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Abstract. We derive several models in Physics of continuous media using
Trotter theory of convergence of semi-groups of operators acting on variable

spaces.

Alain Léger and Christian Licht met for the first time on August 1993 in Beijing
during the second International Conference on Nonlinear Mechanics. Ironically, each
of their communications was scheduled on the same time. Thus Alain Léger was
not directly aware of the use of (a nonlinear extension of) Trotter theory applied on
this occasion to the asymptotic behavior of a thin dissipative layer [21]. On October
2007, Alain Léger, one of the leaders of the English/French GDR 2501 “Research on
Ultrasound Propagation for Non Destructive Tests” invited Christian Licht to join
it and was made aware of Trotter theory - a tool that Christian Licht and Thibaut
Weller were using for several years - in supplying a joint communication [23] on the
next meeting of the GDR on June 2008 devoted to the Dynamics of elastic bodies
connected by a thin adhesive layer. Afterwards a close collaboration using Trotter
theory remained by studying the case of a thin viscoelastic adhesive layer [24]...

1. Asymptotic mathematical modeling in physics of continuous media.
As steady state cases should be considered as particular cases of transient phe-
nomena, we will only focus on transient situations which can be mathematically
formulated in terms of evolution equations in Hilbert spaces. First, such Hilbert
spaces, each element of which corresponds to a possible state of the system having
finite energy, in short being spaces of possible states with finite energy, this means
that energy is (or is close to) a positive definite quadratic form of the state vari-
ables. So, as far as Solid Mechanics is involved, we are confined to small strains
assumption, but there are still interesting things to deal with in this framework...
The term “possible” is the generalization to (Multi-)Physics of the classical kine-
matically admissible fields. Note that there exist rather technical extensions to
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Banach spaces of the theory of semi-groups of operators and consequently of their
approximations. This could imply to consider convex energies defined on Orlicz-
Sobolev spaces, but they are mere formal extensions and not fundamental ones as
realistic strain energy densities may not be convex. Second, and this is capital in
our purpose, the considered evolution has to be governed by a time-independent
m−dissipative operator, hence generating a strongly continuous semi-group of op-
erators1. Independency with respect to the time strongly simplifies the analysis but
if some particular cases are appropriate, it could be relaxed (we will see that it is
not the semi-group property which is essential but the contraction and convergence
properties of the resolvant of the evolution operator). But m−dissipative property
is capital: it corresponds, for example, to the formalism of Generalized Standard
Materials [13, 12] which is adequately representative of reality.

Mathematical modeling is the creation and/or the use of ad-hoc tools that make
it possible to lead a rigorous analysis of a phenomenon through a thorough, detailed
and generally short way. Then asymptotic mathematical modeling obtains models
by a rigorous mathematical analysis of approximation or convergence processes,
these last two notions being intimately related. Given a physical problem (P), the
approximation process consists in considering and setting up a sequence of problems
(Ps) on which experiments or numerical studies are made easier and whose solutions
are as close as wanted to the one to (P). An example treated further (see section 3.2)
will be the small vibrations of a structure immersed in an open sea, where the open
sea is approximated by a sequence of bounded fluid domains where experiments
or numerical computations can be done. The convergence process is rooted in the
convertion of a set of data into parameters so that the genuine physical problem
associated with a set of data becomes a family of problems (Ps) associated with a
set s of parameters. It is then possible to perform an asymptotic analysis of the
solution to (Ps) when s goes to its natural limit (i.e. a small parameter may tend to
zero while another large one may tend to +∞). This approach is based on the hope
that from this asymptotic study will arise a limit problem whose mainly quantitative
study is easier or more tractable. An example is bonding (see section 3.5) where
a thin adhesive layer is replaced by either a mechanical constraint or a material
surface between the sole adherents. In both cases however, we therefore propose
a simplified but accurate model. It is worthwhile to observe that these two points
of view may operate simultaneously. A purely phenomenological modeling likes to
show its bien fondé as a limit of a complex model at a different scale of description.
We will see (see section 3.3) that a limit model may stem from neglecting a physical
phenomenon, while the same problem can be approximated by a sequence of more
tractable problems from the mathematical and numerical point of view!

2. Approximation of semi-groups of operators acting on variable Hilbert
spaces. The mathematical tool we will use to realize these modelings will be a
theory of approximation/convergence of semi-groups. Historical irony, the first
study devoted to this topic, due to H. F. Trotter [29], considers sequences of variable
Hilbert spaces Hn. Actually in most of the lectures concerned with this subject
(actually dying out), the variable character of the Hilbert spaces is set aside: the
sequence of evolution equations is posed in a sole Hilbert space. This is a point

1As Trotter theory was first set in the linear case, we use the vocabulary of linear operators
theory, we will see that most of the considerations may be extended to nonlinear multivoque

maximal monotone operators: if A is said m−dissipative, then -A is said maximal monotone!...



of view of Mathematicians, it does not seem to us suitable to the modeling of
the real world. Quite all boundary value problems stemming from Physics are
parameterized, for instance by:

i) the domain where the problem is posed, whose size or shape may vary or is not
exactly known, which implies to deal with functional spaces V (Ωn) defined on
sequences of domains Ωn,

ii) the physical coefficients which may be very high or low or strongly oscillating,
which leads, even if the domain is fixed, to sequences of functional spaces
Vn(Ω), because their natural energy-norms vary,

iii) both previous items acting simultaneously: Vn(Ωn),

iv) some physical effects we want to test the importance, here the number of
significant state variables may increase or decrease at the limit!...

Thus, this is the most radical approach, the one of H. F. Trotter, that we will
consider.

First the framework of this theory is as follows. On one hand is a sequence of
evolution equations

(Pn)


dun
dt
−An un = fn in Hn

un(0) = u0
n

set in a sequence of Hilbert spaces Hn with norm | · |n, governed by a sequence
of m−dissipative operators An with domains D(An) and with data (u0

n, fn) in
D(An)×C0,1([0, T ];Hn) in order that (Pn) has a unique solution in C1([0, T ];Hn)∩
C0
(
[0, T ];D(An)

)
. On the other hand is an evolution equation

(P)


du

dt
−Au = f in H

u(0) = u0

set in an Hilbert space H with norm | · |, governed by a m−dissipative operator A
with domain D(A) and with data (u0, f) in D(A) × C0,1([0, T ];H) in order that
(P) has a unique solution in C1([0, T ];H)∩C0

(
[0, T ];D(A)

)
. As already suggested,

and it is essential in the applications to Physics of continuous media, the nature of
the spaces Hn and H may be very different, but the sequence of spaces Hn has to
approach/converge to H! It will be in - what we allow ourselves to call - the sense
of Trotter through a linear continuous operator from H to Hn which to a certain
extent makes it possible to compare an element of H with an element of Hn, indeed,
more precisely, allows to associate a suitable representative Pn u in Hn with any u
in H. Operator Pn has to satisfy two conditions of uniform continuity (T1) and of
good energetic representation (T2):

(T1) there exists C > 0 such that |Pnu|n ≤ C|u|, ∀u ∈ H
(T2) lim

n→∞
|Pnu|n = |u|, ∀u ∈ H

Note that Pn is not necessarily onto or one-to-one. Then the notion of comparison,
defining the Trotter convergence of a sequence, may be introduced:



Definition 2.1. A sequence (un)n∈N in Hn converges in the sense of Trotter toward
an element u of H if and only if:

lim
n→∞

|Pnu− un|n = 0

Eventually, it is in these terms that the result of convergence of the solution to
(Pn) toward the one to (P) may be conveyed:

Theorem 2.2. Let u, un the solutions to (P) and (Pn), if

i)
∣∣Pnu0 − u0

n

∣∣
n
→ 0

ii)

∫ T

0

|Pnf(t)− fn(t)|n dt→ 0

iii) ∀ y ∈ X, dense in H,
∣∣Pn(I −A)−1y − (I −An)−1Pny

∣∣
n
→ 0

then, uniformly on [0, T ], |Pnu(t)− un(t)|n → 0 and |un(t)|n → |u(t)|.

The first two conditions concern the data (initial states and second members) of
the problems, the last one2 deals with the resolvants of operators An and A. We
will see in the examples, and it is a general fact, that the resolvants correspond to
the solution to a steady state problem satisfied by the Laplace transform of u or un.
So that, roughly speaking, when one knows how to solve convergence in the steady
state version (actually a slight kinetic perturbation) of the transient problem, one
knows how to solve convergence in the genuine transient problem. This implies very
short proofs confining to the implementation of the Trotter theory: guessing H or
Hn, building Pn satisfying (T1) and (T2) because the Trotter convergence of the
resolvants easily ensues, no additional efforts concerning the transient problem has
to be supplied! In comparison to the variational evolution equations techniques,
we do not have to study the static problem first and next to deal with pages full
of estimations and limits of integrals from 0 to T ! For us, this implementation of
the right framework reminds the one of the right definition of the right domain
of the operator to formulate a transient problem in terms of evolution equations
such as (Pn) or (P ). It seems to us more classy than the steamroller of variational
formulations.

2.1. Some remarks.

2.1.1. Nonlinear extension. As already said, linearity is not essential in these con-
siderations and semi-groups theory has been extended to nonlinear evolution equa-
tions in Hilbert spaces governed by maximal (mutivoque) operators [8]. To study
the limit quasi-static behavior of a thin dissipative layer, an extension to this non-
linear case of Trotter theory has been done in [20] and published in [14]. It suffices
to judiciously insert Pn in the proof given in [8] dealing with the case of fixed Hilbert
spaces.

2.1.2. Convergence in the sense of Trotter. Previous assumptions and conclusions
are formulated in terms of Trotter convergence, which is natural as H and Hn are
different. Even if this is the right notion from the physical point of view, it could
be of interest to consider this convergence with respect to some classical notions
to avoid the wrath of applied mathematicians who ignore physical problems that
they pretend to solve, or of physicists for whom reality confines to what they know:
strong, even weak, convergences in Sobolev spaces. Generally, Trotter convergence

2Recall that I stands for the identity operator.



means strong convergence in an appropriate and identified functional space aug-
mented by a convergence of the energies!

