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ABSTRACT

A contact model using semi analytical methods, relying
on elementary analytical solutions, has been developed. It is
based on numerical techniques adapted to contact mechanics,
with strong potential for inelastic, inhomogeneous or
anisotropic problems. Recent developments aim to quantify
displacements and stresses of an anisotropic half space with an
anisotropic coating which is in contact with a rigid sphere. The
influence of symmetry axes on the contact problem solution
will be more specifically analyzed.

INTRODUCTION

Engineering problems are becoming more complicated
when trying to reduce the gap between the model and the real
application. It means that less restrictive assumptions should
be made, or in other words more physics should be
implemented in the model. Among the challenges to succeed
in it, the material properties should be considered accurately.
Supposing the material is isotropic is not enough. For most
composite and mono-crystal materials their compositions or
the elaboration and manufacturing processes imply that there
exist one or two main directions or even a general anisotropy.
Moreover, coatings are often used to prevent or control wear.
Coatings do not have, generally, the same properties as the
substrate and may have various thicknesses. The influence of
the anisotropy orientations (in the coating and in the body)
have to be taken into account to better predict the distribution
of the contact pressure and the subsurface stress-field in order
to optimize the service life of industrial components.

Several methods can be used for contact simulation of
anisotropic materials. Semi analytical methods have proven
their efficiency in contact mechanics and are developed here to
account for anisotropy of materials. The main advantage is
here the computing time compared to the Finite Element (FE)
method that is however widely used for many contact
problems. The contact model between an anisotropic material
with an anisotropic coating and a rigid sphere will be
presented.

NOMENCLATURE
E; Young modulus in direction 1
E; Young modulus in direction 3
R" Transpose of the matrix R

u, Displacement in direction k
uy; Derivative with respect to i and j of u
0 Rotationangle relative to direction 1

SOLUTION OF THE CONTACT PROBLEM

The semi malytical method consists in the summation of
elementary solutions known analytically. One of the
difficulties is the derivation or the identification of these
elementary analytical solutions, such as the well known
Boussinesq and Cerruti solutions in isotropic elasticity [1].
The framework is simplified here by assuming the contact
between one anisotropic elastic half space and a rigid body.
The contact can be controlled by a prescribed load (which is
used here) or by a prescribed displacement. Analytical
solutions giving the contributions of normal and tangential
loading assumed uniform over a single rectangular element
will be used [2,3]. By summation the elastic deflection at each
point within and near the contact area will be derived.

The elastic displacements are expressed by a double
discrete convolution product between influence coefficients
and the pressure or shear at the contact surface. The normal
problem and the tangential problem in partial or gross slip are
therefore solved.

The resolution is done by minimizing the complementary
energy. An algorithm is developed with the conjugated
gradient method. To accelerate the calculation, the Fast
Fourier Transforms (FFT) are used to perform the double
convolution product.

Once the contact problem solved, the strains in the half
space are calculated.

ANISOTROPY OF MATERIAL

Anisotropic materials are defined by the elastic stiffness
tensor G, which satisfies the full symmetryy&= Cig= Gy
These maiials can be divided into three parts: cubic,
orthotropic and fully anisotropic. Depending on these families
of materials, three, nine or twenty one parameters are
necessary for defining completely the elastic tensor. Note that
in this work the main directions or axes of symmetry are not
necessarily the same than the contact ones. In such a situation
a reference frame change has to be done. The elastic stiffness
tensor links stresses to strains with this following relation
Gij:Cijkl €kl



INFLUENCE COEFFICIENTS contact radius by 11% when the Young modulus is increased
The influence coefficients, which link the load to the by a factor 2, in agreement with trends by other authors [6,7].
displacements or to the strains, for an anisotropic material with

