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Adhesion for Coatings 

E. Breton and M.-C. Dubourg 

Spall detachment in coatings is modelled as a cracked coated medium sub­
mitted to contact loading. Few models analyse the role of interfacial cracks 
between coating and substrate. The existing models are limited in use, due to 
assumptions on number and location of displacement zones (stick, slip, open) along 
crack faces. Further only ones crack is analysed at a time. A spall detachment 
is analysed as a combination of an interfacial crack that propagates at the 
interface and a surface breaking crack that propagates normally to the in­
terface. These two cracks are analysed simultaneously. The energy release rate G is determined at crack tips. The method employed is half-analytical and half­
numerical. 

Results show that, for the case studied, crack 
gation. The following spall detachment process 
crack propagates down to the interface and the 
the interface in a direction opposite to that 

interaction favours crack propa­
is proposed: the surface breaking 

interf acial crack propagates at 
of the load displacement. 

1. Introduction 

Spall detachment in coating is modelled 
as a cracked coated medium submitted to contact 
loading. Few papers consider the role of 
interfacial cracks between coating and 
substrate. Erdogan and Gupta (1, 2, 3], Farris 
and Keer [4] studied pressurized cracks between 
dissimilar materials. Stress intensity factors 
were calculated by Rice [SJ for interfacial 
cracks. Kim and al [6] modelled interfacial 
crack behaviour with slip and stick zones under 
hertzian loading. These models are limited in 
use, due to assumptions on number and location 
of displacement zones (stick, slip, open) along 
crack faces. Further only one crack is analysed. 
A spall typical of those observed experimentally 
[7], is studied here. Spall detachment is the 
combination of an interfacial crack that 
propagates at the interface and a surface 
breaking crack that propagates normally to the 
interface. These two cracks are analysed 
siaultaneously. The energy release rate G is 
determined at crack tips. The method employed is 
half analytical and half numerical. Cracks are 
modelled with continuous dislocation 
distributions (1, 2, 3]. Fourier integral 

transforms techniques are used to obtain 
relations between stresses and dislocation 
distributions. These relations are integral 
equations solved following Erdogan and Gupta 
[3]. The contact problem between crack faces is 
then solved as an unilateral contact problem 
with friction [8]. 
Results show that crack interaction favours 
crack propagation.The following spall detachment 
process is proposed: the surface breaking crack 
propagates down to the interface and the 
interfacial crack propagates at the interface in 
a direction opposite to that of the load 
displacement. 

2. Theory 

The model determines the elastic energy 
release rate G for straight cracks situated in a 
loaded \ayered medium. G varies with the stress 
field er at crack tip, wich depends on the 
unknown distribution of displacement

T 
zones 

(open, stick, slip) along crack faces. er i�
c

the 
combination of the continuum stress field er of 
the layered half-plane and of the crack field err 
generated by displacement iumps along crack 
faces. Both stress fields er c 

and err must be 
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known to calculate G.

2.1 Assumptions 

The cracked layered medium is modelled 
as a two-dimensional half-plane. Layer and 
substrate are homogeneous and isotropic. Linear 
elasticity conditions prevail. Normal P(y) and 
tangential Q(y) tractions are applied over the 
half-plane. Coulomb's law is considered (Q(y) = 
fa P(y)) .  Friction between crack faces is taken 
account using Coulomb's law also. Load cycles 
are analysed using an incremental description of 
the load history as hysteresis is introduced by 
crack friction. 

2.2 Continuous stress fields v"c 

A thermomechanical multilayered model 
was developed earlier (9, 10, 11) and will be only 
briefly recalled here. A Fourier integral 
transform is applied to the boundary conditions 
(cf table 1) and to the Lame equations wich 
correspond to coating and substrate. The 
transformed equations are then solved. Note that 
fully adhesive conditions are considered at the 
interface between coating and substrate. 

loading surface interface at infinite 
at x = -h at x = 0 at x = H KC1 P(y) C2 HC1 KC3 