3. Some examples.

3.1. Presentation. “Tant il est vrai que sur le marché des idées molles, la moin-
dre raideur formelle produit de la plus-value”, so we prefer to illustrate our argu-
ments by pertinent examples rather than speculate on an abstract point of view
telling roughly that each time one has variational convergence (say à la Mosco) for
the steady state problems, Trotter framework of sequences of Hilbert spaces Hn
approaching “energetically” H may be settled. We apologize for only presenting
examples where we have participated in. Indeed, except two examples in Biology
(especially Genetics) proposed in [4, 5, 33], we did not find in the literature any
analysis of convergence or approximation using Trotter theory, even after formulat-
ing the genuine problem in terms of evolution equation, which, however - we hope
the following examples will convince the reader - is particularly efficient and so
flexible and simple to use. To such a point that we asked ourself if Trotter theorem
of convergence was true! Actually, T. Kato showed in [15] that the proof given by
H. F. Trotter in [29] was not complete and he completed it, so that one speaks
of Trotter-Kato theorem! Indeed, the genuine proof by H. F. Trotter uses another
of his results (this one perfectly correct!) about the exponential approximation
formula. But there exists a simpler proof using these two obvious lemmas:

Lemma 3.1. If B is a m−dissipative operator in a Hilbert space H, and SB the
semi-group generated by B, we have

B SB(t)x = SB(t)Bx, ∀x ∈ D(B), ∀ t ≥ 0

(I − λB)−1 SB(t)x = SB(t)(I − λB)−1 x, ∀x ∈ H, ∀ t ≥ 0, ∀λ > 0

Lemma 3.2. Let An, A be m−dissipative operators in Hn and H, and Sn, S the
semi-groups associated with, then

(I − λAn)−1
(
Pn S(t)− Sn(t)Pn

)
(I − λA)−1 =

=
1

λ

∫ t

0

Sn(t− s)
(
Pn(I − λA)−1 − (I − λAn)−1Pn

)
S(s) ds

with Pn satysfying (T1) and (T2).

So that we prefer to refer to Trotter theory!
We will consider the following examples which illustrate the necessity of consid-

ering variable spaces:

i) gravity surface water waves,
ii) more general water waves,
iii) dynamics of linearly piezoelectric plates,
iv) dynamics of two linearly elastic bodies connected by a thin anelastic layer.

First example is related to modeling by approximation, the others concern conver-
gence. In the first example, an unbounded domain is approached through trun-
cations by a sequence of bounded subdomains. Neglecting a physical effect is the
subject of the second (which can also be considered from the point of view of ap-
proximation...), hence a state variable disappear at the limit. The third example
deals with a coupled multi-physics problem set in variable domains that can be
transformed by a change of coordinates into a fixed domain but, consequently, with



variable energy-norms. In the last example, both variable domains and variable
mechanical coefficients are present.

Let { e1, e2, e3 } be an orthonormal basis of R3 assimilated to the euclidean phys-

ical space. For all ξ = (ξ1, ξ2, ξ3) in R3, ξ̂ stands for (ξ1, ξ2). The space of all (n×n)
symmetric matrices is denoted by Sn and equipped with the usual inner product
and norm denoted by · and | · |, as in R3. For all e in S3, we set

e = ê+ e⊥ (1)

where (ê)αβ = eαβ and (e⊥)αβ = 0, 1 ≤ α, β ≤ 2, and (ê)i3 = 0, (e⊥)i3 = ei3,
1 ≤ i ≤ 3. For all a, b in R3, a⊗s b stands for the symmetrized tensor product of a
by b. Given a vector space E, we will denote by Lin(E) the space of linear mappings
from E to E. Moreover, for all subset O of RN , χO is the characteristic function of
O. Finally we will use the symbol hn to denote n−dimensional Hausdorff measure
and the letter C to introduce various constants which may vary from line to line.

3.2. Gravity surface water waves. On the end of the seventies, due to the im-
portance of transient phenomena in Offshore Engineering, the Institut Français du
Pétrole sponsorised the PhD thesis of Christian Licht devoted to the theoretical
and numerical study of the evolution of a system fluid-floating body ([16, 18]). In
order to assess physical experiments done in towing tanks and numerical experi-
ments through a finite element method computer code, the essential idea was to
approximate the unbounded open real ocean by a sequence of bounded lakes. Here
to simplify the presentation we confine to a simplified problem where the body is
assumed to be rigid and at rest.

3.2.1. Setting the problem. Let G ⊂ {x ∈ R3;x3 < 0} be the unbounded domain
occupied by the fluid whose boundary is made of three parts: SB an unbounded
locally Lipschitz-continuous connected surface lying at a positive and bounded dis-
tance from {x3 = 0} represents the bottom of the ocean, SF the complementary
in {x3 = 0} of a compact subset of {x3 = 0} (possibly empty if the body is fully
immersed) represents the free surface of the ocean at rest, while SI a Lipschitz
compact surface included in x3 < 0 represents the immersed surface of the body at
rest. Let SW = SB ∪ SI be the wet surface. If φ denotes the potential of velocity
in the assumed incompressible fluid and η the free surface elevation, the equations
describing the linearized evolution of the fluid read as:

(P)

{
∆φ = 0 in G ; φ̇ = −gη, η̇ = ∂nφ on SF ; ∂nφ = 0 on SW

φ|t=0
= φ0 in G, η|t=0

= η0 in SF

where ∆, ∂n respectively stand for the Laplacian operator and the normal derivative,
while upper dot denotes the derivative with respect to the time t and g a positive
constant representing the gravity acceleration.

In a beautiful paper [2], J.Thomas Beale showed that the problem may be for-
mulated in the form of an evolution equation in a Hilbert space H of possible states
with finite mechanical energy governed by a skew-adjoint operator according to:

(P)


du

dt
−Au = 0 in H

u(0) = u0 := (φ0, η0)

H :=
{
u = (φ, η) ∈ HD(G)× L2(SF ) ;

∫
G

∇φ · ∇ϕdx = 0, ∀ϕ ∈ H1
SF (Ω)

}



the Dirichlet space HD(G) being the closure of the space of infinitely differentiable

functions with compact support in Ḡ with respect to the norm
( ∫

G
|∇φ|2 dx

) 1
2

and

throughout the paper, for all domains O we denote the set of elements of H1(O)
with vanishing trace on Γ ⊂ ∂O by H1

Γ(O),

|u|2H =< u, u >H:=

∫
Ω

|∇φ|2 dx+ g

∫
SF

η2 dx̂

D(A) =
{
u = (φ, η) ∈ H ; ∂nφ ∈ L2(SF ), ∃!Bη ∈ H1(G) such that

∆Bη = 0 in G, Bη|SF = η, ∂nBη = 0 on SW

}
Au = (−gBη, ∂nφ)

Operator A being obviously closed and conservative:

< Au, u >H=

∫
Ω

−g∇Bη · ∇φdx+ g

∫
SF

∂nφ · η dx̂ = 0, ∀u ∈ D(A)

and, as straightforwardly

ū−Aū = f, ∀ f ∈ X =
{

(f1, f2) ∈ H ; f1 ∈ H1(G)
}

⇔



φ ∈ H1(G) ;

∫
G

∇φ · ∇ϕdx+ g

∫
SF

φ · ϕds

=

∫
SF

(f1 − gf2) · ϕdx̂, ∀ϕ ∈ H1(G)

η =
f1 − φ
g

X being dense in H, A is skew-adjoint. Hence (P) has a unique solution in
C1
(
[0,∞);H) ∩ C0([0,+∞);D(A)

)
if u0 belongs to D(A).

As previously said, we intend to approximate the solution u to (P) by truncation
of the fluid domain (and of the free surface!).

3.2.2. Approximation by truncation.

3.2.2.1. Problems (Pn). For n large enough let be

Gn :=
{
x ∈ G ; |x̂| < n

}
SFn :=

{
x ∈ SF ; |x̂| < n

}
SWn :=

{
x ∈ SW ; |x̂| < n

}
Sn :=

{
x ∈ G ; |x̂| = n

}
and (Pn) be defined with the same equations as (P) but set in Gn, SFn and SWn

with the additional condition on Sn:

φ̇+ ν∂nφ = 0, ν ∈ [0,+∞]

ν = 0 corresponds to the Dirichlet condition φ = 0 and the fact that the dynamic
pressure on Sn should be hydrostatic,

0 < ν < +∞ corresponds to a condition of absorption of energy which is more
or less done in towing tanks to avoid reflection of waves,



ν = +∞, which reads ∂nφ = 0, corresponds to rigid wall for the tank and will
generates unwanted reflections.

3.2.2.2. Entering the framework of Trotter theory (Hn, Pn,H). First, due to the
various conditions on Sn we introduce two kinds of sequences of Hilbert spaces Hn
approximating H (in the sense of Trotter!). For ν = 0 we set:

Hn :=
{

(φ, η) ∈ H1
Sn(Gn)× L2(SFn) ;

∫
Gn

∇φ · ∇ϕdx = 0, ∀ϕ ∈ H1
Sn∪SFn (Gn)

}
For 0 < ν ≤ +∞ we set:

Hn :=
{

(φ̌, η) ∈ H1(Gn)/R× L2(SFn) ;

∫
Gn

∇φ · ∇ϕdx = 0, ∀ϕ ∈ H1
Sn∪SFn (Gn)

}
where φ̌ denotes an equivalent class in H1(Gn)/R whose one representative is φ.
These Hilbert spaces are equipped with the norm

|un|2n :=

∫
Gn

|∇φn|2 dx+ g

∫
SFn

|ηn|2 dx̂.

As previously said the natures of H and Hn may be very different, which is not
exactly the case when ν > 0 because it is well known that HD(G) can be identified
as the quotient by R of a weighted Sobolev space in G. Nevertheless we neither
have Hn ⊂ H nor Hn ⊃ H due to the side condition defining H and Hn.

Next, for all u = (φ, η) in H, Pn u = (φ′n, η
′
n) (or (φ̌′n, η

′
n)) is naturally defined as

follows:

i) φ′n, φ̌
′
n :

- If ν = 0,

∫
Gn

∇φ′n · ∇v dx =

∫
G

∇φ · ∇ṽ dx, ∀ v ∈ H1
Sn(Gn), ṽ the exten-

sion by 0 of v which belongs to HD(G)!

- If 0 < ν ≤ ∞, φ 7→ φ̌′n is the extension by continuity of the HD(G)-
continuous mapping:

φ ∈ H1(G) 7→ φ̌′n :=
ˇ̄

φ|Gn ∈ H
1(Gn)/R

ii) η′n = η|SFn
Therefore one immediately deduces that (Hn, Pn,H) satisfies the conditions (T1)
and (T2) for sequences Hn approaching H (in the sense of Trotter!) and that

|Pn u− un|n → 0
(Trotter convergence)

⇔


|∇φ−∇φn|L2(Gn) → 0, |η − ηn|L2(SFn ) → 0

and∫
Gn

|∇φn|2 dx+ g

∫
SFn

η2
n dx̂→

∫
G

|∇φ|2 dx+ g

∫
SF

η2 dx̂

Note that Pn is onto but not one-to-one.
Eventually, in the Dirichlet or Neumann cases, An is defined by similar formula

as A but with index n and conditions φn = 0 or ∂nφn = 0 on Sn. In the absorption

case, one has Anun = (ψ̂n, ∂nφn) with ψn ∈ H1(Gn) such that ∆ψn = 0 in Gn,
∂nψn = 0 on SWn

, ψn = −gηn on SFn and ψn = −ν∂nψn on Sn.
Proceeding as for A, it is straightforward to verify that An is skew-adjoint in the

Dirichlet or Neumann cases and m-dissipative in the absorption case, so that (Pn)



is formally equivalent to

(Pn)


dun
dt
−An un = 0 in Hn

un(0) = u0
n

and has a unique solution in C1
(
[0,+∞);Hn)∩C0([0,+∞);D(An)

)
if u0

n ∈ D(An).