an anisotropic coating, are obtained with the Green's functions P/Pper, in the plane x=0
[2,3]. These functions can be described explicitly in the ‘ ‘ ‘ ‘ ‘ ! — !
Fourier domain, whereas it is more complicated to obtain their T El:o‘zs Eisoropic ||
formulation in the physical domain due to the general T E1:0'75 Eisaropic
anisotropy of the material [4]. The Fourier domain is therefore 1l Ny T Er= Exorope ||
used. A E1=2.0 Eotropic
A concentrated force (normal or tangential) is applied on o o8] E1740 Fsorope |
the surface of an anisotropic elastic half space. In the absence & " B8O Bsorope
of body forces, the equations of equilibrium in terms of £ osf s 1
displacementsare written as
0.4} g
Gl =0 (1)
Threematrices 3x3 are defined with the tensgg Gind 0.2 1
the vecors n and m, which form a right handed triad with the
position vector x. Q, R and T are a double projection of the 0 e e
elastic stiffness tensor. yia
Hertz
Qi = Ciuniny, R = Gjanmy, Ty = Gamymy 2) Figure 1: Influence of E; on the contact pressure
Six disinct eigenvalues p are obtained by calculating the PP e, iN the plane x=0
roots of ar : : : : : : _
""""" E;=0.25 EISO ropic
det (Q+p (R+R)+p2T) = 0 ®3) N e Em050 e |
The mots are three pairs of complex conjugates. The N Es= Eisotropic
complex eigenvectors a of eq. (4) are not a trivial solution. The J — E5720 Boropic ||
eigenvectors b are derived by eq. (5) —— E3=4.0 Eioopic
B E,=8.0E. ...
[Q+p(R+R)+p2Tl.a=0 4) £ > e ]
b =(R™+pT).a 5) B
1+ 4
The ectors a and b are the Stroh eigenvectors and p the
associated Stroh eigenvalues [5]. The Green's functions are o5l \ |
then expressed as series forms, by superposing the ' b,
eigensolutions. Three or four terms are enough to solve this IR
complicated problem (the remaining terms are ignored). The R T
first order is obtained with the boundary conditions, then the Y3y erny
successive orders are calculated by a recursive form. Figure 2: Influence of E; on the contact pressure
APPLICATION The effet of the material's orientation relative to the

The contact between an elastic anisotropic half space and contact is shown in Fig. 3. The material has the properties of
a rigid indenter, with a spherical tip, is studied. The depth  an isotropic material except#L.5 Bsotropic DUt the material
corresponds to direction 3, which means that the surface is main diection is different than the contact normal. When the
defined by directions 1 and 2. In these examples, materials are orientation angled around the 1-axis increases up to 90
orthotropic, with the same Poisson’s ratio and the same degrees, the numerical solution converges progressively to the
Coulomb’s modulus. The Hertz pressure is calculated with  solution where E=Eisouopic and BE=1.5 Esouopic (@S Shown in
Eisotropio- Fig. 1).

The infuence of E and B on the contact pressure
distribution (the depth z equals 0) is shown in Figs. 1 and 2. It
is observed that the Young modulus in a direction parallel to
the surface (Ehere) has a moderate effect (the maximum
contactpressure is reduced by 3% only wheni€multiplied
by a fat¢or 2), whereas the parametertas a strong influence
on the pessure distribution and the contact radius: increase of
32% of the maximum contact pressure and decrease of the
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Figure 3: Influence of the material's orientation on the
contact pressure

The contact between an elastic anisotropic half space with
an anisotropic coating and a rigid indenter, with a spherical
tip, is now studied. In these examples, materials are cubic.

The influence of &, the coating thickness, on the contact
pressuredistribution is shown in Fig. 4. The Young modulus
of the coating, E, is twice higher than the Young modulus of
the subtrate, k, and the Hertz pressure is obtained when
Zc=0. The pressure increases with the coating thickness,
indeed he coating becomes predominant.

In Fig. 5, the influence of E£on the contact pressure
distribttion is studied. The maximum contact pressure
increases by 48% whencHs twice higher than &and
decrease by 29% when Eis smaller than gby a factor 2.
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Figure 4: Influence of Z: on the contact pressure

P/Pper in the plane x=0

y/aHertz
Figure 5: Influence of E; on the contact pressure

CONCLUSION

A semi analytic method has been developed for the
contact problem of anisotropic elastic materials. The model
has been validated by comparison with the solution for
isotropic materials. The advantage of this method is the low
computing time compared to the finite element method.

It is found that the stiffness along the normal to the
contact has a strong influence on the contact solution in terms
of pressure distribution and contact; an increase; dé&ls to
a higher maximum contact pressure and a smaller contact
radius. Conversely a change of the Young modulus along a
direction parallel to the surface (plane (1,2)) has a moderate
effect on the contact pressure distribution (and contact area).

The performance of the method is highlighted by
analyzing the effect of the orientation of the material main
directions compared to the surface normal.

Moreover, the coating thickness and its Young modulus
have a significant influence on the pressure distribution.

In order to optimize the engineering problems, the coating
thickness and the properties of materials have to be studied
accurately.
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