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NORMAL A ND TANGENTIAL CONTACT BETWEEN ANISOTROPIC MATERIALS WITH AN 
ANISOTROPIC COATING 

C. Bagault D. Nélias   M.-C. Baietto 
Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621, Villeurbanne, France 

ABSTRACT 
A contact model using semi analytical methods, relying 

on elementary analytical solutions, has been developed. It is 
based on numerical techniques adapted to contact mechanics, 
with strong potential for inelastic, inhomogeneous or 
anisotropic problems. Recent developments aim to quantify 
displacements and stresses of an anisotropic half space with an 
anisotropic coating which is in contact with a rigid sphere. The 
influence of symmetry axes on the contact problem solution 
will be more specifically analyzed. 

INTRODUCTION 
Engineering problems are becoming more complicated 

when trying to reduce the gap between the model and the real 
application. It means that less restrictive assumptions should 
be made, or in other words more physics should be 
implemented in the model. Among the challenges to succeed 
in it, the material properties should be considered accurately. 
Supposing the material is isotropic is not enough. For most 
composite and mono-crystal materials their compositions or 
the elaboration and manufacturing processes imply that there 
exist one or two main directions or even a general anisotropy. 
Moreover, coatings are often used to prevent or control wear. 
Coatings do not have, generally, the same properties as the 
substrate and may have various thicknesses. The influence of 
the anisotropy orientations (in the coating and in the body) 
have to be taken into account to better predict the distribution 
of the contact pressure and the subsurface stress-field in order 
to optimize the service life of industrial components. 

Several methods can be used for contact simulation of 
anisotropic materials. Semi analytical methods have proven 
their efficiency in contact mechanics and are developed here to 
account for anisotropy of materials. The main advantage is 
here the computing time compared to the Finite Element (FE) 
method that is however widely used for many contact 
problems. The contact model between an anisotropic material 
with an anisotropic coating and a rigid sphere will be 
presented.  

NOMENCLATURE 
E1 Young modulus in direction 1 
E3 Young modulus in direction 3 
RT Transpose of the matrix R 

uk Displacement in direction k 
uk,ij Derivative with respect to i and j of uk 
θ Rotation angle relative to direction 1 

SOLUTION OF THE CONTACT PROBLEM 
The semi analytical method consists in the summation of 

elementary solutions known analytically. One of the 
difficulties is the derivation or the identification of these 
elementary analytical solutions, such as the well known 
Boussinesq and Cerruti solutions in isotropic elasticity [1]. 
The framework is simplified here by assuming the contact 
between one anisotropic elastic half space and a rigid body. 
The contact can be controlled by a prescribed load (which is 
used here) or by a prescribed displacement. Analytical 
solutions giving the contributions of normal and tangential 
loading assumed uniform over a single rectangular element 
will be used [2,3]. By summation the elastic deflection at each 
point within and near the contact area will be derived. 

The elastic displacements are expressed by a double 
discrete convolution product between influence coefficients 
and the pressure or shear at the contact surface. The normal 
problem and the tangential problem in partial or gross slip are 
therefore solved. 

The resolution is done by minimizing the complementary 
energy. An algorithm is developed with the conjugated 
gradient method. To accelerate the calculation, the Fast 
Fourier Transforms (FFT) are used to perform the double 
convolution product. 

Once the contact problem solved, the strains in the half 
space are calculated. 

ANISOTROPY OF MATERIAL 
Anisotropic materials are defined by the elastic stiffness 

tensor Cijkl , which satisfies the full symmetry Cijkl= Cjikl= Cklij . 
These materials can be divided into three parts: cubic, 
orthotropic and fully anisotropic. Depending on these families 
of materials, three, nine or twenty one parameters are 
necessary for defining completely the elastic tensor. Note that 
in this work the main directions or axes of symmetry are not 
necessarily the same than the contact ones. In such a situation 
a reference frame change has to be done. The elastic stiffness 
tensor links stresses to strains with this following relation 
σij=Cijkl  εkl. 
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INFLUENCE COEFFICIENTS 
The influence coefficients, which link the load to the 

displacements or to the strains, for an anisotropic material with 
an anisotropic coating, are obtained with the Green's functions 
[2,3]. These functions can be described explicitly in the 
Fourier domain, whereas it is more complicated to obtain their 
formulation in the physical domain due to the general 
anisotropy of the material [4]. The Fourier domain is therefore 
used.  