3.2.2.3. Is approximation by truncation a good approximation? A positive answer
stems from the claim that uniformly on bounded time intervals un does Trotter
converge (i.e. according to definition 2.1) toward u! This is implied by

i) ∀u0 ∈ D(A), ∃u0
n ∈ D(An) such that

∣∣Pn u0 − u0
n

∣∣
n
→ 0

ii) ∀ f ∈ X,
∣∣Pn(I −A)−1f − (I −An)−1Pnf

∣∣
n
→ 0

Point ii) yields that point i) is satisfied by, for instance,

u0
n := (I −An)−1 Pn (I −A)u0

As, for all f = (f1, f2) in X,

ū = (φ̄, η̄) := (I −A)−1f ⇔



φ̄ ∈ H1(G) ; ∆φ̄ = 0 in G

∂nφ̄+
1

g
φ̄ =

f1

g
− f2 on SF

∂nφ = 0 on SW

η̄ =
f1 − φ̄
g

ūn = (φ̄n, η̄n) := (I−An)−1fn ⇔



φ̄n ∈ H1(G) ; ∆φ̄n = 0 in Gn

∂nφ̄n +
1

g
φ̄n =

f1
n

g
− f2

n on SFn

∂nφn = 0 on SWn

ν∂nφn + φn = f1
n on Sn

η̄n =
f1
n − φ̄n
g

point ii) comes from standard convergence results on approximation by truncation
of elliptic boundary value problems set in unbounded open sets.

Hence are justified transient experiments in towing tanks or numerical experiment
through a code using finite element approximations in Gn and SFn (of course fully
validated by using again Trotter theory, see [16, 18]). In [16, 18] is quantitatively

illustrated the better efficiency of 0 < ν < +∞ especially with ν = (gd)
1
2 if d is the

assumed constant depth of the ocean outside Gn0
for a fixed n0.

3.3. More general water waves. In previous example, we did not take the low
compressibility of the liquid (salty water) of the ocean into account. It is not fully
neglectible and for instance is used by naval officers who listen to the motions of
nuclear submarines. Hence we are led to (see[17, 19]):

(Pgc)


φ̇ = −p

ρ
, ṗ = −ρc2∆φ in G

η̇ = ∂nφ, p = ρgη on SF
∂nφ = 0 on SW
u0 = (φ0, η0, p0)

⇔


dugc
dt
−Agc ugc = 0 in Hgc

ugc(0) = u0
gc ∈ D(Agc)



where p, ρ and c denote the pressure, density and celerity of the sound in the fluid,
respectively, and set

Hgc :=HD(G)× L2(SF )× L2(G)

|u|2gc = < u, u >gc:= ρ

∫
G

|∇φ|2 dx+ ρg

∫
SF

η2 dx̂+
1

ρc2

∫
G

p2 dx,

∀u = (φ, η, p) ∈ Hgc

D(Agc) =
{
u = (φ, η, p) ∈ Hgc ; p ∈ H1(G), p = ρgη on SF ,

∆φ ∈ L2(G), ∂nφ ∈ L2(SF ), ∂nφ = 0 on SW

}
Agc u =(−p

ρ
, ∂nφ,−ρc2∆φ)

As it is obvious that Agc is conservative

< Agc u, u >gc=ρ

∫
Ω

−∇p
ρ
· ∇φdx+ ρg

∫
SF

∂nφ η dx̂+
1

ρc2

∫
G

∆φ p dx

=−
∫
SF

ρgη∂nφdx̂+ ρg

∫
SF

∂nφη dx̂ = 0, ∀u ∈ D(Agc)

but also straightforwardly closed and does satisfy

ūgc −Agc ūgc = f, ∀ f ∈ Xgc =
{
f = (f1, f2, f3) ∈ Hgc; f1 ∈ H1(G)

}

⇔



φ̄gc ∈ H1(G) ; −∆φgc +
1

c2
φ̄gc =

1

c2
(f1 − 1

ρ
f3) in G

∂nφ̄gc +
1

g
φ̄gc =

f1

g
− f2 on SF

∂nφgc = 0 on SW

η̄gc =
f1 − φ̄
g

, p̄gc = ρ(f1 − φ̄gc)

Xgc being dense in Hgc, Agc is skew-adjoint. Hence (Pgc) has a unique solution in
C1
(
[0,+∞);Hgc) ∩ C0([0,+∞);D(Agc)

)
if u0

gc belongs to D(Agc).
Here we intend to derive a simpler model by neglecting the compressibility effects,

that is to say by studying the asymptotic behavior when c goes to infinity.

3.3.1. Asymptotic behavior when c goes to infinity. If we want to use Trotter the-
ory, here we have to exhibit what could be the limit space Hg such that Hgc be a
sequence approximating Hg in the sense of Trotter.

3.3.1.1. Entering the framework of Trotter theory. From physical reasons it is
intuitive to guess what could be Hg. However, if it is not, it suffices to consider
the behavior of sequences with bounded energy and satisfying (Pgc): for example,
the boundedness of |ugc|2gc lets us guess that the limit state ug may be described

only by (φg, ηg) and that |ug|2g = ρ

∫
G

|∇φg|2 dx+ ρg

∫
SF

|ηg|2 dx̂. Moreover, pgc =

−ρc2∆φgc let us guess that ∆φg = 0. Hence, the following proposal is in order:

Hg :=
{
u = (φg, ηg) ∈ HD(G)× L2(SF ) ; ∆φ = 0 in G, ∂nφ = 0 on SW

}
|u|2g :=ρ

∫
G

|∇φ|2 dx+ ρg

∫
SF

η2 dx



which is exactly the previous (pure) gravity surface water waves situation!
Pgc defined by

ug = (φg, ηg) ∈ Hg 7→ Pgc ug := (φg, ηg, 0) ∈ Hgc
being isometric, it satisfies the Trotter conditions (T1) and (T2).

Note that Hgc strictly contains Hg×{0} and that Pgc is not onto! Moreover one
has:

|Pgc ug − ugc|gc → 0
(Trotter convergence)

⇔ |∇φgc −∇φg|2L2(G;R3) + |ηgc − ηg|2L2(SF ) +
1

c2
|pgc|2L2(G) → 0

Lastly the expected limit model will involve operator Ag defined exactly as in
the pure gravity water waves case.

3.3.1.2. Convergence result. The uniform convergence in the sense of Trotter on
bounded time intervals of ugc toward ug will be the consequence of

i) a good choice of u0
gc

(
for instance u0

gc = (I −Agc)−1Pgc(I −Ag)u0
g

)
satisfying

lim
c→∞

∣∣u0
gc − Pgc u0

g

∣∣
gc

= 0,

ii) ∀ f ∈ Xg =
{
u ∈ Hg such that φ ∈ H1(G)

}
,

lim
c→∞

∣∣Pgc(I −Ag)−1f − (I −Agc)−1Pgcf
∣∣
gc

= 0,

which, as

ūgc = (φ̄gc, η̄gc, p̄gc) := (I−Agc)−1(f, 0)⇔



−∆φ̄gc +
1

c2
φ̄gc =

1

c2
f1 in G ;

∂nφ̄gc +
1

g
φ̄gc =

f1

g
− f2 on SF

∂nφ̄gc = 0 on SW

η̄gc =
f1 − φ̄gc

g
; p̄gc = ρ(f1 − φ̄gc)

ūg = (φ̄g, η̄g, p̄g) := (I −Ag)−1f ⇔



−∆φ̄g = 0 in G ;

∂nφ̄g +
1

g
φ̄g =

f1

g
− f2 on SF

∂nφ̄gc = 0 on SW

η̄g =
f1 − φ̄g

g

stems from a standard result on (not even singular) perturbation of elliptic boundary
value problems. Moreover [17, 19] the following estimates stand:

i) |Pgc ug − ugc|gc → 0 uniformly on bounded time intervals

ii) c |∆φgc|L2(G) → 0

iii) |φg(t)− φgc(t)|H1(G) ≤
C

c2
(
1 + |t|3

)
iv) |Pgc ug(t)− ugc(t)|gc ≤

C

c2
(
1 + |t|2

)
Therefore, Trotter theory permits to qualitatively and quantitatively study the

influence of compressibility of water on transient water waves in ocean.



Of course a similar result occurs [17, 19] when “g → 0” i.e when neglecting the
gravity effects with respect to the compressibility ones.

We presented this example through the point of view of “convergence in asymp-
totic modeling” but it can be also considered from the point of view of approxi-
mation. It is the view of mathematicians such as J.-L. Lions in [26, 27]. Noticing
that (Pg), already solved by Garipov in [11], was not of Cauchy-Kowaleska type, he

introduced an artificial time derivative φ̈gc = c2∆φgc in G and showed that the well
posed problem (Pgc) has a limit when c goes to infinity which solves (Pg). Note
that semi-group theory directly supplies existence as well as uniqueness [2] but also
numerical approximation for (Pg) [16].

3.4. Dynamics of linearly piezoelectric plates in the “quasi-electrostatic
approximation”. Thin plates are extensively used in technological applications
and a large amount of studies have been devoted to their transient responses to given
loadings. However the main difficulty lies in quantitative analysis through numerical
computations because of the rather low thickness of these structures. So asymptotic
mathematical modeling may be useful in supplying a simpler but accurate enough
model by studying the asymptotic behavior when the thickness, considered as a
parameter, tends to zero. In [28] it has been shown that the problem for purely
elastic plates was well posed through a quite long variational evolution equations
technique. Even if the same point was proved in [3] for linearly thermoelastic plates
by a semi-groups technique, the method used in this paper to get strong convergence
results follows that of [28]. It is based on the convergence of the norms in the Hilbert
space L2

(
0, T ;L2(Ω)

)
and involves several pages of estimations and convergence of

integrals. We show in this section that Trotter theory provides the same kind of
result without much efforts comparing to the static case.

