal pressure variations depending on the finite thick ness of the coating

�

  Fig. a Definition of the meridian plane where the stress field is analyzed

  Figs. lO(b) and lO(c)). . In Fig. IO(c), tractive axixi values are obtamed below the contact surface at the interface. The interface will also be subjected to tractive axixt stresses in the coating and recip � o cally, to compressive stresses in the substrate. No tractive

  e1/../ A = 1.17

Fig. 9

 9 Fig.9Interface study, influence of interface depth (E1/E2 = 2)

Fig. 11

 11 Fig. 11 Debonding phenomenon

  e1 = 250 µm, variation of El!E2 EIIE2 = 2, variation of e1 the existence of tractive ax1x1 stresses at the interface. Indeed, Von Mises stress is related to other stresses by the relation: , O"xix2, and ax3,3 stresses are mostly compressive within the multilayered body, only tractive a,1x1 stresses appear near the interface, thus leading to greater (ax1x1 -ax3x3) and (ax1x1 -a x2x2) terms and to an increase in the (a vmis ) value at the interface. A stiff coating may also lead to a greater value in ( O" vmis )MAX and to debonding risk at the interface depending On its own thickness. When its thickness increases up to 800 µm, the coating mainly governs the behavior of the multilayered configuration, and satisfies the objective of the coating: to un load the substrate. As the highly stressed zones are now situated in the coating, the next aim is thus to estimate the severity of these stresses through a comparison with the coating stress limits.4 ConclusionA numerical 3-D contact model between the elastic multilay ered body and rigid bodies was presented to guide choice among coating/ substrate combinations that can withstand the applied loads. This model is able to solve the contact problem under partial slip, rolling/sliding contact conditions and to determine the subsurface stress field. It is based on linear elasticity theory, unilateral contact with friction and Fourier transforms. The ap plication of Fourier techniques avoids singularity problems dur ing inverse integration and reduces computer time. This model further has the advantage of solving the problem thanks to grid refinement and does not require considerable memory size.

  requires accounting for several layers within finite thickness of tibial insert.
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APPENDIX 1

Fourier Transform

The Fourier transform used in this model is the discrete Fou rier transform. It is based on an initial definition of the finite length discrete transform which approximates the continuous Fourier transform (Relation 5). The inverse transform is: +oo+oo

By considering this definition, a derivative property is ob tained: where d"h(j,., g,, X3) = (2. f,)"h(j, ) dx'i