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2D thermo-mechanical contact simulations in a functionally graded

material: A multigrid-based approach
B. Watremetz�, M.C. Baietto-Dubourg, A.A. Lubrecht

LaMCoS, Domaine scientifique de la Doua, Batiment Jean d’Alembert, 18-20 rue des sciences, 69621 Villeurbanne CEDEX, France

The development and selection of coatings or coating combinations is a complex and costly task. Numerical simulations provide a
great help to analyze the behavior of coatings and layer interfaces under mechanical and thermal loading through the computation of
stress and strain fields. They are also used to fine tune the geometrical configuration and define optimal thermo-mechanical properties
related to the applied stress to enhance wear and crack resistance. Coating design has been based mainly on discrete layer models with
abruptly changing properties at interface perfectly bonded to a substrate. These assumptions result in discontinuities in stress and
temperature fields at the interface between successive layers. These models are based either on integral transform (classically Fourier
transform) or finite element (FE) methods. The former cannot handle 3D thermo-mechanical problems. The latter demands huge
calculation times, especially when considering thin layers with very small elements. The aim of this paper is to account for materials with
continuously changing properties and to obtain an improved prediction of the resistance of such graded materials. This gradation may be
linked to surface treatments like nitruration, thermal treatment, . .  .  or to the deposition of coatings inducing diffuse boundaries between
those dissimilar materials. The proposed model aims at providing valuable description and understanding of the behavior and resistance
of such graded material. It is based on a second order finite difference (FD) formulation of the continuous thermal and elasticity
equations. It can handle any kind of depth dependence of the material properties. Multigrid techniques are implemented to accelerate the
convergence, reduce CPU time and thus permit the use of fine grids to accurately describe the variation in the material properties. The first
step of this project consists in implementing the above-cited numerical techniques in a 2D plane strain model.
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1. Introduction

Coatings or coating combinations are widely used to

increase life and operational performance of engineering

materials. Tribology is one of the major application fields

of coatings as the properties of contacting bodies can be

markedly improved by coating them with soft or hard

layers according to the application.

When coating and substrate are elastically dissimilar, the

contact stresses may differ from those generated in the

uncoated case. The actual stress distribution can only be

calculated by numerical or semi-numerical techniques for

layered materials. The numerical simulation of thermo-

mechanical deformations of elastic bodies becomes very

difficult when thin coatings with varying properties are

involved. This topic has been the subject of several studies.

The models usually consider discrete isotropic layers

(Fig. 1(a)) with constant properties and a sharp transition

at the interface. Furthermore, perfect bounds at interfaces

are assumed. It leads to inherent stress discontinuities at

interface. These methods are generally based either on

integral transform combined with fast Fourier transform

(FFT) algorithm or on finite element (FE) methods.

Ju and Liu [1] and Leroy et al. [2] used the Fourier

transform to study the thermo-mechanical deformation of

a 2D layered elastic half space subjected to a moving heat

source. A 3D mechanical study was performed by Plumet
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[3] using the same techniques. However, applying FFT to

such problems introduces a numerical error, which will be

referred to as the periodicity error. This error can be

avoided by extending the surface grid sufficiently far

beyond the contact area. The associated increase in the

number of grid nodes significantly degrades the computa-

tional efficiency of the FFT-based method. Several

techniques have been introduced to overcome this degra-

dation: Polonsky and Keer [4,5] counterbalanced the

periodicity error by using a special correction term, which

is computed using a variation of the MLMS technique [6].

Nogi and Kato [7] combined the conjugate gradient

method with the FFT technique for solving the rough

contact problem for both homogeneous and layered solids.

Liu et al. [8,9] extended the FFT method in the light of the

discrete convolution (DC) theorem. The DC method

associated with the processes of zero padding and wrap

around order can completely avoid the error associated

with FFT at a cost of only doubling the domain

dimensions. This approach is named DC–FFT algorithm.

However, FFT techniques cannot handle 3D thermo-

mechanical problems, as the corresponding equations do

not verify the assumption of the biharmonic displacements

operator.