3.4.1. Setting the problem. Here we consider linearly piezoelectric thin plates on
which lives a physical state (u, ϕ) which is a couple (displacement field, electrical
potential). As usual, we proceed to a change of coordinates denoted by S′ε (see
section 3.5.3) in order to transform transient problem posed on the variable domain
Ωε = ω× (−ε, ε) occupied by the true physical plate into a “scaled problem” posed
on a fixed domain Ω = ω×(−1, 1) where ω denotes a domain of R2 with a Lipschitz-
continuous boundary. The thickness and the density of the genuine plate are the
two main parameters of this scaled problem and are denoted by a couple η = (ε, ρ).
We therefore have to study

(Pη)



Find a smooth enough physical state (uη, ϕη) such that:∫
Ω

(
ρ( ¨̂uη · “v′ + 1

ε2
üη3

v′3) +M(x) kp(ε, uη, ϕη) · kp(ε, v′, ϕ′)
)
dx

= L
(
(v′, ϕ′)

)
, ∀ (v′, ϕ′) ∈ H1

ΓmD (Ω;R3)×H1
ΓeD (Ω;R)

(uη, u̇)|t=0
= (u0

η, v
0
η)

M(x) =

[
a −b
bT c

]
∈ L∞

(
Ω; Lin(K)

)
, M k · k ≥ c|k|2K, ∀ k ∈ K := S3 × R3

with

kp(ε, v
′, ϕ′) =

(
e′(ε, v′),∇p(ε, ϕ′)

)◊�e′(ε, v′) = ‘e(v′)



(
e′(ε, v′)⊥

)
α3

=
1

ε

(
e(v′)

)
α3
, 1 ≤ α ≤ 2,

(
e′(ε, v′)⊥

)
33

=
1

ε2
e(v′)33,

e(v′) =
(
∇v′

)
sym

the strain associated with the displacement v′Ÿ�∇p(ε, ϕ′) = εp−1‘∇ϕ′, (∇p(ε, ϕ′))
3

= εp−2∂3ϕ
′, p = 1, 2

For the clarity of the exposure, we confine to a vanishing electromechanical loading;
the non-vanishing case can be easily handled by a suitable decomposition involving
the steady state response (see [30, 32]).

As explained in [30, 31], the “quasi-static approximation” means that the elec-
trical potential may be neglected through the introduction of the operator Sε:

ϕη = Sεuη
Sεuη ∈ H1

ΓeD
(Ω) such that

mp(ε)
(
(uη,Sεuη), (0, ϕ′)

)
= 0, ∀ϕ′ ∈ H1

ΓeD
(Ω), uη ∈ H1

ΓmD
(Ω;R3),

mp(ε)
(
(u, ϕ), (u′, ϕ′)

)
:=

∫
Ω

M(x)kp(ε, u, ϕ) · kp(ε, u′, ϕ′) dx,

∀ (u, ϕ), (u′, ϕ′) ∈ H1
ΓmD (Ω;R3)×H1

ΓeD (Ω)

so that (Pη) reads as an abstract (more precisely non-local) problem in elastody-
namics equivalent to the usual one:

(Pη)

{
Eε(uη, v′) +Kη(üη, v

′) = 0, ∀ v′ ∈ H1
ΓmD (Ω;R3)

uη(0) = u0

with

Eε(u, v′) := mp(ε)
(

(u,Sε u), (v′, 0)
)

an inner product on H1
ΓmD

(Ω;R3) (due to the structure of M !) and

Kη(v, v′) :=

∫
Ω

ρ
(
v̂ · “v′ + 1

ε2
v3v

′

3

)
dx

In a standard way, (Pη) can be formulated in an evolution equation in a Hilbert
space Hη of possible states with finite energy governed by a skew-adjoint opera-
tor Aη:

Hη :=H1
ΓmD (Ω;R3)× L2(Ω;R3)

|U |2η = < U,U >η with

< U,U ′ >η:= Eε(u, u′) +Kη(v, v′), ∀U = (u, v), U ′ = (u′, v′) ∈ Hη

D(Aη) =
{
Uη = (uη, vη) ∈ Hη such that

i) vη ∈ H1
ΓmD (Ω;R3),

ii)∃! zη ∈ L2(Ω;R3) ; < (uη, zη), (v′, v′) >η= 0, ∀ v′ ∈ H1
ΓmD (Ω;R3)

}
AηUη =(vη, zη)



because (Pη) is equivalent to
duη
dt
− vη = 0

< (uη,
dvη
dt

), (v′, v′) >η= 0, ∀ v′ ∈ H1
ΓmD (Ω;R3)

Note that Aη is m−conservative as

∀Uη ∈ D(Aη) < AηUη, Uη >η=< (vη, zη), (uη, vη) >η=< (uη, zη), (vη, vη) >η= 0!

and

Ūη −AηŪη = Fη ⇔

{
ūη = v̄η + F 1

η

< (v̄η + F 1
η , v̄η − F 2

η ), (v, v′) >η= 0

⇔


ūη = v̄η + F 1

η

v̄η minimizes
1

2
|(v, v)|2η + < (F 1

η ,−F 2
η ), (v, v) >η

on H1
ΓmD

(Ω;R3)

3.4.2. Convergence when η → 0. For brevity, we confine to the case ρ ∼ ε2, the most
treated case in the litterature and refer to [30, 32] for the other cases (interesting
in fact from the physical point of view). Hence one has

|(u, v)|2η ∼
∫

Ω

mp(ε)
(
(u,Sε u), (u, 0)

)
dx+

∫
Ω

(ε2|v̂|2 + |v3|2) dx (2)

3.4.2.1. Entering the framework of Trotter theory
3.4.2.1.1. (Hn, Pη, H). Due to 2 and results in the static cases, it is natural to
propose:

H :=V FKL(Ω)× L2
3(Ω)

VKL(Ω) :={u ∈ H1
ΓmD (Ω;R3) ; e(u)⊥ = 0}

V FKL(Ω) :=
{
u ∈ H1

ΓmD (Ω;R3) ; u3 ∈ H2(ω), û(x) = −x3
‘∇u3

}
the subspace of

Kirchhoff-Love displacements with vanishing membrane component

displacements

L2
3(Ω) :=

{
v ∈ H−1(Ω;R3) ; v3 ∈ L2(ω), v̂(x) = −x3

‘∇v3

}
|(u, v)|2 = < (u, v), (u, v) >:= m̃p

(
(u,S u), (u, 0)

)
+

∫
Ω

|v3|2 dx

where m̃p

(
(u,S u), (u, 0)

)
is the limit elastic energy involved in the limit static case

(see [30, 32])3.
Note that H 6⊂ Hη and Hη 6⊂ H while Pη is defined in the following variational

way:

Pη U ∈ Hη ; < Pη U,U
′ >η=< U,U ′ >, ∀U ′ ∈ Hη.

3If uη in H1
ΓmD

(Ω;R3) satisfies mp(ε)
(
(uη ,Sεuη), (v′, 0)

)
= L(v′), for all v′ in H1

ΓmD
(Ω;R3)

then uη converges in H1(Ω;R3) toward u in VKL(Ω) such that

m̃p
(
(u,S u), (u, 0)

)
= L(v′), ∀ v′ ∈ VKL(Ω)

and

m̃p
(
(u,S u), (0, ϕ′)

)
= 0, ∀ϕ′ admissible



An immediate consequence of the study of the static case is that (Pη,Hη,H) satisfies
(T1) and (T2) and that

Trotter convergence ⇔


(uη, vη3

)→ (u, v) in H1
ΓmD

(Ω;R3)× L2(Ω;R3)

|Uη|2η → |U |
2

Lastly, operator A is defined by formulae similar to those of Aη because

< (u, ü), (v′, v′) >= 0, ∀ v′ ∈ V FKL(Ω)

3.4.2.1.2. Convergence of Uη(t) toward U(t). If we assume that

∃U0 ∈ D(A) such that
∣∣Pη U0 − U0

η

∣∣
η
→ 0,

to prove that Uη converges uniformly on bounded time intervals toward the solution
to

(P)


dU

dt
−AU = 0 in H

U(0) = U0

it remains to establish

lim
η→0

∣∣Pη Ū − Ūη∣∣η = 0 (3)

where


Ūη = (ūη, v̄η) := (I −Aη)−1Pη F

Ū = (ū, v̄) := (I −A)−1F

⇔



ūη = v̄η + F 1
η , v̄η minimizes

1

2
|(v, v)|2η + < F 1 − F 2, (v, v) >η

ū = v̄ + F 1, v̄ minimizes
1

2
|(v, v)|2+ < F 1 − F 2, (v, v) >

But our good choices of | · | and of Pη obviously implies:

|Ūη − Pη U |2η =|Ūη|2 − 2 < Pη Ū , Ūη >η +|Pη Ū |2η
=
∣∣Ūη∣∣2η − 2 < Ū, Ūη > +|Pη Ū |2η

First, condition (T2) implies that |Pη Ū |2η converges toward |Ū |2, while the study of

the stationary problem yields lim
η→0

∣∣Ūη∣∣2η − 2 < Ū, Ūη >η= |Ū |2 − 2 < Ū, Ū > which

establishes 3. When η goes to zero, we then have that (uη(t), vη3
(t))→ (u(t), v3(t))

in H1(Ω;R3) × L2(Ω;R3) and |Uη(t)|η → |U(t)| uniformly on bounded time in-

tervals, so that (P) supplies a simplified and accurate model involving essentially
bidimensional mid surface ω and only flexural motions.

3.5. Dynamics of two linearly elastic bodies connected by a thin anelastic
layer. The proper choice of an adequate bonding is essential for a productive engi-
neering process. It is therefore important to convey a good mathematical modeling
to ensure a high quality of the resulting structure. As in the previous example,
the main difficulty stems from numerical aspects due to the meshing of the very
thin layer occupied by the adhesive and its very different mechanical behavior from
the ones of the adherents which yields very ill-conditioned systems. Our asymp-
totic modeling will replace the very thin adhesive by either a material surface or a
mechanical constraint along the surface the adhesive layer shrinks to.



If Ω denotes the reference configuration of the structure made of two adherents
and the adhesive, let Ω±ε =

{
x ∈ Ω;±x3 > ε

}
, Bε =

{
x ∈ Ω; |x3| < ε

}
be

the domains occupied by each adherent and the adhesive, respectively ; we set
S =

{
x ∈ Ω;x3 = 0

}
. Four data are essential:

i) ε, the low thickness of the adhesive layer,
ii) µ, the stiffness of the adhesive in the sense that its strain energy density

is µWI

(
e(u)

)
, with Cm|e(u)|2 ≤ WI

(
e(u)

)
≤ CM |e(u)|2 and Cm, CM fixed

positive numbers,
iii) b, the dissipation coefficient of the adhesive in the sense that the density of the

dissipation potential in the adhesive is bD
(
e(u̇)

)
with Cm|e(u̇)|p ≤ D

(
e(u̇)

)
≤

CM |e(u̇)|p, 1 ≤ p ≤ 2,
iv) ρ, the density of the adhesive.

As usual our asymptotic modeling will be obtained by considering these data as
parameters and studying the asymptotic behavior when s = (ε, µ, b, ρ) goes to its
natural limit s̄ will be the occurence to use our nonlinear extension of Trotter theory
(cf. [14]).