0 O"xx = O"xx = O"xx O"xx = KC1 = 0 
C2 KC1 HC3 

0 O"xy O"xy = O"xy O"xy = C2 HC1 u = u C2 KC1 v = v 
Table 1 Boundary conditions for uncracked 
coating medium 

2.3 Crack field vr 

Displacement discontinuities along crack 
faces are modelled with continuous dislocation 
distributions (bx, by) following Dundurs and 
Mura (12], Faris and Keer (4). The same 
technique is used here. Stress and displacement 
expressions at M are given for a local 
dislocation situated at D and then for a 
continuous dislocation distribution. 

h 

H 

Fig. 1 

x M 
x ' 

µl, v2 Region I 

Region 2 

Region 3 

Local dislocation diagram 

Stresses and displacements generated at M by a 
local dislocation distribution (bx, by} are 
obtained from Airy potential functions which 
respect the boundary conditions expressed in 
table 2. A Fourier integral transform is applied 
on the functions and the boundary conditions . 
The transformed equations are solved in the 
substrate and in the layer. 6 ls the Dirac 
distribution and displacement derivative is made 
on t variable. 

loading surface interface 
at x = -h at x = O 

r 1 =O r 2 r 1 O"�x1 O"�X2 =vxx 
=O r 1 O"xy o-H =i-P u =u F2 Fl v =v 

crack at infinite 
at x = i; at x = '¥ 

r 3 r 2 r 3 =O O"nn =O"nn O"xx r 3 r 2 r 3 =O O"nl =O"n l O"xy 
u'r3=u'r2+bx6'y-A) 
v' =v· +by6(y-A) 

Table 2 : Boundary conditions for cracks 

Dirac distribution 
Displacement derivative on t 

This leads to: 

�y(x,y) =[M(x,y-A;i;)J 
x {�x(x,y)} {b ci;,A)} 

(1) 

o{ycx,y) bYCi;,A) 

{u(x,y)}=[N(x -A · t) ]{bxCi;,A)} 
v(x y) ,y '"' b (t A) • y ... 

(2) 
For a continuous dislocation distribution along 
crack faces, stresses and displacements are: 

y A 

x 

Fig. 2 : Straight crack diagram {�x(x,y)} I {b ci;CtJ,ACtJ>r
�y(x,y) = [M(x,y-ACtJ;i;CtJ>l 

x 
i 

o{ycx,y) by((Ct],ACt]> 
c;ilobal r 

with r = crackJ (3) 
No = number of cracks 

(4) 

{u(x,y)} =J[N(x y-A(t) ·((t)) J{bx(((t) ,A(t) )} dt v(x,y) ' ' b (((t) ,A (t) r Y 
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Fig. 3 : Two cracks diagram 

y 

When two cracks are presen�, (cf fig. 3), crack 
1 influences crack 2 and vice-versa. Thus stress 
field (3) turns into (5) as the integration is 
performed on both cracks. However, the 
displacement field is not modified as 
displacements induced by crack 2 impose no 
relative displacements between crack 1 faces. 
This leads to: 

No (5) 
with r = U crack 

J=l J 
No = crack number 

Stresses and displacements for each crack are 
then expressed in the reference axis of the 
crack. {�(x,y)} {�(x,y)}
�t(x,y) =[Pro(x,y) ] �y(x,y) (6) 

crtt(x,y) cryy(x,y) 
I ocal 1J I obal 

{ n(x,y) } = 
t(x,y) 

I ocal 
[Pro(x,y)] { u(x,y) }

v(x,y) 
9 l obal 

(7) 

System (5) ls a system of singular integral 
Fredholm equations of the second kind where 
unknowns are complex functions of complex 
variable x + i y. Relation (8) cannot be solved 
analytically. 