Analytical methods combined with asymptotic analysis,

assuming the coating as a bond between two contacting

bodies can also be used. In these methods, the Lamé

coefficients are set proportional to the height e of the joint.

Bayada et al. [10] studied the behavior of three bodies, one

of them sliding on a thin layer, itself bonded to a rigid

support. The characteristic feature of their study is the non-

linear Tresca law used to describe the contact between the

two elastic bodies. This method is essentially developed for

elastic bodies and thin layers.

3D thermo-mechanical simulations are mainly per-

formed using FE techniques [11]. The main disadvantage

of this approach for thin layers is the large system of

equations arising from the fine mesh. Conventional

numerical methods take unacceptably long times even on

modern computers. The computation speed can be

increased by using advanced numerical techniques such

as multigrid methods.

Nomenclature

Ec Young’s modulus of the coating

Es Young’s modulus of the substrate

f PDE right-hand side

h grid spacing

Hc coating thickness

i line number

j column number

k thermal conductivity

Nx, Ny number of nodes along x and y directions

q thermal flow

T temperature

u; v displacements along x, y-axis

L PDE operator

l; m Lamé’s coefficients

a thermal expansion coefficient

sxx tensile stress

sxy shear stress

n1,n2 number of relaxation sweeps

Indice

h level corresponding to h mesh size

Fig. 1. Property variation with depth: (a) former models: sharp changing properties at interface; (b) continuously changing properties across diffuse

boundaries; and (c) continuously graded material.
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The present work is a first step toward a complete 3D

thermo-mechanical model encompassing functionally

graded materials (FGM) and coating/substrate systems.

The mechanical and thermal properties of the system vary

continuously with depth. This gradation includes: (i) a

progressive change in properties (linear, parabolic, expo-

nential, . . .) corresponding for instance to a treatment like

nitruration, thermal treatment (Fig. 1(c)), (ii) a continuous

but steep variation across a thin diffuse boundary between

two dissimilar materials corresponding to a composition or

structural transition (Fig. 1(b)) and (iii) any combination of

the two previous possibilities. The intention is to under-

stand and evaluate the temperature, the stress and strain

fields in the system. The perfect bonding assumption

used in former models is intrinsically contained in this

new formulation. Smooth graded stress variations across

diffuse boundaries are obtained.

The model is presented in the first section. The effects on

the convergence speed of the property mismatch and the

coating thickness are investigated in the second section in

the case of a coating with a thin diffuse boundary over a

substrate. Finally, an application devoted to thin coatings

with a thicker diffuse boundary (Fig. 1(b)) is presented.

Hereafter the boundary and the layer with varying

properties is simply called coating.

2. Theoretical background

The model can be split into two parts as small strain

assumptions are retained: the thermal and the elastic one.

The thermal part of the solution process is first computed

independently of the elastic deformations. Then the elasticity

equations are solved accounting for the temperature gradient.

2.1. Thermal model

The differential equation of heat conduction for a

stationary, homogeneous, isotropic solid with constant

thermal properties and no heat generation reads (Fourier

conduction equation) [12]:

rðkrTÞ ¼
k

a

qT

qt
, (1)

where a ¼ k=rCp is the thermal diffusivity.

For the case of a coating-substrate system, the gradation

of the properties is supposed to be only a function of depth.

A reduced form of Eq. (1) is obtained with thermal

properties function of x and independent of the temperature:

q

qx
kx

qT

qx

� �

þ ky
q2T

qy2
¼

k

a

qT

qt
. (2)

2.2. Thermal boundary conditions (BC)

Finally, BC in terms of prescribed temperature derivative

(Neumann BC) or temperature (Dirichlet BC) are con-

sidered on each side of the domain. On the surface

boundary the heat flux is prescribed:

q0ðx ¼ 0; yÞ ¼ �kð0Þ
qT

qx

�

�

�

�

x¼0

(3)

while on the other boundaries the temperature is imposed.

2.3. Mechanical model

The constitutive equations of a 2D elasticity problem can

be reduced to two partial differential equations (PDE)

written in terms of displacements (three in the general 3D

case). To obtain these equations, the elastic stress–strain

relations are substituted into the equilibrium equations.