We assume that the structure is clamped on Γ0, h2(Γ0) > 0 and dist(Γ0, S) > ε0

fixed. One more time, to go to the heart of the matter, we confine to the autonomous
problem, i.e. without loading, which reads as:

(Ps)



∫
Ωε

γüs · v′ dx+ ρ

∫
Bε

üs · v′ dx+

∫
Ωε

ae(us) · e(v′) dx

+

∫
Bε

(
µaI

(
e(us)

)
+ bζs

)
· e(v′) dx = 0, ∀ v′ ∈ H1

Γ0
(Ω;R3)

(us, vs)(0) = U0
s := (u0

s, v
0
s)

where γ ∈ L∞(Ω) with γ > Cm > 0, a ∈ L∞
(
Ω; Lin(S3)

)
, aI ∈ L∞

(
S; Lin(S3)

)
,

aξ · ξ ≥ Cm|ξ|2, aI ξ · ξ ≥ 2WI(ξ), for all ξ in S3, ζs ∈ ∂D
(
e(u̇s)

)
. The problem (Ps)

is formally equivalent to the nonlinear evolution equation
dUs
dt

+As Us 3 0 in Hs
Us(0) = U0

s

with

Hs :=H1
Γ0

(Ω;R3)× L2(Ω;R3)

|Us|2s = < (us, vs), (us, vs) >s:= Eεµ(us, us) +Kερ(vs, vs)

Eεµ(u, u′) :=

∫
Ωε

ae(u) · e(u′) dx+ µ

∫
Bε

aIe(u) · e(u′) dx

Kερ(v, v′) :=

∫
Ωε

γv · v′ dx+ ρ

∫
Bε

v · v′ dx

D(As) =
{
Us ∈ Hs ; i) vs ∈ H1

Γ0
(Ω;R3),

ii)∃ zs ∈ L2(Ω;R3),∃ ξs ∈ ∂D
(
e(vs)

)
such that

< (us, zs), (v
′, v′) >s +b

∫
Bε

ξs · e(v′) dx = 0
}

As Us =(−vs, 0) +
{

(0,−zs) satisfying ii)
}



It is straightforward to verify that As is maximal monotone and

Ūs +As Ūs 3 Fs ⇔


ūs = v̄s + F 1

s

v̄s minimizes
1

2
|(v, v)|2s + b

∫
Bε

D
(
e(v)

)
dx

+ < F 1
s − F 2

s , (v, v) >s on H1
Γ0

(Ω;R3)

so that (Ps) has a unique solution in W 1,∞([0,+∞);Hs
)

whose limit behavior will
be studied in the following three cases:

i) soft (actually not too hard) and light adhesive : µε→ 0, ρε→ 0, cf. [24],
ii) soft (actually not too hard) and heavy adhesive : µε→ 0, ρε→ 1, cf. [6],
iii) hard and light adhesive : limµε ∈ (0,+∞], ρε→ 0, cf. [25].

3.5.1. Light and not too hard adhesive. For the sake of brevity we confine to the
subcase µ ∼ 2µ̄ε, µ̄ ∈ (0,+∞) with ρ ≤ C so that

Eεµ(ws, ws) ∼
∫

Ωε

ae(ws) · e(ws) dx+ 2µ̄ε

∫
Bε

aIe(ws) · e(ws) dx

Kερ(ws, ws) =

∫
Ωε

γ|ws|2 dx+ ρ

∫
Bε

|ws|2 dx

3.5.1.1. Finding H and Ps. To enter the framework of Trotter theory, that is to say
finding H and Ps satisfying (T1) and (T2), is suffices to systematically examine the
behavior of sequences with uniformly bounded energies:

a) Eεµ(ws, ws) ≤ C implies

i) there exists w in H1
Γ0

(Ω \S;R3) such that up to a not relabeled sequence

Tεws weakly converges toward w in H1
Γ0

(Ω \ S;R3), where (Tε ws)(x) =
ζ0(x3)ws(x) + (1− ζ0)(x3)ws(x, x3 ± ε) (as soon as ±x3 > 0) with ζ0 an
element of D(R) such that ζ0(x3) = 1 if |x3| ≥ 2ε0, ζ0(x3) = 0 if |x3| ≤ ε0,

and

∫
Ω

ae(w) · e(w) dx ≤ lim
s→s̄

∫
Ωε

a e(ws) · e(ws) dx,

ii) there exists j ∈ L2(S;S3) such that up to a not relabeled sequence∫ ε

−ε
e(ws) dx3 weakly converges in L2(S;S3) toward j, classically identified

as [w]⊗se3, [w] := γS(w+)−γS(w−), γS(w±) the trace on S of the restric-

tion w± of w to
{
±x3 > 0

}
, by going to the limit in

∫
Bε

τ(x̂) ·e(ws) dx, τ

arbitrary inD(S). Hence µ̄

∫
S

WI([w]⊗se3) dx ≤ lim
s→s̄

µ

∫
Bε

WI

(
e(ws)

)
dx.

b) Kερ(ws, ws) ≤ C implies that there exists w in L2(Ω;R3) such that up to a
not relabeled sequence χ

Ωε
w weakly converges in L2(Ω;R3) toward w with∫

Ω

γ|w|2 dx ≤ lim
s→s̄

Kερ(ws).

We therefore propose

H :=H1
Γ0

(Ω \ S;R3)× L2(Ω;R3)

|(u, v)|2 = < (u, v), (u, v) >:= E(u, u) +K(v, v)



E(u, u′) :=

∫
Ω\S

ae(u) · e(u′) dx+ µ̄

∫
S

aI([u]⊗s e3) · ([u′]⊗s e3) dx̂

K(v, v′) :=

∫
Ω

γv · v′ dx

Ps U =(u′s, v
′
s) such that

a) v ∈ L2(Ω;R3) 7→ v′s = v (or any other obvious variant!)

b) u′s in H1
Γ0

(Ω;R3) may be defined in two ways:

i) smoothing:

u ∈ H1
Γ0

(Ω \ S;R3) 7→ u′s := χ
Bε

(
usym + Min(1,

|x3|
ε

)uskew
)

+ χ
Ωε
u,

with 2usym = u(x̂, x3) + u(x̂,−x3), 2uskew = u(x̂, x3)− u(x̂,−x3)

ii) variational:
u ∈ H1

Γ0
(Ω \ S;R3) 7→ u′s s.t. Eεµ(u′s, u

′) = E(u, u′), ∀u′ ∈ H1
Γ0

(Ω;R3)

Clearly such (Hs, Ps,H) satisfies (T1) and (T2) and Trotter convergence is equivalent
to

|e(us − u)|2L2(Ωε;S3) +

∣∣∣∣∫ ε

−ε
e(us) dx3 − [u]⊗s e3

∣∣∣∣2
L2(S)

+ |vs − v|2L2(Ωε)
→ 0

3.5.1.2. Operator A, the limit problem. This operator will have the same structure

as As but with < ·, · >s replaced by < ·, · > and bD by b̄D̄ where b̄ = lim
ε→0

b

2εp−1
,

D̄(ė) = lim
τ→∞

D(τ ė)

τp
. Hence the guessed problem

(P)


dU

dt
−AU = 0 in H

U(0) = U0

describes the dynamics of two sole adherents linked along S according to

−σe3 ∈ µ̄ aI([u]⊗s e3) + b̄ ∂D̄([u̇]⊗s e3)

where σ denotes the stress tensor in the adherents.
The convergence in the sense of Trotter uniformly on bounded time intervals

stems from the fact that the resolvants involves minimizations of linear perturba-
tions of the total energy functionals Eεµ + Kερ which variationaly (more precisely
Mosco-) converges toward E +K and the asumption that there exists U0 ∈ H such
that lim

s→s̄

∣∣PsU0 − U0
s

∣∣
s

= 0. This is again an accurate and simplified model since it

avoids the meshing of the adhesive layer.

3.5.2. Heavy and not too hard adhesive. Again, for the sake of brevity, we confine

to the more interesting case when ρ ∼ ρ̄

ε
, µ ∼ 2µ̄ε ; ρ̄, µ̄ ∈ (0,+∞), so that Eεµ and

Kερ read as:

Eεµ(u, u) ∼
∫

Ωε

ae(u) · e(u) dx+ 2µ̄ε

∫
Bε

aIe(u) · e(u) dx



Kερ(v, v) ∼
∫

Ωε

γ|v|2 dx+
ρ̄

ε

∫
Bε

|v|2 dx

Kερ(vs, vs) ≤ C implies that

i) there exists vΩ in L2(Ω;R3) such that χΩε
vs weakly converges in L2(Ω;R3)

to v,

ii) if Sε is the mapping defined by

w ∈ L2(Bε;R3) 7→ Sε w ∈ L2(B;R3), B := S × (−1, 1)

(Sε w)(x̂, x3) = w(x̂,
x3

ε
)

then Kερ(vs, vs) ∼
∫

Ωε

γ|vs|2 dx + ρ̄

∫
B

|Sεvs|2 dx so that there exists vB in

L2(B;R3) such that Sεvs weakly converges in L2(B;R3) toward vB .

The limit kinetic state has therefore to be described by two fields (vΩ, vB) in

L2(Ω;R3) × L2(B;R3). But as vs =
dus
dt

, one must introduce Sεus also. More-

over we have

2µ̄ε

∫
Bε

|e(us)|2 dx = µ̄

∫
B

|e(ε, Sε us)|2 dx

where

eαβ(ε, w) = εeαβ(w), eα3(ε, w) =
1

2
(ε∂αw3 + ∂3wα), e33(ε, w) = ∂3w3

so that the boundedness of Eεµ(us, us) implies:

i) Sε us converges weakly to some uB in H∂3(B;RN ) =
{
u ∈ L2(B;RN ); ∂3u ∈

L2(B;RN )
}

, for N = 3,

ii) e(ε, Sε us) weakly converges in L2(B;S3) toward ∂3u
B ⊗s e3,

iii) the traces γS±(uB) on S± := S × (−1, 1) of uB are equal to the traces
γS
(
(uΩ)±

)
on S of (uΩ)±, the restrictions on Ω± := Ω ∩

{
± x3 > 0

}
of

the weak limit uΩ in H1
Γ0

(Ω \ S;R3) of T ε us as in previous section 3.5.1.