- H��-T(t)) B�t)dt = v:(z)-v�c(z) 

with 
i = 1, No 
T(t) = �(t) + i �Ct) 
s+(y) = b¥1 - i bxt 

(8) 

V (y) = V nn + I V nl 
Ht, H2 complex functions of complex variable 
9, 7 real constant function of µi, µ2, v1, v2 

A nuaerlcal solution ls found by replacing (8) 
by an appropriate system of linear equations, 

the solution is based on [3]. The fundamental 
function of the integral equation system (8) is 
obtained by considering only the dominant part. 
The fundamental solution for Cauchy type kernels 
follows that of Huskhelishvili [13]: 

w (t) = ( 1 - t ) ex� ( 1 + t i13J It I ::s 1 J 
ex = _1_ ln(7+9) + J 2ir1 7-0 
f3 = __ 1_ ln(7+0) J 2nl 7-0 

NJ 

+ HJ 
jRe(cxJl j < 1 jRe(f3J) I 

with NJ E IN 
with HJ E IN 

< 1 J= l, .. ,No 

(9) 

(10) 

(11) (12) 
Thus, the singular nature of the unknown 
function BJ(t) is characterised by that of the 
fundamental function wJ(t) . Here, the index of 
this problem (N+H) is -1 or O. The index is -1 
when the crack is embedded: the fundamental 
function w(t) is therefore singular at both 
crack tips. The index is 0 when the crack breaks 
open at the surface, and the fundamental 
function w(t) is only singular at crack tip B 
(cf fig. 4). 
BJ(t) solution is expressed as a product of a 
bounded continuous function ;J(t) and a 
fundamental function wJ(t). The unknown function 
;J(t) can always be represented by an infinite 
series. This leads to: 

BJ(t) = WJ(t) ;J(t) jtj ::s 1 J = 1, No (13) 

Observing that wJ(t) is a weight function of 
Jacobi Polynomials, one may write: +co <«J,IJJ) 
BJ(t) = WJ(t) ;J(t) = E c WJ(t) p (t) (14) 

n=O nJ n 
with c =a +ib and j=l,Nonj n J n J 
Displacement expressions are then, according to 
distribution definition: 
DJ(s) = - J8

BJ(t) dt (15) -1 
with DJ(s) = 8tJ - i 8nJ and j =l, No 
Stress and displacement expressions 
corresponding to the crack response to the load 
are thus given by relations (8) and (1�) 
respectively. (8) and (15) are linear forms of 
coordinates cnJ. Discretised form of (8) and 
(15) are presented in chapter 2.4. 
2.4 Numerical solution of equations (8) and (15) 

BJ serie (14) is then substituted in 
equation (8), wich gives: 
+co 1 No 
E TW(y) P(«,/3) - J[ n(T (�l��) + E CnJHfz-T(t}) ] 
n=O -1 j=l 

No 1 
w(t) P(o:,f3) dt + E cnjf H�z-T(t) w(t)P(cx,f3) dt = VF 

J=l -1 (16) 
with i = 1, No 
Integrals are determined by Gaussian 
integration. The integration Gaussian points r1 
are: 

0 l 
J 

1, . .  ,N 1, . . ,No (17) 
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• 
Crack d1scret1satlon ln N observation polnts st 
transfor•s llnear .foru (14) � (15) ln 2 No
linear systems (N xN) vith (2N xNoJ anJ and bnJ
wilcnowns, with cnJ • anJ + i bnJ. N is equal to 
N or N-1 for a surface breaking crack or an 
e•bedded crack respectively. For an embedded 
crack, an additional condition ls needed to 
deter•ine the solution. It ls provided by crack 
closure and adherence conditions. Observation 
points s1 are chosen to be coapatible with 
integration points r1. 

(Re(«J)-sign(Re(«J)),Re(�J)-sign(Re(�J))) p •• ( s, ) 0 (18) 

l• 1, .. ,N• j = l, . .  ,No 
Stress and displaceaent jump expressions due to 
contact loading are thus available along the 
whole crack at each observation point s1. The 
next step is the contact problea solution along 
crack faces, 1. e the determination of stick 
slip and open zone distribution. 

