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NORMAL AND TANGENTIAL CONTACT BETWEEN ANISOTROPIC MATERIALS

C. Bagault M.-C. Baietto D. Nélias
Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621, France

ABSTRACT R" Transpose of the matrix R
A contact modl using semi analytic methods, relying on u. Displacement in direction k
elementary analytic solutions, has been developed. It is based  u; Derivative with respecttoiandjof u
on numeric techniques adapted to contact mechanics, with 0  Rotation angle relative to direction 1
strong potential for inelastic, inhomogeneous or anisotropic
problems. Recent developments aim to quantify displacementsCONTACT RESOLUTION
and stresses of an anisotropic material which is in contact with The semi angtical method consists in the summation of
another anisotropic material. The influence of symmetry axes elementary solutions known analytically. One of the difficulties
on the contact problem solution will be more specifically is the derivation or the identification of these elementary

analyzed. analytical solutions, such as the well known Boussinesq and
Cerruti solutions in isotropic elasticity [1]. The frame is
INTRODUCTION simplified here by supposing the contact between one

Engineering problems are becoming more complicated anisotropic elastic half space and a rigid body. The contact can
when trying to reduce the gap between the model and the realbe controlled by a prescribed load (which is used here) or by a
application. It means that less restrictive assumptions should beprescribed displacement. Analytical solutions giving the
made, or in other words more physics should be implemented contributions of normal and tangential loading assumed
in the model. Among the challenges to succeed in it, the uniform over a single rectangular element will be used. By
material properties should be considered accurately. Supposingsummation the elastic deflection at each point within and near
the material is isotropic is not enough. For most composite and the contact area will be derived.
mono-crystal materials their compositions or the elaboration The elastic displacements are expressed by a double
and manufacturing processes imply that it exits one or two discrete convolution product between influence coefficients and
main directions or even a general anisotropy. The influence of the pressure or shear at the contact surface. The normal
the anisotropy orientations have to be taken into account to problem and the tangential problem in partial or gross slip are
better predict the stress state in order to optimize the servicetherefore solved.
life of industrial components. The resolution is done by minimizing the complementary

Several methods can be used for contact simulation of energy. An algorithm is developed with the conjugated gradient
anisotropic materials. Semi analytical methods have proven method. To accelerate the calculation, the Fast Fourier
their efficiency in contact mechanics and are developed here toTransforms (FFT) are used to perform the double convolution
account for anisotropy of materials. The main advantage is hereproduct.
the computing time compared to the Finite Element (FE) Once the contact problem solved, the strains in the half
method that is however widely used for many contact space are calculated.
problems. The contact model with its specificities when at least
one of the bodies in contact behaves anisotropically will be first ANISOTROPY OF MATERIAL
presented. Then, the influence of some parameters on the  Anisotropic materials are defined by the elastic stiffness
contact pressure distribution and strain and stress fields will be tensor G, which satisfies the full symmetry&= Gi= G-
studied. The effect of the anisotropy orientation on the contact These mateds can be divided into three parts: cubic,

solution will be then investigated. orthotropic and anisotropic. Depending on these families of
materials, three, nine or twenty one parameters are necessary

NOMENCLATURE for defining completely the elastic tensor. Note that in this work
E; Young modulus in direction 1 the main directions or axes of symmetry are not necessarily the

E; Young modulus in direction 3 same than the contact ones. In such a situation a reference base



change has to be done. The elastic stiffness tensor links stresses P/Pyer in the plane x=0

to strains with this following relatios;=Cjy .ex. tef T =
E=15E
INFLUENCE COEFFICIENTS 1t E;z_o E” 1
The influence coefficients, which link the effort to the Efz.sEm:C
displacements or to the strains, for an anisotropic material, are 08 i