The staple limit space of possible states with finite energy then arises as:

H :=U × L2(Ω;R3)× L2(B;R3)

U =
{
u = (uΩ, uB) ∈ H1

Γ0
(Ω \ S;R3)×H∂3

(B;R3); γS
(
(uΩ)±

)
= γS±(uB)

}
< U,U ′ >:=

∫
Ω\S

ae(uΩ) · e(u′Ω) dx+ µ̄

∫
B

aI(∂3u
B ⊗s e3) · (∂3u

′B ⊗s e3) dx̂

+

∫
Ω

γvΩ · v′Ω dx+ ρ̄

∫
B

vB · v′B dx

The choice of Ps will reflect how a field like uB or vB does appear in the asymptotic
behavior of us or vs:

Ps U =
(
PUs (uΩ, uB), PVs (vΩ, vB)

)
PVs (vΩ, vB) := χ

Ωε
vΩ + (1− χ

Ωε
)(Sε)

−1(vB)



PUs (uΩ, uB) is defined through:

i) (uΩ, uB) 7→ φs ∈ H1(B;R3) such that γS±(φs) = γS
(
(uΩ)±

)
;∫

B

aIe(ε, φs) · e(ε, ϕ) dx =

∫
B

aI(∂3uB ⊗s e3) · e(ε, ϕ) dx, ∀ϕ ∈ H1
S+∪S−(B;R3)

ii) PUs (uΩ, uB) =

{
(Sε)

−1φs in Bε

(1− ζ0)uΩ(· ± εe3) + ζ0u
Ω in Ω±ε

ζ0 being already defined in section 3.5.1

Note that Trotter convergence implies:

χ
Ωε
e(us)→ e(uΩ) in L2(Ω \ S;S3)’Sε us ⇀”uB in L2(B;R2),

((Sε us)3, e(ε, Sε us))→ (uB3 , ∂3u
B ⊗s e3) in H∂3

(B)× L2(B;S3)

χ
Ωε
vs → vΩ in L2(Ω;R3), Sεvs → vB in L2(B;R3)

Obviously (sic! ) (Hs, Ps,H) satisfies (T1) and (T2) and everything is in place to
get (without additional effort) the limit behavior which reads as:

∃ ζ ∈ ∂D̄(∂3
dvB

dt
⊗s e3) ;∫

Ω\S
γ
d2uΩ

dt2
· ψΩ dx+

∫
Ω\S

ae(uΩ) · e(ψ) dx+ ρ̄

∫
B

d2uB

dt2
· ψB dx

+

∫
B

(
µ̄ aI(∂3u

B ⊗s e3) + b̄ ζ
)
· (∂3ψ

B ⊗s e3) dx = 0

∀ψ = (ψΩ, ψB) ∈ H1
Γ0

(Ω;R3)×H∂3(B;R3) ; γS±(ψB) = γS
(
(ψΩ)±

)
σΩ = ae(uΩ) in Ω \ S
div σΩ = γü in Ω \ S

± σΩe3 =
1

2

∫ 1

−1

(1± x3)
d2uB

dt2
±
(
µ̄ aI(∂3u

B ⊗s e3) + b̄ ζ
)
dx3 on S

This corresponds to the evolution of each adherent clamped on Γ±0 = Γ0∩
{
±x3 > 0

}
and linked by a mechanical constraint along S. On the contrary to the previous
case of an adhesive layer with an evanescent total mass, the contact may not only
be described by the traces γS

(
(uΩ)±

)
, γS

(
(vΩ)±

)
of the displacement and velocity

of the sole adherents, but also by the additional variables
(
uB , vB =

duB

dt

)
which

keep the memory of the dynamics of the adhesive layer. These variables satisfy the
following equations

σB ∈ µ̄ aI(∂3u
B ⊗s e3) + b̄ ∂D̄(∂3u̇

B ⊗s e3) in B

ρ̄üB + ∂3(σBe3) = 0

γS±(uB) = γS
(
(uΩ)±

)
they are of the same type as the ones in the genuine layer. Of course (uB , vB)
may be eliminated and, consequently, the contact condition along S between the
two adherents is a non-local (in time only!) relationship between the stress vector
(σΩ)±(x̂, t)e3 and the history of γS

(
(uΩ)±

)
(x̂, τ), 0 ≤ τ ≤ t.



3.5.3. Hard and light adhesive. We assume that ρε → 0 and confine to the two
essential cases:

µ ∼µ̄q/
(

2ε
(ε2(q−1)

2q − 1

))
b ∼b̄q/

(
2ε
( εp(q−1)

1 + (q − 1)p

))
µ̄q, b̄q ∈(0,+∞), q = 1, 2

Moreover WI is an even function of x3. A comprehensive study is done in [25].
As previously, it is first obvious that Kερ(ws, ws) ≤ C implies the existence of w

in L2(Ω;R3), the weak limit in L2(Ω;R3) of χ
Ωε
ws, satisfying∫

Ω

γ|w|2 dx ≤ Kερ(ws, ws)

Next, Eεµ(ws, ws) ≤ C implies that ws weakly converges in H1(Ω \ S;R3) toward
some w which belongs to qHd with

1Hd :=
{
w ∈ H1(Ω;R3) ; ŵ ∈ H1(S;R2)

}
2Hd :=

{
w ∈ H1(Ω;R3) ; ‘e(w) = 0 in S and w3 ∈ H2(S)

}
This last point stems from

1

2ε

∫ ε

−ε
ŵs dx3 = γs

(ÿ�(T εws)+
)
− 1

2ε

∫ ε

−ε

∫ ε

x3

∂3“us dt dx3, when q = 1

When q = 2, the boundedness of Kερ(ws, ws) implies the one of∫
B

|e(ε, S′εws)|2 dx

where, for all x = (x̂, x3) in B‘S′εw(x̂, x3) = εŵ(x̂, εx3),
(
S′εw

)
3
(x̂, x3) = w3(x̂, εx3)

so that there exists an element w in the space

VKL(B) =
{
w ∈ H1(B) ; ∃ (wM , wF ) ∈ H1(S;R2)×H2(S) ;

ŵ(y) = wM (ŷ)− y3
’∇wF (y), w3(y) = wF (ŷ),

∀ y = (ŷ, y3) ∈ B
}

and a rigid displacement ρs such that, up to a subsequence, S′ε ws + ρs weakly
converges toward w in H1(B;R3). Moreover, as∫

S

τ(x̂) · 1

ε3

∫ ε

−ε

’e(ws) dx3 dx̂ =

∫
B

τ(x̂) · x3
◊�e(S′εws) dx, ∀ τ ∈ L2(S;S2)

one deduces that
1

ε3

∫ ε

−ε
x3
’e(ws) dx3 converges weakly in L2(S;S2) toward∫ 1

−1

‘e(w) dx =

∫ 1

−1

x3

(÷e(wM )− x3D
2wF

)
dx3 = −2

3
D2(wF )

But the trace on S+e3 of (S′ε)3 being equal to the one on S of (T εws)
+ one deduces

that wF = γs(w)3.



Lastly we get∫
Ω

ae(w) · e(w) dx+ µ̄q

∫
S

WKL
I

(’eq(w)
)
dx̂ ≤ lim

s→s̄
Eεµ(ws)

where

WKL
I (ξ) := Inf

{
WI(q) ; q̂ = ξ

}
,

∀ ξ ∈ S2 such that ’e1(w) = ‘e(w), ’e2(w) = ◊�D2(w3), ∀w ∈ qHd

We therefore propose

qH : = qHd × L2(Ω;R3)

q|U |2 =< (u, v), (u, v) >q:

=

∫
Ω

ae(u) · e(u) dx+ 2µ̄q

∫
S

WKL
I

(’eq(u)
)
dx̂+

∫
Ω

γ|v|2 dx

and the previous derivation of qH justifies the following “variational” definition of
qPs by:

(u, v) ∈ qH 7→ qPs(u, v) = (u′s, v
′
s) ∈ Hs

with

- u′s ∈ H1
Γ0

(Ω;R3) such that ∀w ∈ qHd
Eεµ(u′s, w) =

∫
Ω

ae(u) · e(w) dx+ µ̄q

∫
S

DWKL
I

(’e( qν)
)
·‘e(w) dx

where 1ν, 2ν ∈ VKL(Bε) with (1νM , 1νF ) =
(
γS(û), 0

)
and (2νM , 2νF ) =(

0, γS(u3)
)

- v′s = χ
Ωε
v

and consequently (T1) and (T2) conditions are satisfied while

Trotter convergence
of (w1

s , w
2
s) toward (w1, w2)

⇐⇒



T εw1
s converges strongly in H1(Ω \ S;R3) to w1

1

2ε

∫ ε

ε

ŵ1
s dx3 converges strongly in H1(S;R2) to ŵ1

∫
Ω

ae(w1) · e(w1) dx+ µ̄q

∫
S

WKL
I

(÷eq(w1)
)
dx̂

= lim
s→s̄
Eεµ(w1

s)

T εw2
s converges strongly in L2(Ω;R2) to w2

∫
Ω

γ|w2|2 dx = lim
s→s̄
Kερ(w2

s)



and the obtention of the limit behavior which reads as4

∃ ζ ∈ ∂DKL
(ÿ�
eq(

d qu

dt
)
)

such that∫
Ω

γ
d2 qu

dt2
· ϕdx+

∫
Ω

ae(qu) · e(ϕ) dx+ µ̄q

∫
S

DWKL
I

(÷eq(qu)
)
·
(’eq(ϕ)

)
dx̂

+ b̄q

∫
S

ζ ·
(’eq(ϕ)

)
dx̂ = 0, ∀ϕ ∈ qH.

does not need more efforts. Hence, the limit behavior describes the evolution of
a structure consisting of two linearly elastic adherents occupying Ω±, which are
perfectly bonded to a material deformable flat surface whose behavior is of the
same kind as the genuine adhesive (i.e. nonlinear viscoelasticity of Kelvin-Voigt
generalized type). Moreover, the mass of the adhesive being evanescent, there is
no inertial term in the interface condition. Case q = 1 corresponds to membrane
deformations whereas case q = 2 corresponds to flexural deformations.

3.6. Important remarks.

3.6.1. Second members. To simplify the presentation, we choose to consider au-
tonomous problems. To take into account non vanishing external loadings, it suffices
to split (see the details in [30, 32]) the state un into

un = uen + urn

where uen solves the steady state problem associated with the transient problem
under consideration and involving the complete external loading. The study of
the convergence of uen stems directly from the settlement (Hn, Pn,H) of Trotter
framework. Then urn does solve an evolution equation with a second member fn
continuous function of uen hence continuous function of the loading. The same is
done for u solution to the limit problem. So the condition

lim
n→∞

∫ T

0

|Pnf(t)− fn(t)|n dt = 0

reduces to a condition on the loadings easy to formulate.

3.6.2. Initial conditions. In the case of modelings by approximation, the data is u0

(in D(A)!) and if the Trotter convergence of the resolvants is established then

u0
n := (I −An)−1Pn(I −A)u0

satisfies both u0
n in D(An) and

lim
n→∞

∣∣Pnu0 − u0
n

∣∣
n

= 0

On the contrary, in modelings by convergence, the data is the sequence u0
n and we

have to state an additional assumption

∃u0 ∈ D(A) such that lim
n→∞

∣∣Pnu0 − u0
n

∣∣
n

= 0

on the data u0
n in order to have the Trotter convergence of un(t) toward u(t)!

4We define DKL similarly as WKL
I .



4. An interesting insight through Trotter theory. We consider three other
examples concerning linearized (visco)elasticity already treated by variational evo-
lution equations or Laplace transforms. This section starts with a genuine study
through Trotter theory, its purpose is to introduce the common mechanical frame-
work, to recall the fact that a state variable (here the velocity) may disappear at the
limit, and suggests the noteworthiness of initial conditions which will be emphasized
in the second example (see section 4.2).