This leads to the classical Navier equations of elasticity in a

continuous medium [13].

In the case of an elastically graded coated system, the elastic

coefficients E and n are no longer constant. The equilibrium

equations, accounting for the anisotropic properties EðxÞ and

nðxÞ, are the generalized Navier’s equations:

q

qxj
m
qui

qxj

� �

þ
q

qxj
m
quj

qxi

� �

þ
q

qxi
l
quj

qxj

� �

¼
q

qxi
ðð3lþ 2mÞaTÞ; i ¼ 1; 2, ð4Þ

l ¼
En

ð1þ nÞð1� 2nÞ
; m ¼

E

2ð1þ 2nÞ
(5)

with l ¼ lðxÞ and m ¼ mðxÞ the Lamé’s coefficients.

The Young’s modulus E and Poisson’s ratio n can be any

function of depth.

Linear strain, small displacement and plane strain

assumptions are retained leading to (4):

q

qx
ðlþ 2mÞ

qu

qx

� �

þ m
q2u

qy2
þ

q

qx
l
qv

qy

� �

þ m
q2v

qxqy

¼
q

qx
ðð3lþ 2mÞaTÞ,

ðlþ 2mÞ
q2v

qy2
þ

q

qx
m
qu

qy

� �

þ
q

qx
m
qv

qx

� �

þ l
q2u

qxqy

¼
q

qy
ðð3lþ 2mÞaTÞ. ð6Þ

2.4. Mechanical BC

System (6) is completed with the BC; both Dirichlet and

Neumann BC can be imposed (Fig. 2). Stress-based BC are

expressed in terms of displacements and strains using the

stress–displacement relations:

sxx ¼ ðlþ 2mÞ
qu

qx
þ l

qv

qy
� ð3lþ 2mÞaT ,

sxy ¼ m
qu

qy
þ

qv

qx

� �

. ð7Þ
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3. Numerical treatment

Eqs. (2) and (6) are discretized using a second order

central finite difference (FD) scheme on a uniform grid.

Very dense grids can be generated and hence large systems

of equations have to be solved. The classical solution

techniques using Gauss–Seidel relaxation require large

memories and huge computing times. Multigrids methods

are known to accelerate the convergence of such large

problems.

3.1. Multigrid techniques

Conventional iterative methods converge slowly as the

long wavelength error present in the solution slowly

diminishes with successive relaxation sweeps. Multigrid

techniques overcome this difficulty by using a sequence of

grids. The numerical solution of a 1D elliptic equation on a

uniform grid of size N is thus performed with new coarser

grids of size ðN=2Þ; ðN=4Þ; . . . defining successive levels. A

V ðn1; n2Þ-cycle consists of n1 relaxation sweeps on each level

combining restrictions (from the finest to the coarsest grid),

the exact numerical solution at the coarsest level and the

prolongation from the coarsest to the finest grid with n2
relaxation sweeps on each level. The grids communicate with

one another through restriction and prolongation operators

[14,15]. A V ðn1; n2Þ-cycle, with n1 ¼ n2 ¼ 2 is used for the

thermal problem and n1 ¼ n2 ¼ 5 for the elasticity problem.

More relaxations do not enhance the efficiency of the

relaxation process. The residual used in this section as an

error indicator is calculated for each level as follows [17]:

resh ¼
X

i;j

Lhuhði; jÞ � f hði; jÞ

Nh
xN

h
y

�

�

�

�

�

�

�

�

�

�

. (8)

Efficient multigrid algorithms for the solution of PDE

require good ellipticity, which implies that non-smooth

error components can be solved by local processing [16].

The elasticity and thermal equations are elliptic by nature

and a good multigrid efficiency might be expected.

Unfortunately, while the treatment of the Dirichlet BC is

straight forward, Neumann BC and the anisotropy of the

problem rapidly degrade the solver efficiency. These points

are detailed in the next sections.