obtained with the Green's functions [2] [3]. These functions can

be described explicitly in the Fourier domain, whereas it is EOG ]
more complicated to obtain their formulation in the physical s
domain due to the general anisotropy of the material [4]. The 04l |
Fourier domain is therefore used.
A concentrated force (normal or tangential) is applied on
the surface of an anisotropic elastic half space. In the absence 1
of body forces, the equations of equilibrium in terms of
displacementsare written as % 15 1 o5 o0 o5 1 15 2
Ci'kl Ui = 0 (1) Ve
Three méices 3x3 alre dlefined with the tensory, Cand Figure 1: Influence of E; on the contact pressure
the vectorsn and m, which form a right handed triad with the )
position vector x. Q, R and T are a double projection of the P/Pher, in the plane x=0
elastic stiffness tensor. of 7 ‘ ‘ ‘ ‘ e — E;‘Ev —
Qi = Gi-n.ny, R = Gja-nj.my, Ty = Gjg.my.my (2) P E3:15‘Eplp i
Six distind eigenvalues p are obtained by calculating the ES20E,
roots of E25E ||
det (Q+p.(R+R)+p2.T) = 0 3) 14t 1
The roos are three pairs of complex conjugates. The 12} 1
complex eigenvectors a of eq. (4) are not a trivial solution. The ;;E Al |
eigenvectors b are derived by eq. (5) B
[Q+p.(R+R)+p2.Tl.a=0 4) o8 1
b=(R+p.T).a (5) 06| 1
The vectrs a and b are the Stroh eigenvectors and p the 04l i
associated Stroh eigenvalues [5]. The Green's functions are then
obtained by superposing the six eigensolutions. The calculated H 1
displacements and stresses are real. The determination of the O 5 2
roots' sextic equation from which the complex eigenvectors are C.
derived is made numerically. Figure 2: Influence of E;on the contact pressure
APPLICATION P/Ppier, in the plane x=0
The contact between an elastic anisotropic half space and a ‘ ‘ ‘ ‘ ‘ ‘
rigid indenter, with a spherical tip, is studied. The depth 1ol i
corresponds to direction 3, which means that the surface is
defined by directions 1 and 2. In this example the material i
properties look like an isotropic material except one of them
(Eq or B). 0.k i
The influexce of E and B on the contact pressure g
distribution is shown in Figs. 1 and 2. It is observed that the & 4| i
Young modulus in a direction parallel to the surface H{&re)
has a negiible effect (the maximum contact pressure is 0.4 i
reduced by 2% only when;Hs multiplied by a factor 2.5),
whereas thparameter Ehas a strong influence on the pressure 0.2l |
distribution and the contact radius: increase of 69% of the
maximum contact pressure and decrease of the contact radius o

by 27% when the Young modulus is increased by a factor 2.5) 15

[6] [71.

Yiayer,
Figure 3: Influence of the material's orientation on the
contact pressure



The effect of the material's orientation relative to the CONCLUSION
contact is showed in Fig. 3. The material has the properties of A semi analytic method has been developed for the contact
an isotropic material exceptzEL.5 BEsoropic but the material problem of anisotropic elastic materials. The model has been
main direction is different than the contact normal. When the validated by comparison with the solution for isotropic
orientation angle6 around the 1-axis increases up to 90 materials. The advantage of this method is the low computing
degrees, the numerical solution converges progressively to thetime compared to the finite element method.
solution where E=Eisotropic and B=1.5 Esotropic (@S shown in Fig. It is found that the stiffness along the normal to the contact
1). has a strong influence on the contact solution in terms of
pressure distribution and contact; an increasesdeéds to a
Although the influence of a change of the Young modulus higher makmum contact pressure and a smaller contact radius.
in a direction parallel to the surface (for examplg Eas a Conversely a change of the Young modulus along a direction
negligible effect on the pressure distribution and contact area, parallel to the surface (plane (1,2)) does not significantly affect
the effect on the stress field is not insignificant. The stress the contact pressure distribution (and contact area). It should be
componentssy; andoss are plotted in Figs. 4 and 5. It can be however noted that a change ind E does have an effect on
observed tht at the central surface point;%R), o511 IS the subsuace stress field.
increased » 80%, o by 31%, andosz by 94% when E The performance of the method is highlighted by analyzing
reaches 2.5imes Eropic the effect of the orientation of the material main directions
compared to the surface normal.
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Figure 5: Influence of E, on 633