4.1. Quasi-static evolution of a linearly viscoelastic body of Kelvin-Voigt
type. The problem of the autonomous evolution of such a body involves the density
ρ as main data and reads as:

(Pρ)


uρ ∈ H1

Γ0
(Ω;R3) ;

∫
Ω

ρüρ · v′ dx+

∫
Ω

be(u̇ρ) · e(v′) dx

+

∫
Ω

ae(uρ) · e(v′) dx,∀ v′ ∈ H1
Γ0

(Ω;R3)

(uρ, u̇ρ)(0) = (u0
ρ, v

0
ρ) =: U0

ρ

a, b, being the coefficients of elasticity and viscosity which are assumed to satisfy the
classical conditions of symmetry, boundedness and ellipticity and may be termed
as:

(Pρ)


dUρ
dt
−Aρ Uρ = 0 in Hρ

Uρ(0) = U0
ρ

where

Hρ :=H1
Γ0

(Ω;R3)× L2(Ω;R3)

|(uρ, vρ)|2ρ = < (uρ, vρ), (uρ, vρ) >ρ:=

∫
Ω

ae(uρ) · e(uρ) dx+

∫
Ω

ρ|vρ|2 dx

D(Aρ) =
{
Uρ = (uρ, vρ) ∈ Hρ s.t. vρ ∈ H1

Γ0
(Ω), ∃!wρ ∈ L2(Ω;R3) s.t.

< (uρ, zρ), (v
′, v′) >ρ +

∫
Ω

be(vρ) · e(v′) dx = 0,

∀ v′ ∈ H1
Γ0

(Ω;R3)
}

Aρ Uρ =(vρ, zρ)

Aρ is obviously m−dissipative and

Ūρ −Aρ Ūρ = Fρ

⇔


v̄ρ = ūρ − F 1

ρ

ūρ minimizes
1

2
|(u′, u′)|2ρ +

1

2

∫
be(u′) · e(u′) dx−

∫
Ω

be(F 1
ρ ) · e(v′) dx

− < (0, F 1
ρ + F 2

ρ ), (u′, u′) >ρ on H1
Γ0

(Ω;R3)

so that if U0
p belongs to D(Aρ), (Pρ) has a unique solution in

C1
(
[0,∞);Hρ) ∩ C0([0,+∞);D(Aρ)

)



The very questions are what does happen when ρ goes to zero? In what extent can
we neglect “inertial terms”? Trotter theory may supply rigorous answers. We set

H :=H1
Γ0

(Ω;R)3

|U |2 = < U,U >:=

∫
Ω

ae(U) · e(U) dx

Pρ U =(U, 0) ∈ Hρ which clearly satisfies (T1) and (T2)

D(A) =
{
U ∈ H1

Γ0
(Ω;R3) ; ∃! z ∈ H1

Γ0
(Ω;R3) such that

< U, v′ > +

∫
Ω

be(z) · e(v′) dx = 0, ∀ v′ ∈ H1
Γ0

(Ω;R3)
}

=H!

AU =z

A is bounded, self adjoint and

Ū−A Ū = F

⇔ Ū minimizes
1

2
|u′|2 +

1

2

∫
Ω

be(u′) · e(u′) dx

−
∫

Ω

be(F ) · e(v′) dx on H1
Γ0

(Ω;R3)

Let U be the solution to

(P)


dU

dt
−AU = 0 in H

U(0) = U0

Hence, obviously,{
uρ → U in H1

Γ0
(Ω;R3)

ρ
∫

Ω
|vρ|2 dx→ 0

uniformly on bounded time intervals

is equivalent to

lim
ρ→0

∫
Ω

|e(u0
ρ − U0)|2 dx+ ρ

∫
Ω

|v0
ρ|2 dx = 0

That is to say quasi-static evolution∫
Ω

ae(U) · e(v′) dx+

∫
Ω

be(U̇) · e(v′) dx = 0, ∀ v′ ∈ H1
Γ0

(Ω;R3)

is a good approximation if the sequence of kinetic energies of the initial data goes
to zero with, of course, a good choice of u0

ρ ; convergence toward zero of the density
is not enough!

4.2. Homogenization in elastodynamics. S. Brahim-Otsmane, G. Francfort
and F. Murat in a famous paper [7] considered homogenization of waves equation.
In order to maintain a mechanical unity in this section, we will rephrase it in terms
of elastodynamics with density ρε uniformly bounded from above and below with
respect to ε, and elasticity coefficients aε satisfying usual properties of symmetry
and of uniform boundedness and ellipticity with respect to ε. By using variational



evolution equation theory it may be shown that the following problem:

(Pε)


uε ∈ H1

Γ0
(Ω;R3) ;

∫
Ω

ρεüε · v′ dx+

∫
Ω

aεe(uε) · e(v′) dx = 0,

∀ v′ ∈ H1
Γ0

(Ω;R3)

(uε, u̇ε)(0) = (u0
ε, v

0
ε) given in H1

Γ0
(Ω;R3)× L2(Ω;R3)

under assumption5:

(H1)



aε H-converges toward ahom

ρε weak star converges in L∞(Ω) toward ρ̄

(u0
ε, v

0
ε) weakly converges in H1

Γ0
(Ω;R3)× L2(Ω;R3) toward (u0, v̄)

ρεvε weakly converges in L2(Ω;R3) toward ρv

let v0 :=
ρv

ρ̄

has a unique solution which converges in the following sense:

(uε, u̇ε) weak star converges in L∞
(
0, T ;H1

Γ0
(Ω;R3)× L2(Ω;R3)

)
toward (u, u̇) such that

(P)


∫

Ω

ρ̄ü · v′ dx+

∫
Ω

ahome(u) · e(v′) dx = 0, ∀ v′ ∈ H1
Γ0

(Ω;R3)

(u, u̇)(0) = (u0, v0)

But in general we do not have

|(uε, u̇ε)|2ε(t)→ |(u, u̇)|2(t) (4)

where

|(uε, u̇ε)|2ε =

∫
Ω

aεe(uε) · e(uε) dx+

∫
Ω

ρε|u̇ε|2 dx

|(u, u̇)|2 =

∫
Ω

ahome(u) · e(u) dx+

∫
Ω

ρ̄|u̇|2 dx

Nevertheless, it can be shown as in [7] that there exist “well prepared” initial data
such that 4 occurs!

5Recall that aε is said to H−converge to ahom if and only if for any f in H−1(Ω;R3) the
sequence vε of solutions to

−div
(
aεe(vε)

)
= f, in Ω

vε = 0 on ∂Ω

satisfies

vε ⇀ vhom weakly in H1
0 (Ω;R3)

aεe(vε) ⇀ ahome(vhom) weakly in L2(Ω; S3)

where vhom is the solution to

−div
(
ahome(vhom)

)
= f, in Ω

vhom = 0 on ∂Ω



Let ũε and ǔε solution to (Pε) with

(ũε, ˙̃uε)(0) = (ũ0
ε, v

0)

(ǔε, ˙̌uε)(0) = (u0
ε − ũ0

ε, v
0
ε − v0)

ũ0
ε ∈ H1

Γ0
(Ω;R3) such that∫

Ω

aεe(ũ
0
ε) · e(v′) dx =

∫
Ω

ahome(u0) · e(v′) dx, ∀ v′ ∈ H1
Γ0

(Ω;R3)

then

i) (ũε, ˙̃uε) weak star converges in L∞
(
0, T ;H1

Γ0
(Ω;R3)×L2(Ω;R3)

)
and ˙̃uε con-

verges strongly in C0
(
[0, T ];L2(Ω;R3)

)
toward u̇ with

∣∣(ũε, ˙̃uε)
∣∣
ε
→ |(u, u̇)|

in C0([0, T ]),

ii) (ǔε, ˙̌uε) weak star converges in L∞
(
0, T ;H1

Γ0
(Ω;R3)× L2(Ω;R3)

)
toward 0.

This nice result can be obtained very easily by using Trotter theory, illustrating the
noteworthiness of the assumption on the data in the Trotter convergence theorem.

Obviously, (Pε) and (P) may be formulated as:

(Pε)


dUε

dt
−Aε Uε = 0 in Hε

Uε(0) = U0
ε

, (P)


dU

dt
−AU = 0 in H

U(0) = U0

with

Hε := H1
Γ0

(Ω,R3)× L2(Ω;R3),

H := H1
Γ0

(Ω;R3)× L2(Ω;R3)

|(uε, vε)|2ε =< (uε, vε), (uε, vε) >ε:=

∫
Ω

aεe(u
ε) · e(uε) dx+

∫
Ω

ρε |vε|2 dx

|(u, v)|2 =< (u, v), (u, v) >:=

∫
Ω

ahome(u) · e(u) dx+

∫
Ω

ρ̄|v|2 dx

D(Aε) =
{
Uε = (uε, vε) ∈ Hε ; vε ∈ H1

Γ0
(Ω;R3) ; ∃! zε ∈ L2(Ω;R3) such that

< (uε, zε), (v
′, v′) >ε= 0, ∀ v′ ∈ H1

Γ0
(Ω;R3)

}
D(A) =

{
U = (u, v) ∈ H ; v ∈ H1

Γ0
(Ω;R3) ; ∃! z ∈ L2(Ω;R3) such that

< (u, z), (v′, v′) >= 0, ∀ v′ ∈ H1
Γ0

(Ω;R3)
}

and let Pε be defined by

Pε U = (u′ε, v
′
ε) such that

u′ε ∈ H1
Γ0

(Ω;R3) ;

∫
Ω

aεe(u
′
ε) · e(u′) dx =

∫
Ω

ahome(u) · e(u′) dx, ∀u′ ∈ H1
Γ0

(Ω;R3)

v′ε = v

Here the concept that PεU represents U in Hε takes its full meaning: u′ε is a
microscopic state corresponding to the macroscopic state u!



Theory of homogenization immediately yields that (Hε, Pε, H) satisfies (T1) and
(T2) and

Trotter convergence ⇔


uε weakly converges in H1

Γ0
(Ω;R3) toward u∫

Ω

aεe(uε) · e(uε) dx→
∫

Ω

ahome(u) · e(u) dx

vε strongly converges in L2(Ω;R3) toward v

As Trotter convergence of the resolvants obviously stems from results of homoge-
nization in elasticity, to get the Trotter convergence uniformly on [0, T ]

lim
ε→0
|PεU(t)− Uε(t)|ε = 0

(and consequently |Uε(t)|ε → |U(t)|), it suffices that

lim
ε→0

∣∣PεU0 − U0
ε

∣∣
ε

= 0

that is to say ((u0)′ε−u0
ε, v

0−v0
ε) converges strongly to (0, 0) inH1(Ω;R3)×L2(Ω;R3)

which is satisfied by the initial data ũ0
ε = (u0)′ε and ṽ0

ε = v0 of [7]!