3.2. Boundary conditions

Some difficulties in solving the elastic problem arise from

the Neumann BC. In order to obtain a multigrid solver

with the same efficiency as the one employing Dirichlet

conditions, the BC have to fulfill two criteria:

� the consistency on the various grids,

� no introduction of local errors.

Venner et al. [17] relax the interior problem on the surface

using the Neumann condition to fulfill both criteria. This

method is well-suited for the thermal problem but the

optimal convergence speed is not reached for the resolution

of system (6) using (7) as shown in Fig. 3. Some pre-

relaxations are necessary to decrease the residual near

boundaries before solving the entire problem, as described

by Brandt [18].

3.3. Anisotropy

One key to the multigrid convergence rate is the consis-

tency of the system on coarse and fine grids. The coarse grid

operator must correctly approximate the fine grid operator.

Anisotropy arising from the variation of the properties

within the material depth rapidly degrades the convergence

rate. The two reasons are:

� around the substrate/coating diffuse boundary, the

equations are losing their elliptic properties. The sharper

the gradient, the more difficult the convergence;

Fig. 2. Thermal and mechanical boundary conditions.

Fig. 3. Residual on finest level for Dirichlet and Neumann BC.
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� when the diffuse boundary is located in the vicinity of the

free surface, it becomes numerically difficult to correctly

capture the coating itself on coarse grids.

The influence of these two points on the convergence rate

are illustrated hereafter.

The current reference problem is a pointwise, unit load

applied on the free surface of a 3 � 3mm coated elastic solid

clamped on the three other boundaries. Thermal effects

are not taken into account. A stepwise but continuous

gradation in the mechanical properties (Fig. 1b) is

considered. The thickness of the diffuse boundary is equal

to one mesh size on the finest grid. This kind of gradation

is the worse case from the numerical point of view.

Calculations are performed with 512 � 512 elements on the

finest grid using 7 levels (8 � 8 elements on coarsest grid).

The reference problem will be considered for all the

numerical tests presented hereafter.

3.4. Surface–interface interaction

The intention is to evaluate the influence of the coating

thickness (Hc) on the convergence rate of the elastic

problem. No thermal effects are taken into account. The

Young’s modulus of the coating is six times higher than

the substrate modulus (Ec ¼ 200GPa, Es ¼ 1200GPa,

nc ¼ ns ¼ 0:3) defining a ratio Ec=Es ¼
1
6
. Hc is varying

from 30mm (5 points on the finest grid) to 1mm (150

points). The residual variations are plotted in Fig. 4 for

different coating thicknesses.

It is obvious that the number of nodes within the coating

decreases as its thickness diminishes for a given mesh size.

The coarse grids hence cannot correctly capture the coating

properties as the number of nodes rapidly drops to 0.

Finally, the numerical problems solved on fine and coarse

grids are not equivalent. The thinner the coating, the worse

the convergence becomes. An alternative is to explicitly

average the elastic (l et m) and thermal (k et a) properties

using full weighting techniques [17]. The main goal is to

capture the information related to the property variation in

depth and to solve an equivalent problem on any grid level.

This is illustrated in Figs. 5 and 6. Fig. 5 shows the initial

variation of l=ls parameter for a fine and a coarse grid. On

the coarse grid, the ratio varies from the value at the

surface ðlc=lsÞ to the value in the substrate (1) over one

mesh step. Fig. 6 shows the solution used to overcome

the convergence difficulties of the solution method: the

property variation is smeared around the interface. The

problem is equivalent on the coarse and the fine mesh when

using the averaging technique.

Fig. 7 shows the residual evolution with averaged

properties. The variation of the Lamé coefficient with

depth is plotted in Figs. 5 and 6. The convergence is

improved by several orders of magnitude, even in the case

Fig. 4. Residual on finest level as a function of coating thickness with

Ec=Es ¼
1
6
.

0.5 1 1.5 2 2.5 3 3.5

0

0.05

0.1

0.15

0.2

0.25

0.3

λ / λs

D
e
p
th

 /
L

fine level

coarser level

Fig. 5. Initial l=ls parameter variation on a fine and a coarse mesh.
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 /
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Fig. 6. l=ls parameter variation on a fine and a coarse mesh with full

weighting restriction.
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Hc ¼ 1mm for which the convergence was satisfactory.

