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ABSTRACT 
A contact model using semi analytic methods, relying on 

elementary analytic solutions, has been developed. It is based 
on numeric techniques adapted to contact mechanics, with 
strong potential for inelastic, inhomogeneous or anisotropic 
problems. Recent developments aim to quantify displacements 
and stresses of an anisotropic material which is in contact with 
another anisotropic material. The influence of symmetry axes 
on the contact problem solution will be more specifically 
analyzed. 

INTRODUCTION 
Engineering problems are becoming more complicated 

when trying to reduce the gap between the model and the real 
application. It means that less restrictive assumptions should be 
made, or in other words more physics should be implemented 
in the model. Among the challenges to succeed in it, the 
material properties should be considered accurately. Supposing 
the material is isotropic is not enough. For most composite and 
mono-crystal materials their compositions or the elaboration 
and manufacturing processes imply that it exits one or two 
main directions or even a general anisotropy. The influence of 
the anisotropy orientations have to be taken into account to 
better predict the stress state in order to optimize the service 
life of industrial components. 

Several methods can be used for contact simulation of 
anisotropic materials. Semi analytical methods have proven 
their efficiency in contact mechanics and are developed here to 
account for anisotropy of materials. The main advantage is here 
the computing time compared to the Finite Element (FE) 
method that is however widely used for many contact 
problems. The contact model with its specificities when at least 
one of the bodies in contact behaves anisotropically will be first 
presented. Then, the influence of some parameters on the 
contact pressure distribution and strain and stress fields will be 
studied. The effect of the anisotropy orientation on the contact 
solution will be then investigated. 

NOMENCLATURE 
E1 Young modulus in direction 1 
E3 Young modulus in direction 3 

RT    Transpose of the matrix R 
uk     Displacement in direction k 
uk,ij   Derivative with respect to i and j of uk 
θ  Rotation angle relative to direction 1

CONTACT RESOLUTION 
The semi analytical method consists in the summation of 

elementary solutions known analytically. One of the difficulties 
is the derivation or the identification of these elementary 
analytical solutions, such as the well known Boussinesq and 
Cerruti solutions in isotropic elasticity [1]. The frame is 
simplified here by supposing the contact between one 
anisotropic elastic half space and a rigid body. The contact can 
be controlled by a prescribed load (which is used here) or by a 
prescribed displacement. Analytical solutions giving the 
contributions of normal and tangential loading assumed 
uniform over a single rectangular element will be used. By 
summation the elastic deflection at each point within and near 
the contact area will be derived. 

The elastic displacements are expressed by a double 
discrete convolution product between influence coefficients and 
the pressure or shear at the contact surface. The normal 
problem and the tangential problem in partial or gross slip are 
therefore solved. 

The resolution is done by minimizing the complementary 
energy. An algorithm is developed with the conjugated gradient 
method. To accelerate the calculation, the Fast Fourier 
Transforms (FFT) are used to perform the double convolution 
product. 

Once the contact problem solved, the strains in the half 
space are calculated. 

ANISOTROPY OF MATERIAL 
Anisotropic materials are defined by the elastic stiffness 

tensor Cijkl , which satisfies the full symmetry Cijkl= Cjikl= Cklij . 
These materials can be divided into three parts: cubic, 
orthotropic and anisotropic. Depending on these families of 
materials, three, nine or twenty one parameters are necessary 
for defining completely the elastic tensor. Note that in this work 
the main directions or axes of symmetry are not necessarily the 
same than the contact ones. In such a situation a reference base 
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change has to be done. The elastic stiffness tensor links stresses 
to strains with this following relation σij=Cijkl .εkl. 

INFLUENCE COEFFICIENTS 
The influence coefficients, which link the effort to the 

displacements or to the strains, for an anisotropic material, are 
obtained with the Green's functions [2] [3]. These functions can 
be described explicitly in the Fourier domain, whereas it is 
more complicated to obtain their formulation in the physical 
domain due to the general anisotropy of the material [4]. The 
Fourier domain is therefore used.  

