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The method employed is half-analytical and half numerical.

Results show that, for the case studied, crack gation. The following spall detachment process crack propagates down to the interface and the the interface in a direction opposite to that interaction favours crack propa is proposed: the surface breaking interf acial crack propagates at of the load displacement.

Introduction

Spall detachment in coating is modelled as a cracked coated medium submitted to contact loading. Few papers consider the role of interfacial cracks between coating and substrate. Erdogan and Gupta (1,[START_REF] Erdogan | Layered composites[END_REF]3], Farris and Keer [4] studied pressurized cracks between dissimilar materials. Stress intensity factors were calculated by Rice [SJ for interfacial cracks. Kim and al [6] modelled interfacial crack behaviour with slip and stick zones llOsder hertzian loading. These models are limited in use, due to assumptions on number and location of displacement zones (stick, slip, open) These relations are integral equations solved following Erdogan and Gupta [3]. The contact problem between crack faces is then solved as an unilateral contact problem with friction [8]. Results show that crack interaction favours crack propagation.The following spall detachment process is proposed: the surface breaking crack propagates down to the interface and the interfacial crack propagates at the interface in a direction opposite to that of the load displacement. 

Assumptions

The cracked layered medium is modelled as a two-dimensional half-plane. Layer and substrate are homogeneous and isotropic. Linear elasticity conditions prevail. Normal P(y) and tangential Q(y) tractions are applied over the half-plane. Coulomb's law is considered (Q(y) = fa P(y) ). Friction between crack faces is taken account using Coulomb's law also. Load cycles are analysed using an incremental description of the load history as hysteresis is introduced by crack friction. 

x = -h at x = 0 at x = H KC1 P(y) C2 HC1 KC3 0 O"xx = O"xx = O"xx O"xx = KC1 = 0 C2 KC1 HC3 0 O"xy O"xy = O"xy O"xy = C2 HC1 u = u C2 KC1 v = v
Table 1 Boundary conditions for uncracked coating medium 

Local dislocation diagram

Stresses and displacements generated at M by a local dislocation distribution (bx, by} are obtained from Airy potential functions which respect the boundary conditions expressed in table 2. A Fourier integral transform is applied on the functions and the boundary conditions . The transformed equations are solved in the substrate and in the layer. 6 ls the Dirac distribution and displacement derivative is made on t variable. loading surface interface 

at x = -h at x = O r 1 =O r 2 r 1 O" � x 1 O" �X2 =vxx =O r 1 O"xy o-H =i-P u =u F2 Fl v =v crack at infinite at x = i; at x = '¥ r 3 r 2 r 3 =O O"nn =O"nn O"xx r 3 r 2 r 3 =O O"nl =O"n l O"xy u' r3 =u' r2 +bx6'y-A) v' =v• +by6(y-A)
(x,y) =[M(x,y-A;i;) J x {�x(x,y)} {b ci;,A) } (1) o{ycx,y) b Y Ci;,A) { u(x,y) } =[N(x -A • t ) ] { b x Ci;,A) } v(x y) ,y ' "' b ( t A) • y ... ( 2 
)
For a continuous dislocation distribution along crack faces, stresses and displacements are: { �(x,y) } { �(x,y) } �t(x,y) =[Pro(x,y) ] �y(x,y)

{ u(x,y) } = J [N(x y-A(t) • ((t) ) J { b x (((t) ,A(t) ) } dt v(x,y) ' ' b (((t) ,A (t) r Y h H A x B -[71 crack I nl µ2, v2 µ!,vi
crtt(x,y) cryy (x,y)

I ocal 1J I obal { n(x,y) } = t(x,y) I ocal [ Pro(x,y)] { u(x,y) } v(x,y) 9 l obal (7)
System (5) ls a system of singular integral Fredholm equations of the second kind where unknowns are complex functions of complex variable x + i y. Relation (8) cannot be solved analytically.

-H � � -T(t) )B� t)dt = v:(z)-v�c(z) with i = 1, No T(t) = �(t) + i �Ct) s + (y) = b ¥ 1 -i bx t (8) V (y) = V nn + I V nl
Ht, H2 complex functions of complex variable 9 , 7 real constant function of µi, µ2, v1, v2

A nuaerlcal solution ls found by replacing (8) by an appropriate system of linear equations, 

BJ(t) = WJ(t) ;J(t) jtj ::s 1 J = 1, No (13) 
Observing that wJ(t) is a weight function of Jacobi Polynomials, one may write: 