A concentrated force (normal or tangential) is applied on 
the surface of an anisotropic elastic half space. In the absence 
of body forces, the equations of equilibrium in terms of 
displacements uk are written as 

Cijkluk,lj = 0 (1) 

Three matrices 3×3 are defined with the tensor Cijkl   and 
the vectors n  and  m, which form a right handed triad with the 
position vector x. Q, R and T are a double projection of the 
elastic stiffness tensor. 

Qik = Cijklnjnl, Rik = Cijklnjml, Tik = Cijklmjml (2) 

Six distinct eigenvalues p are obtained by calculating the 
roots of 

det (Q+p (R+RT)+p² T) = 0 (3) 

The roots are three pairs of complex conjugates. The 
complex eigenvectors a of eq. (4) are not a trivial solution. The 
eigenvectors b are derived by eq. (5) 

[Q+p(R+RT)+p²T].a = 0 (4) 

 b = (RT+pT).a (5) 

The vectors a and b are the Stroh eigenvectors and p the 
associated Stroh eigenvalues [5]. The Green's functions are 
then expressed as series forms, by superposing the 
eigensolutions. Three or four terms are enough to solve this 
complicated problem (the remaining terms are ignored). The 
first order is obtained with the boundary conditions, then the 
successive orders are calculated by a recursive form. 

APPLICATION 
The contact between an elastic anisotropic half space and 

a rigid indenter, with a spherical tip, is studied. The depth 
corresponds to direction 3, which means that the surface is 
defined by directions 1 and 2. In these examples, materials are 
orthotropic, with the same Poisson’s ratio and the same 
Coulomb’s modulus. The Hertz pressure is calculated with 
Eisotropic.  

The influence of E1 and E3 on the contact pressure 
distribution (the depth z equals 0) is shown in Figs. 1 and 2. It 
is observed that the Young modulus in a direction parallel to 
the surface (E1 here) has a moderate effect (the maximum 
contact pressure is reduced by 3% only when E1 is multiplied 
by a factor 2), whereas the parameter E3 has a strong influence 
on the pressure distribution and the contact radius: increase of 
32% of the maximum contact pressure and decrease of the 

contact radius by 11% when the Young modulus is increased 
by a factor 2, in agreement with trends by other authors [6,7]. 
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Figure 1: Influence of E1  on the contact pressure 
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Figure 2: Influence of E3  on the contact pressure 

The effect of the material's orientation relative to the 
contact is shown in Fig. 3. The material has the properties of 
an isotropic material except E3=1.5 Eisotropic, but the material 
main direction is different than the contact normal. When the 
orientation angle θ around the 1-axis increases up to 90 
degrees, the numerical solution converges progressively to the 
solution where E3=Eisotropic and E2=1.5 Eisotropic (as shown in 
Fig. 1). 
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Figure 3: Influence of the material's orientation on the 
contact pressure 

The contact between an elastic anisotropic half space with 
an anisotropic coating and a rigid indenter, with a spherical 
tip, is now studied. In these examples, materials are cubic. 

The influence of ZC, the coating thickness, on the contact 
pressure distribution is shown in Fig. 4. The Young modulus 
of the coating, EC, is twice higher than the Young modulus of 
the substrate, ES, and the Hertz pressure is obtained when 
ZC=0. The pressure increases with the coating thickness, 
indeed the coating becomes predominant. 

In Fig. 5, the influence of EC on the contact pressure 
distribution is studied. The maximum contact pressure 
increases by 48% when EC is twice higher than ES and 
decreases by 29% when EC is smaller than ES by a factor 2. 
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Figure 4: Influence of ZC on the contact pressure 
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Figure 5: Influence of EC  on the contact pressure 

CONCLUSION 
A semi analytic method has been developed for the 

contact problem of anisotropic elastic materials. The model 
has been validated by comparison with the solution for 
isotropic materials. The advantage of this method is the low 
computing time compared to the finite element method. 

It is found that the stiffness along the normal to the 
contact has a strong influence on the contact solution in terms 
of pressure distribution and contact; an increase of E3 leads to 
a higher maximum contact pressure and a smaller contact 
radius. Conversely a change of the Young modulus along a 
direction parallel to the surface (plane (1,2)) has a moderate 
effect on the contact pressure distribution (and contact area). 

The performance of the method is highlighted by 
analyzing the effect of the orientation of the material main 
directions compared to the surface normal. 

Moreover, the coating thickness and its Young modulus 
have a significant influence on the pressure distribution.  

In order to optimize the engineering problems, the coating 
thickness and the properties of materials have to be studied 
accurately. 
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