A concentrated force (normal or tangential) is applied on 
the surface of an anisotropic elastic half space. In the absence 
of body forces, the equations of equilibrium in terms of 
displacements uk are written as 

Cijkl .uk,lj = 0 (1) 
Three matrices 3×3 are defined with the tensor  Cijkl   and 

the vectors  n  and  m, which form a right handed triad with the 
position vector x. Q, R and T are a double projection of the 
elastic stiffness tensor. 

Qik = Cijkl .nj.nl, Rik = Cijkl .nj.ml, Tik = Cijkl .mj.ml (2) 
Six distinct eigenvalues p are obtained by calculating the 

roots of 
det (Q+p.(R+RT)+p².T) = 0 (3) 

The roots are three pairs of complex conjugates. The 
complex eigenvectors a of eq. (4) are not a trivial solution. The 
eigenvectors b are derived by eq. (5) 

[Q+p.(R+RT)+p².T].a = 0 (4) 
 b = (RT+p.T).a (5) 

The vectors a and b are the Stroh eigenvectors and p the 
associated Stroh eigenvalues [5]. The Green's functions are then 
obtained by superposing the six eigensolutions. The calculated 
displacements and stresses are real. The determination of the 
roots' sextic equation from which the complex eigenvectors are 
derived is made numerically. 

APPLICATION 
The contact between an elastic anisotropic half space and a 

rigid indenter, with a spherical tip, is studied. The depth 
corresponds to direction 3, which means that the surface is 
defined by directions 1 and 2. In this example the material 
properties look like an isotropic material except one of them 
(E1 or E3). 

The influence of E1 and E3 on the contact pressure 
distribution is shown in Figs. 1 and 2. It is observed that the 
Young modulus in a direction parallel to the surface (E1 here) 
has a negligible effect (the maximum contact pressure is 
reduced by 2% only when E1 is multiplied by a factor 2.5), 
whereas the parameter E3 has a strong influence on the pressure 
distribution and the contact radius: increase of 69% of the 
maximum contact pressure and decrease of the contact radius 
by 27% when the Young modulus is increased by a factor 2.5) 
[6] [7]. 
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Figure 1: Influence of E1 on the contact pressure 
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Figure 2: Influence of E3 on the contact pressure 
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Figure 3: Influence of the material's orientation on the 
contact pressure 
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The effect of the material's orientation relative to the 
contact is showed in Fig. 3. The material has the properties of 
an isotropic material except E3=1.5 Eisotropic, but the material 
main direction is different than the contact normal. When the 
orientation angle θ around the 1-axis increases up to 90 
degrees, the numerical solution converges progressively to the 
solution where E3=Eisotropic and E2=1.5 Eisotropic (as shown in Fig. 
1). 

Although the influence of a change of the Young modulus 
in a direction parallel to the surface (for example E1) has a 
negligible effect on the pressure distribution and contact area, 
the effect on the stress field is not insignificant. The stress 
components σ11 and σ33 are plotted in Figs. 4 and 5. It can be 
observed that at the central surface point (x3=0), σ11 is 
increased by 80%, σ22 by 31%, and σ33 by 94% when E1 
reaches 2.5 times Eisotropic. 
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Figure 4: Influence of E1 on σ11 

0 0.5 1 1.5 2 2.5
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

z/aHertz

S
ig

m
a 

[M
P

a]

Sigma33

 

 E
1
=E

isotropic

 E
1
=1.5 E

isotropic

 E
1
=2.0 E

isotropic

 E
1
=2.5 E

isotropic

Figure 5: Influence of E1 on σ33 

CONCLUSION 
A semi analytic method has been developed for the contact 

problem of anisotropic elastic materials. The model has been 
validated by comparison with the solution for isotropic 
materials. The advantage of this method is the low computing 
time compared to the finite element method. 

It is found that the stiffness along the normal to the contact 
has a strong influence on the contact solution in terms of 
pressure distribution and contact; an increase of E3 leads to a 
higher maximum contact pressure and a smaller contact radius. 
Conversely a change of the Young modulus along a direction 
parallel to the surface (plane (1,2)) does not significantly affect 
the contact pressure distribution (and contact area). It should be 
however noted that a change in E1 or E2 does have an effect on 
the subsurface stress field. 

The performance of the method is highlighted by analyzing 
the effect of the orientation of the material main directions 
compared to the surface normal. 
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