' 

2.5 The contact proble11 

Distributions of normal and tangential 
tractions that satisfy the boundary conditions 
at the crack interface are solved for. These 
boundary conditions involve equations and 
inequalities. A systematic approach ls thus 
proposed to avoid assumptions on displacement 
zone distribution that limit the application 
field of previous model [6]. The problem ls 
solved as a unilateral contact problem with 
friction, according to Kalker [14, 15) for two 
body contact. This technique has already been 
adapted to the crack contact problem by Dubourg and Vlllechalse [8) and is briefly presented 
here. The boundary conditions are: 

open zone: O'nn T = 0 c5n > O 
T = 0 O'nl 

stick zone: c5n = 0 O'nnT 
< 0 

c5t = 0 jO'ntTI < f 
slip zone: c5n = 0 O'nnT 

< 0 
T IO'nt I = f IO'nnTI O'nt T. c5t > 0 

(19) 

(20) 

ja-nnrl 
(21) 

An iterative process ls used. For the initial 
state, the crack ls assU11ed to be in contact and 
adherent. System of equations (15) and (16) with 
the corresponding boundary conditions are solved 
for. Then the status of each points (stick, slip 
and open) ls tested by checking the 
corresponding inequalities. If a condition ls 
not satisfied, the status of the point ls 
altered, and systems (15) and (16) are solved 
again. This goes on until a stable distribution 
of stick, slip and open zones ls obtained. 

2.6 Stress intensity factor K and elastic eneray 
release rate G 

Stresses and relative dlsplace-nts are 
obtained. It thus possible to deter•lne the 
complex stress 1ntenslty factor K and the energy 
release rate G. The factor K (SIF) represents 
the stress field singularity at the crack tips, 
according to [3). 
at tip B: 

KR•+1K1.•l!fCt-1)-«(t+1)-�(0'lln+1crat.) (22) 

at tip A: 
K +iK •l1a (1-t)-«(-t-1)

-�(0'M+lcrnt.) (23) Re I• c.i-1 
For a crack situated in an homogeneous medium, 
real and imaginary parts of the SIF K correspond 
respectively to mode I and mode II. This 
definition ls no longer valid on for 1nterfac1al 
crack (SJ and the energy release rate G ls used. 
Thus (2) : G = - !e IKl2 (24) 

2.7 Conclusion 

The energy release rate G ls determined 
for straight cracks sl tuated at the interface 
of a coating medium and normal at its interface. 
Cracks are modelled with continuous dislocation 
distributions. Fourier transforms are used to 
obtain stress and displacement expressions 
versus dislocation distributions. Displacement 
zone distribution along crack faces that govern 
G ls determined by solving the contact problem 
as an unilateral contact problem with friction. 

3. Real Cases 

Two modes of coating failure are 
observed (7). They result from crack propagation 
(cf fig. 4 and 5). Spall detachment comes either 
from (cf fig. 4 and 5): 

- interfaclal cracks that propagate at 
the interface and finally meet a crack normal 
to the surface 

or a crack that 
perpendicular to the surface and 
lnterfaclal crack. 

propagates 
meets an 

Fig. 4 : Crack configuration leading to spall 
detachment (7) 
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Fig. 5 : Spall detachment (7) 

This typical configuration shown in figure 5 is 
modelled ln the next part to better the 
understanding of the coating failure process. 

4. Application 

I 
� 

H 
µI.vi 

x 

Fig. 6 : Configuration diagram 

The configuration studied is presented 
in figure 6. The substrate is steel and the 80 µm thick coating ls TiN. Mechanical 
characteristics are presented below: 

YoWU!'s modulus Poisson's ratio 

coating: TiN 600 GPa 0.34 

substrat:steel 210 GPa 0. 3 

The hertzian load moves from left 
Loading parameters are: 

to right. 

load Cn 211 kN/m 

Radius of cylinder punch R 22 -

For the steel half plane, these conditions 
produce a aaxlaua hertzlan pressure po of 840 
HPa and a contact size 2a = 0. 320 1u1. Two 
questions must be answered: 

- does mutual crack interaction favour 
crack propagation ? 