But above all convergence is obtained for the case Hc ¼

30mm while it previously diverged.

3.5. Ellipticity

The second difficulty arising from the anisotropy of the

system is the loss of ellipticity due to the property gradient.

This phenomenon can be observed from the stencil. As an

example, the stencil Lh
1 of the first equation of system (6) is

written:

1

h2

Qi�1;j

mi;j�1 � ðQiþ1;j þQi�1;j þ 2mi;jÞmi;jþ1

Qiþ1;j

2

6

4

3

7

5
(9)

with Q ¼ lþ 2m.

The stencil becomes less symmetric as the property

mismatch increases (Eq. (9)). This distortion in the stencil

degrades the convergence speed. The reference problem has

been defined above. The coating is 0.5mm thick to avoid

the interface/surface interaction discussed just above and

focus on the ellipticity influence. The residual variation are

plotted in Fig. 8 for Ec=Es ratios varying from 0.25 to 10.

The convergence rate is close to optimal for soft coatings

(Ec=Eso1), good as long as Ec=Eso7 but degrades for

larger ratios. This problem can be overcome by performing

line relaxation.

3.6. Mesh refinement

Coated systems are multiscale problems as a large

difference between coating thicknesses, loaded zone size

and the substrate dimensions exists. Therefore, a high grid

resolution is required around the coating and the interface

while elsewhere such level of refinement is not required,

especially when considering a semi-infinite solid (solid size

b coating thickness and/or contact width). The MG

technique is ideally suited for local mesh refinement. In

such cases, the finest grids can be restricted to smaller and

smaller subdomains, whereas the coarse grids cover the

entire domain. The resulting grid strongly looks like a non-

equidistant grid, whilst keeping the advantages of an

equidistant grid.

The refinement strategy consists in defining successive

subdomains corresponding to successive levels where grid

refinement is performed only locally (Fig. 9). The fine grid

residuals and the coarse grid correction are only carried out

in the local part where the fine grid exists [19].

The reference solution uref based on classical solution

over the whole domain is obtained using a 1024� 1024 fine

grid using 9 levels. The results obtained for three cases

corresponding to three local refinement strategies uapp are

compared to the classical results in terms of error (two

norms are defined by (10) [17] and computational cost.

Data given in Table 1 corresponds to the zone covered by

the different levels.

The domain covers 0pxp3:0 and �1:5pyp1:5. In case

1, only the finest level (9) is locally refined. In case 2, both

levels 9 and 8 are refined and in case 3, level 7 is also

refined.

Fig. 10 illustrates the effect of local refinement on the

residual evolution. The coating is 30mm thick using Ec ¼

Fig. 7. Residual on finest level as a function of coating thickness with

averaged properties—Ec=Es ¼
1
6
.

Fig. 8. Residual on finest level as a function of Ec=Es ratio with

Hc ¼ 0:5mm.

Fig. 9. Local refinement technique.
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800GPa and Es ¼ 200GPa and nc ¼ ns ¼ 0:3. The local

refinement solutions obtained on the fine grid are very

similar to the reference solution.

kuref � uappk ¼
X

i;j

kuref � uappk

N2uref
,

kuref � uappk1 ¼ max
uref � uapp

uref

�

�

�

�

�

�

�

�

� �

.

Table 2 shows the difference between the classical solution

and the one with grid local refinements. uref is the reference

solution, uapp the approximate solution on the highest level

with mesh refinement. CPU ratio is the ratio between the

solution times with and without mesh refinement.

The first norm quantifies the maximum of the error, as

the second one shows the mean error. The maximum

increases as the refinement reaches lower levels, but the

quality of the solution is still very good. The calculation

time shows that the saving in terms of computational cost

is considerable. The problem can be solved with almost the

same accuracy with a 20 times smaller computational

effort. The numerical error is 8� 10�5 between levels 9 and

10 using the full domain. It is 10�4 with local mesh

refinement.