4.3. Periodic homogenization in visco-elasticity of Kelvin-Voigt type. In
another famous paper [10] is, inter alia, studied the following problem of homoge-
nization:

(Pε)


uε ∈ H1

0 (Ω;R3) ;

∫
Ω

b(x/ε)e(u̇ε) · e(v′) dx

+

∫
Ω

a(x/ε)e(u̇ε) · e(v′) dx = 0, ∀ v′ ∈ H1
0 (Ω;R3)

uε(0) = u0
ε

where the viscoelasticity coefficients are deduced from Y−periodic functions a and
b, Y := (0, 1)3, satisfying the usual properties of symmetry, boundedness and ellip-
ticity. Problem (Pε) can be formulated as

(Pε)


duε
dt
−Aε uε = 0 in Hε

uε(0) = u0
ε

where

Hε :=H1
0 (Ω;R3)

|uε|2ε = < uε, uε >ε:=

∫
Ω

a(x/ε)e(uε) · e(uε) dx

D(Aε) =Hε

Aε uε =zε such that

∫
Ω

b(x/ε)e(zε) · e(v′) dx+

∫
Ω

a(x/ε)e(uε) · e(v′) dx = 0

Aε is bounded self adjoint on Hε and for all positive λ one has:

ūε − λAε ūε = fε

⇔
∫

Ω

(
a(x/ε) +

1

λ
b(x/ε)

)
e(ūε) · e(v′) dx

=
1

λ

∫
Ω

b(x/ε)e(fε) · e(v′) dx, ∀ v′ ∈ H1
0 (Ω;R3)



which is the same equation as the one satisfied by the Laplace transform

L ūε(λ) :=

∫ +∞

0

e−
t
λ ūε(t) dt

with u0
ε = fε!

The macroscopic (or homogenized) behavior is obtained by letting ε tend to zero.

The resolvant of Aε needs the H−limit of aε +
1

λ
bε since ūε involves a problem

of periodic homogenization in elasticity. There exist ahom and bhom, H−limits
of aε = a(·/ε) and bε = b(·/ε), but the H−limit is not an additive process as

(a +
1

λ
b)hom is different from ahom +

1

λ
bhom! Hence the limit of ūε seems not

involving a resolvant! G. Francfort and P. Suquet showed that

(a+
1

λ
b)hom = ahom +

1

λ
bhom + LK(λ)

so that the limit behavior as ε goes to zero of the solution to (Pε) is u solution to:

(P)


∫

Ω

(
ahome(u) + bhome(u̇) +

∫ t

0

K(t− τ)e
(
u̇(τ)

)
dτ
)
· e(v′) dx = 0,

∀ v′ ∈ H1
0 (Ω;R3)

u(0) = u0

The limit behavior is no longer of Kelvin-Voigt type but involves viscoelasticity
with memory! And it seems that here is an example “of a sequence of semi-groups
whose limit is not a semi-group”.

The key point in trying to operate Trotter theory is the tool of two-scale conver-
gence [1], the most suitable and efficient tool for mathematical analysis in periodic
homogenization: if d is any Y−periodic function satisfying the usual properties of
boundedness and ellipticity and if f ∈ L2(Ω;R3) then

wε ∈ H1
0 (Ω;R3) ;

∫
Ω

d(x/ε)e(wε) · e(w′) dx =

∫
Ω

f · w′ dx, ∀w′ ∈ H1
0 (Ω;R3)

⇔



∃! (w,w1) ∈ H1
0 (Ω;R3)× L2(Ω;H1

per

(
Y ;R3)/R

)
=: H such that∫

Ω×Y
d(y)(exw + eyw

1) · (exw′ + eyw
1′) dx dy =

∫
Ω

fw′ dx,

∀ (w′, w1′) ∈ H ;

lim
ε→0

∫
Ω

d(x/ε)
(
e(wε)(x)− ex(w)(x)− ey(w1)(x, x/ε)

)
·
(
e(wε)(x)− ex(w)(x)− ey(w1)(x, x/ε)

)
dx = 0

At that point, we simply cannot resist the impulse to let:

H :=
{

(u, u1) ∈ H1
0 (Ω;R3)× L2

(
Ω;H1

per(Y ;R3)/R
)
;

< (u, u1), (0, u1′) >= 0, ∀u1′ ∈ L2
(
Ω;H1

per(Y ;R3)/R
)}

with

|U |2 = < (u, u1), (u, u1) >:=

∫
Ω×Y

a(y)
(
ex(u) + ey(u1)

)
·

·
(
ex(u) + ey(u1)

)
dx dy



Pε(u, u
1) =u′ε ∈ Hε s.t. < u′ε, w

′ >ε=< (u, u1), (w′, w1′) >, ∀ (w′, w1′) ∈ H
D(A) =H

AU =(z, z1) ∈ H s.t. < (u, u1), (w′, w1′) > +

+

∫
Ω×Y

b(y)
(
ex(z) + ey(z1)

)
·
(
ex(w′) + ey(w1′)

)
dx dy = 0,

∀ (w′, w1′) ∈ H

and

(P)


dU

dt
−AU = 0 in H

U(0) = U0
,

as candidate to describe the homogeneous macroscopic behavior!
First note that Trotter convergence of uε toward U is equivalent to:

lim
ε→0

∫
Ω

d(x/ε)
(
ex(uε)(x)− ex(u)(x)− ey(u1)(x, x/ε)

)
·

·
(
ex(uε)(x)− ex(u)(x)− ey(u1)(x, x/ε)

)
dx = 0

and, second, that Trotter convergence of the resolvant of Aε toward the one of A

stems obviously from two-scale convergence theory applied to c(λ) = a(y) +
1

λ
b(y).

Hence, if we assume

lim
ε→0

∣∣PεU0 − u0
ε

∣∣
ε

= 0 (5)

the limit behavior is effectively described by (P). It has the same structure as the
genuine one but with (u, u1) as unknowns. The sequence of semi-groups generated
by Aε converges in the sense of Trotter to the semi-group generated by A. Cer-
tainly, one can eliminate u1 (the additional microscopic state variable) to get an
integro-differential equation involving the sole macroscopic state variable u. A pos-
sibility for 5 is of course u0

ε = PεU
0 that is to say u0

ε has to be a faithful microscopic

representative of U0 = (u0, u01

) and consequently does satisfy div a(x/ε) e(u0
ε) in-

dependent of ε, a condition already stated in [10].
The idea of using two-scale convergence tool to treat the problem through Trotter

theory was inspired to us by the deep insight of [33].

4.4. Thin linear viscoelastic Kelvin-Voigt type plates. After the classical
change of coordinates and unknowns S′ε (see subsection 3.5.3), the autonomous
quasi-static evolution of a thin linearly viscoelastic plate of Kelvin-Voigt type oc-
cupying Ωε = ω × (−ε, ε), where ω is a domain of R2 with a Lipschitz boundary,
reads as:

(Pε)
∫

Ω

(
ae′(ε, uε) + be′(ε, u̇ε)

)
· e′(ε, v′) dx = 0, ∀ v′ ∈ H1

Γ0
(Ω;R3)

where Ω = ω × (−1, 1) and Γ0 = γ0 × (−ε, ε), γ0 ⊂ ∂ω, h1(γ0) > 0, and may be
formulated as:

(Pε)


duε
dt
−Aε uε = 0 in Hε := H1

Γ0
(Ω;R3)

uε(0) = u0
ε



with

D(Aε) = Hε
Aε uε = zε ; zε ∈ H1

Γ0
(Ω;R3) such that∫

Ω

(
ae′(ε, uε) + be′(ε, zε)

)
· e′(ε, v′) dx = 0, ∀ v′ ∈ H1

Γ0
(Ω;R3)

Aε is bounded self-adjoint and one has:

ūε − λAε ūε = fε ⇔
∫

Ω

(
a+

1

λ
b
)
e′(ε, ūε) · e′(ε, v′) dx

=

∫
Ω

1

λ
be′(ε, fε) · e′(ε, v′) dx, ∀ v′ ∈ H1

Γ0
(Ω;R3) (6)

The limit behavior of ūε when ε goes to zero can be found in the mathematical
justification of Kirchhoff-Love theory of plates [9, 14].

Recall that according to 1, for all e in S3 one writes

e = ê+ e⊥

so that we introduce c∧∧, c∧⊥, c⊥∧, c⊥⊥ the canonical decomposition of c ∈ Lin(S3).
We set

cKL := c∧∧ − c∧⊥(c⊥⊥)−1c⊥∧ (7)

Then, as ε goes to zero, ūε converges strongly in H1
Γ0

(Ω;R3) toward ū such that:

ū ∈ VKL(Ω) ;

∫
Ω

(a+
b

λ
)KL‘e(u) ·‘e(v′) dx =

∫
Ω

b

λ
‘e(f) ·‘e(v′) dx,

∀ v′ ∈ VKL(Ω) =
{
v ∈ H1

Γ0
(Ω;R3) ; e(v)⊥ = 0

}
if one assumes that fε weakly converges in H1

Γ0
(Ω;R3) toward f in VKL(Ω). But

due to 7, (a+
b

λ
)KL is different from aKL +

bKL

λ
so that the equation supplying ū

does not look as the one stemming from a resolvant like 6. So, proceeding as [10] it
is easy to show [22] the existence of K such that

(a+
1

λ
b)KL = aKL +

1

λ
bKL + LK(λ)

so that uε(t) converges uniformly on bounded time intervals strongly in H1
Γ0

(Ω;R3)
toward some u(t) with a Kirchhoff-Love kinematics but with a mechanical behavior
which is no longer of Kelvin-Voigt type but viscoelastic with memory!

This frustrating result is due to an incomplete vision of the reduction dimension
process, like in subsection 4.3. Actually the convergence result of ūε has to be
completed as follows:

wε ∈ H1
Γ0

(Ω;R3) ;

∫
Ω

d(x)e(ε, wε) · e(ε, w′) dx

=

∫
Ω

f · w′ dx, ∀w′ ∈ H1
Γ0

(Ω;R3), f ∈ L2(Ω;R3)

⇔ ∃! (w,w1) ∈ VKL(Ω)×H1
m(−1, 1;L2(ω;R3)) =: H such that



∫
Ω×Y

d
(
e(w) + ∂3w

1 ⊗s e3

)
·
(
e(w′) + ∂3w

1′ ⊗s e3

)
dx dy

=

∫
Ω

fw′ dx, ∀ (w′, w1′) ∈ H

lim
ε→0

∫
Ω

d
(
e(ε, wε)− ew − ∂3w

1 ⊗s e3

)
·

·
(
e(ε, wε)− e(w)− ∂3w

1 ⊗s e3

)
dx = 0

where

H1
m

(
− 1, 1 ; L2(ω,R3)

)
=
{
w ∈ H1

(
− 1, 1 ; L2(ω;R3)

)
;

∫ 1

−1

w(·, x3) dx3 = 0
}

Therefore we can run the Trotter apparatus by choosing a limit space H constituted
by couples of displacement fields so that the limit behavior described by u and u1

is still viscoelastic of Kelvin-Voigt type!

4.5. Final remark. In the context of the mathematical modeling in Physics which
most of the time involves parameterized problems, it appears clearly that a theory
of convergence of semi-groups has to be formulated in a variable spaces framework.
Situations considered in sections 4.3 and 4.4 let us guess that it is appropriate
to operate in such a framework so that a sequence of semi-groups converges to a
semi-group.
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layer, Cinquièmes journées du GDR ’Étude de la propagation sonore en vue du contrôle non-

destructif ’, Anglet, France, June 2-6, (2008), published in Ultrasonic wave propagation in
non homogeneous media, Springer Proceedings in Physics 128, A. Léger and M. Deschamps
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