- what is the effect of crack length on 
propagation ? 
4. 1 Influence of crack interactions 

Cracks behave differently in multiple 
than in single crack systems, G variations are 
llOdlfied. Influence of crack 2 on crack 1 ls 
thus studied (cf fig. 7 and 8). G variations at 
both tips A and B of crack 1 versus e/a are 
presented below in the "reference case" when 
crack 1 ls alone and ln the "interaction caseM 
when both cracks are present. Crack length ls 
held constant, 70 µm for crack 1 and 75 µm for 
crack 2. 
The two maxima observed come from the two 
extrema of the interfacial shear stress (7), 
situated at the edges of the contact loading 
zone. The interaction domain, or domain whlthin 
which crack interaction ls significant, ls 
varying from e/a -1 to e/a 1. The 
interaction level ls characterised by the 
percentage change in G reference brought about 
by the presence of the other crack. Interactions 
vary fro• -61X to 78X for tip A and fro• OX to 
53X for Up B. A negative or positive values 
correspond respectively to a decrease and an 
increase of rate G. Therefore, the influence of 
crack 2 on crack 1 ls harmful or beneficial at 
tip A and always harmful at tip B. 

""' 

Fig. 7 
1 

.... 
I 
SO.OJ 
"·' . .. . 

1 J0.0 10.0 

Jn\..,.ooU .. .,, 

Energy release rate G at tip A of crack 

lnt..,.oct.\.., 

o.o .l._,-.,.---....... n----:,:-= . .,;-"-£.--;,c.;,n;----;:,.. o/o 

Fig. 8 
1 

Energy release rate G at tlp B of crack 
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Interactions are therefore far from negligeable. 
The same conclusions are drawn concerning the 
influence of crack 1 on crack 2. Multiple cracks 
must be analysed simultanously. The influence of 
crack length is studied now in a two crack 
system. 4.2 Influence of length of crack 1 and 2 

The variation of G at crack tip B of 
crack 2 and at crack tips A and B of crack 1 ls 
first studied versus e/a for various lengths of 
crack 1. The length of crack 2 ls held constant 
and equal to 75 µm (cf fig. 9). The same problem 
ls solved for various lengths of crack 2, when 
the length of crack 1 ls held constant and equal 
to 70 µm (cf fig. 10). The figures 9 and 10 are 
presented ln the appendix. The different crack 
lengths considered are: 

crack 1 : 50, 60, 70, 80 µm 
crack 2 : 60, 70, 75 µm 

Results show that: 

- Influence of the length of crack 1 on G 
at: 

tip A of crack 1 (fig 9a): G increases 
with increasing length of crack 1. 

tip B of crack 1 (fig 9b): G decreases 
with increasing length of crack 1. 

tip B of crack 2 (fig 9c): G decreases 
lightly for the first maximum and increases for 
the second maximum with increasing length of 
crack 1. 

- Influence of the length of crack 2 on G 
at: 

tip A of crack 1 (fig lOa): G increases 
with increasing length of crack 2. 

tip B of crack 1 (fig lOb): G decreases 
with increasing length of crack 2. 

tip B of crack 2 (fig lOc): G decreases 
for the first maximum and increases for the 
second maximum with increasing length of crack 
1. 

Further an increase in length of cracks 1 and 2 
causes an increase of G at tip A and B of crack 
1. 
These results suggest the following spall 
detachment process: 

crack 2 propagation down to the 
interface is feasible. 

- crack 1 propagation ls feasible at tip 
A and tip B. But as G values are more important 
at tip A than at tip B, propagation is favoured 
at tip A, ln an opposite direction with respect 
to the load displacement direction. 

This analysis ls only qualitative, as failure 
criteria and propagation laws for lnterfaclal 
cracks and cracks in coating are lacking. A 
failure crl terlon could for exemple be a 
boundary on complex plan K as suggested by to 
Rice and Sib [16]. 

S Conclusion 

A cracked layered medium was used to 
study the conditions that lead to spall 
detachment. The model ls half-analytical and 
half-numerical. It gives good accuracy and 
requires short computer times. A configuration 
taken from experiments was studied. The spall 
detachment may proceed as follows: 

- propagation of normal crack down to 
the interface, 

- propagation of interfacial crack in 
the opposite direction of the load 
displacement. 
Rupture criteria are only established for 
uncoated cracked half-plane. Criteria are thus 
needed for interfacial and normal .cracks ln 
cracked coated media. 
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