+co < « J,IJJ) BJ(t) = WJ(t) ;J(t) = E c WJ(t) p (t)
K R • +1K 1.•l!fCt-1) -«(t+1) -�(0'lln+1crat.) (22) at tip A: K +iK •l1a (1-t) - «( -t-1) -� (0'M+lcrnt.) (23) Re I• c.i-1
For a crack situated in an homogeneous medium, real and imaginary parts of the SIF K correspond respectively to mode I and mode II. This definition ls no longer valid on for 1nterfac1al crack (SJ and the energy release rate G ls used. Thus

(2) : -interfaclal cracks that propagate at the interface and finally meet a crack normal to the surface or a crack that perpendicular to the surface and lnterfaclal crack. For the steel half plane, these collOjitions produce a aaxlallOp hertzlan pressure po of 840 HPa and a contact size 2a = 0. 320 1u1. Two questions must be answered:

G = -!e IKl2 (24) 
does mutual crack interaction favour crack propagation ? what is the effect of crack length on propagation ?

4. 1 Influence of crack interactions Cracks behave differently in multiple than in single crack systems, G variations are llOdlfied. Influence of crack 2 on crack 1 ls thus studied (cf fig. 7 and8). G variations at both tips A and B of crack 1 versus e/a are presented below in the "reference case" when crack 1 ls alone and ln the "interaction caseM when both cracks are present. Crack length ls held constant, 70 µm for crack 1 and 75 µm for crack 2. The two maxima observed come from the two extrema of the interfacial shear stress ( 7 The variation of G at crack tip B of crack 2 and at crack tips A and B of crack 1 ls first studied versus e/a for various lengths of crack 1. The length of crack 2 ls held constant and equal to 75 µm (cf fig. 9). The same problem ls solved for various lengths of crack 2, when the length of crack 1 ls held constant and equal to 70 µm (cf fig. 10). The figures 9 and 10 are presented ln the appendix. The different crack lengths considered are: 

  model determines the elastic energy release rate G for straight cracks situated in a loaded \ayered medium. G varies with the stress field er at crack tip, wich depends on the unknown distribution of displacement T zones (open, stick, slip) along crack faces. er i� c the combination of the continuum stress field er of the layered half-plane and of the crack field er r generated by displacement iumps along crack faces. Both stress fields er c and er r must be known to calculate G.

2. 3

 3 Crack field v r Displacement discontinuities along crack faces are modelled with continuous dislocation distributions (bx, by) following Dundurs and Mura at D and then for a continuous dislocation distribution.

  Fig. 1

Fig. 2 :

 2 Fig. 2 : Straight crack diagram { �x(x,y) } I {b ci;Ct J ,ACt J > r �y(x,y) = [M(x,y-ACt J ;i;Ct J >l x

Fig. 3 :

 3 Fig. 3 : Two cracks diagram

J

  the solution is based on [3]. The fundamental function of the integral equation system (8) is obtained by considering only the dominant part. The fundamental solution for Cauchy type kernels follows that of Huskhelishvili [13]: w (t) = ( 1 -t ) ex� ( 1 + t i 13 J I t I ::s 1 t) is characterised by that of the fundamental function wJ(t) . Here, the index of this problem (N+H) is -1 or O. The index is -1 when the crack is embedded: the fundamental function w(t) is therefore singular at both crack tips. The index is 0 when the crack breaks open at the surface, and the fundamental function w(t) is only singular at crack tip B ( cf fig.

  4). BJ(t) solution is expressed as a product of a bounded continuous function ;J(t) and a fundamental function wJ(t). The unknown function ;J(t) can always be represented by an infinite series. This leads to:

•

  s) = 8tJ -i 8nJ and j =l, No Stress and displacement expressions corresponding to the crack response to the load are thus given by relations (8) and (1�) respectively. (8) and (15) are linear forms of coordinates cnJ. Discretised form of (8) and (15) are presented in chapter 2.4. 2.4 Numerical solution of equations (8) and (15) BJ serie (14) is then substituted in equation (8), wich gives: ( T (�l�� ) + E C nJH f z-T(t } ) ] Crack d1scret1satlon ln N observation polnts st transfor•s llnear .foru (14) � (15) ln 2 No linear systems (N xN) vith ( 2N xNoJ anJ and bnJ wilcnowns, with cnJ • anJ + i bnJ. N is equal to N or N-1 for a surface breaking crack or an e•bedded crack respectively. For an embedded crack, an additional condition ls needed to deter•ine the solution. It ls provided by crack closure and adherence conditions. Observation points s1 are chosen to be coapatible with integration points r1. (Re( « J)-sign(Re( « J)),Re(�J)-sign(Re(�J))) .. ,N• j = l, .. ,No Stress and displaceaent jump expressions due to contact loading are thus available along the whole crack at each observation point s1. The next step is the contact problea solution along crack faces, 1. e the determination of stick slip and open zone distribution. ' 2.5 The contact proble11 Distributions of normal and tangential tractions that satisfy the boundary conditions at the crack interface are solved for. These boundary conditions involve equations and inequalities. A systematic approach ls thus proposed to avoid assumptions on displacement zone distribution that limit the application field of previous model [6]. The problem ls solved as a unilateral contact problem with friction, according to Kalker [14, 15) for two body contact. This technique has already been adapted to the crack contact problem by Dubourg and Vlllechalse [8) and is briefly presented here. The boundary conditions are: An iterative process ls used. For the initial state, the crack ls assU11 ed to be in contact and adherent. System of equations (15) and (16) with the corresponding boundary conditions are solved for. Then the status of each points (stick, If a condition ls not satisfied, the status of the point ls altered, and systems (15) and (16) are solved again. This goes on until a stable distribution of stick, slip and open zones ls obtained.

2. 6

 6 Stress intensity factor K and elastic eneray release rate G Stresses and relative dlsplace-nts are obtained. It thus possible to deter•lne the complex stress 1ntenslty factor K and the energy release rate G. The factor K (SIF) represents the stress field singularity at the crack tips, according to [3). at tip B:

2. 7

 7 ConclusionThe energy release rate G ls determined for straight cracks sl tuated at the interface of a coating medium and normal at its interface. Cracks are modelled with continuous dislocation distributions. Fourier transforms are used to obtain stress and displacement expressions versus dislocation distributions. Displacement zone distribution along crack faces that govern G ls determined by solving the contact problem as an unilateral contact problem with friction.

  . They result from crack propagation (cf fig.4 and 5). Spall detachment comes either from (cf fig.4 and 5):

Fig. 4 :

 4 Fig. 4 : Crack configuration leading to spall detachment (7)

  Fig. 6 : Configuration diagram The configuration studied is presented in figure 6. The substrate is steel and the 80 µm thick coating ls TiN. Mechanical characteristics are presented below: YoWU!'s modulus Poisson's ratio coating: TiN 600 GPa 0.34 substrat:steel 210 GPa 0. 3 The hertzian load moves from left Loading parameters are: to right.

  Fig. 7 1

  crack 1 : 50, 60, 70, 80 µm crack 2 : 60, 70, 75 µm Results show that: -Influence of the length of crack 1 on G at: tip A of crack 1 (fig 9a): G increases with increasing length of crack 1. tip B of crack 1 (fig 9b): G decreases with increasing length of crack 1. tip B of crack 2 (fig 9c): G decreases lightly for the first maximum and increases for the second maximum with increasing length of crack 1. -Influence of the length of crack 2 on G at: tip A of crack 1 (fig lOa): G increases with increasing length of crack 2. tip B of crack 1 (fig lOb): G decreases with increasing length of crack 2. tip B of crack 2 (fig lOc): G decreases for the first maximum and increases for the second maximum with increasing length of crack 1. Further an increase in length of cracks 1 and 2 causes an increase of G at tip A and B of crack 1ls feasible at tip A and tip B. But as G values are more important at tip A than at tip B, propagation is favoured at tip A, ln an opposite direction with respect to the load displacement direction. This analysis ls only qualitative, as failure criteria and propagation laws for lnterfaclal cracks and cracks in coating are lacking. plan K as suggested by to Rice and Sib [16].

  

  

Table 2 :

 2 Boundary conditions for cracks

	Dirac distribution Displacement derivative on t
	This leads to:
	�y

  Interactions are therefore far from negligeable. The same conclusions are drawn concerning the influence of crack 1 on crack 2. Multiple cracks must be analysed simultanously. The influence of crack length is studied now in a two crack system. Influence of length of crack 1 and 2

o/o Fig. 8 1 Energy release rate G at tlp B of crack 4.2

  -plane. Criteria are thus needed for interfacial and normal .cracks ln cracked coated media.

								-propagation of interfacial crack in
							the	opposite	direction	of	the	load
							displacement.
							Rupture	criteria	are	only	established	for
							uncoated cracked half
	S Conclusion					
		A cracked layered medium was used to
	study	the	conditions	that	lead	to	spall
	detachment. The model ls half-analytical and
	half-numerical. It gives good accuracy	and
	requires short computer times. A configuration
	taken from experiments was studied. The spall
	detachment may proceed as follows:		
		-propagation of norllOgl crack down to
	the interface,				
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