4. Application

In this section, a complete thermoelastic loading is

considered. The solid is 5mm high and 10mm long. Its

properties are: Es ¼ 200GPa, ns ¼ 0:3, as ¼ 12� 10�6 and

ks ¼ 45W=m=K. A thermal heat flux is applied at the

center of the free surface over a patch of half width

a ¼ 0:2mm. The distribution is elliptic with a peak

value qm ¼ 10�7 W=m2. The other sides of the solid are

mechanically clamped and kept at a prescribed tempera-

ture.

The effect of a thin coating with similar elastic properties

but a different expansion coefficient is studied. ac is a

stepwise function of depth with an abrupt variation across

a 1mm thick diffuse boundary. Figs. 11 and 12 show the

variation of the maximum value of syy (in the reference

frame defined by Fig. 2) and the Von Mises stress svm
values as a function of the ac=as ratio. The normal stress

component sxx and the shear component sxy, being very

small, have not been plotted. The Von Mises stress is

defined as follows:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
6
ðsxx � syyÞ

2 þ ðsxx � szzÞ
2 þ ðsyy � szzÞ

2
� �

þ s2xy

q

. (10)

The syy and svm stresses have also been computed inside

the solid. The peak values are located at the free surface.

They have been compared to the values obtained by Leroy

[2] with a model based on discrete layers with sharp

changing properties. The results are in a good agreement.

4.1. Graded properties

FGMs are anisotropic materials, in which the thermo-

mechanical properties vary continuously with depth. In this

manner, the sharp mismatch is eliminated, resulting in an

Table 1

Refinement data

Case 1 2 3

Lev. 9 x [0; 2] [0; 1] [0; 0.5]

y [�1; 1] [�0.5; 0.5] [�0.25; 0.25]

Lev. 8 x [0; 3] [0; 2] [0; 1]

y [�1.5; 1.5] [�1; 1] [�0.5; 0.5]

Lev. 7 x [0; 3] [0; 3] [0; 2]

y [�1.5; 1.5] [�1.5; 1.5] [�1; 1]

Fig. 10. Residual with three refinement strategies.

Table 2

Refinement error, CPU ratio

Number of refined level 1 2 3

kuref � uappk1 3:93� 10�4 4:50� 10�4 8:13� 10�4

kuref � uappk 1:24� 10�4 2:74� 10�4 9:76� 10�5

CPU ratio 0.37 0.12 0.043

Fig. 11. syy peak stresses at the surface as a function of ac=as,

Hc ¼ 10mm.
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reduction in stress discontinuities and stress concentrations

computed numerically. The effect of a graded variation of

the thermal expansion coefficient (a) is analyzed and

compared to those of a stepwise change. The variation of

a is presented in Fig. 13.

The effect of such a gradation on the stresses is shown in

Figs. 14 and 15. The discontinuity at the interface vanishes

but the maximum stresses in the coating and in the

substrate are almost constant.

5. Conclusion and further research

A 2D thermoelastic model for heterogeneous materials is

presented. It is based on the Navier and Fourier equations

in non-homogeneous media. This model can handle thin

layers using multigrid techniques which enable fine mesh

sizes and local refinement methods. These methods keep

calculation time acceptable on desktop computers.

Moreover, thin coatings do not have constant properties.

The deposition process and the physical behavior of the

material generate properties that vary from the substrate to

the coating bulk value. This model can represent these

phenomena with any type of property variation as shown

in the last section. It has been shown that graded variation

avoids the discontinuity in stress components. Only the

expansion coefficient has been studied, but other mechan-

ical and thermal coefficients can also be modified. The

main objective of this model is to study and implement

numerical techniques before the extension towards 3D

thermoelasticity. Multigrid techniques and local refinement

can reduce the calculation time. Hence, parametric studies

can be conducted with this model. Further extensions will

be towards non-linear behavior and solution of the contact

problem.

Fig. 12. svm peak stresses at the surface as a function of ac=as,

Hc ¼ 10mm.
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Fig. 13. Stepwise and graded properties.
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Fig. 14. syy in the center of the solid, Hc ¼ 10mm.
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