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CONTACT ANALYSES FOR ANISOTROPIC HALF SPACE WITH AN ANISOTROPIC 
COATING 

C. Bagault D. Nélias M.-C. Baietto 

T. Ovaert 
University of Notre Dame, Indiana, USA 

ABSTRACT 
For most composite and mono-crystal materials their 

compositions or the elaboration and manufacturing processes 

imply that it exists one or two main directions or even a general 

anisotropy. Moreover, coatings are often used to prevent or 

control wear. Coatings do not have, generally, the same 

properties as the substrate and may have various thicknesses. 

The influence of the anisotropy orientations (in the coating and 

in the substrate) have to be taken into account to better predict 

the distribution of the contact pressure and the subsurface 

stress-field in order to optimize the service life of industrial 

components. A contact model using semi analytical methods, 

relying on elementary analytical solutions, has been developed. 

It is based on numerical techniques adapted to contact 

mechanics. Recent developments aim to quantify displacements 

and stresses of a layered anisotropic elastic half space which is 

in contact with a rigid sphere. The influence of material 

properties and layer thickness on the contact problem solution 

will be more specifically analyzed. 

INTRODUCTION 
Starting from three dimensional Green's functions in 

anisotropic trimaterials [1], these functions are derived for 

layered anisotropic half space, as a sum of infinite space 

Green's functions and a complementary part, similarly to the 

Mindlin's superposition method. The Green's functions for 

anisotropic infinite space have an explicit expression, given by 

Ting and Lee [2], whereas the complementary part needs to be 

integrated numerically. The terms of the complementary part 

convey to different order of image and can be reduced to 

different cases, as the bimaterial Green's functions with the first 

order. 

A similar work has been done for the contact between a 

rigid sphere and an anisotropic half space [3], using the three 

dimensional Green's functions in anisotropic bimaterials [4]. It 

is found that the stiffness along the normal to the contact has a 

strong influence on the contact solution in terms of pressure 

distribution and contact size. Conversely a change of the 

Young’s modulus along a direction parallel to the surface does 

not significantly affect the contact pressure distribution but the 

contact area is no more circular. The performance of the 

method is highlighted by analysing the effect of the orientation 

of the material main directions compared to the surface normal. 

He and Ovaert [5] also focused on anisotropic materials by 

studying the rough surface contact.  

Several methods can be used for contact simulation of 

anisotropic materials. Semi analytical methods have proven 

their efficiency in contact mechanics and are developed here to 

account for anisotropy of materials. The main advantage is here 

the computing time compared to the Finite Element (FE) 

method that is however widely used for many contact 

problems. The contact model between an anisotropic material 

with an anisotropic coating and a rigid sphere will be presented.  

SOLUTION OF THE CONTACT PROBLEM 
The semi analytical method consists in the summation of 

elementary solutions known analytically. One of the difficulties 

is the derivation or the identification of these elementary 

analytical solutions, such as the well known Boussinesq and 

Cerruti solutions in isotropic elasticity [6]. The semi analytical 

contact solver is based on the pioneering work of Jacq et al. [7] 

for elastic-plastic contacts. 

The frame is simplified here by supposing the contact 

between one anisotropic elastic half space and a rigid body. The 

contact can be controlled by a prescribed load (which is used 

here) or by a prescribed displacement. Analytical solutions 

giving the contributions of normal and tangential loading 

assumed uniform over a single rectangular element will be 

used. By summation the elastic deflection at each point within 

and near the contact area will be derived. The elastic 

displacements are expressed by a double discrete convolution 

product between influence coefficients and the pressure or 
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shear at the contact surface. The normal problem and the 

tangential problem in partial or gross slip are therefore solved. 

The resolution is done by minimizing the complementary 

energy. An algorithm is developed with the conjugated gradient 

method. To accelerate the calculation, the Fast Fourier 

Transforms (FFT) are used to perform the double convolution 

product. Once the contact problem solved, the strains in the 

layered half space are calculated. 

The solver has since been developed and improved in 

several ways. Recently, Leroux and Nélias [8] worked on the 

stick-slip problem for a sphere in contact with a flat half space 

containing unidirectional cylindrical fibers. 

ANISOTROPIC INFLUENCE COEFFICIENTS 
Anisotropic materials are defined by the elastic stiffness 

tensor Cijkl, which satisfies the full symmetry Cijkl= Cjikl= Cklij. 

The elastic stiffness tensor links stresses to strains with this 

following relation σij=Cijkl  εkl. 

The influence coefficients, which link the load to the 

displacements or to the strains, for an anisotropic material with 

an anisotropic coating, are obtained with the Green's functions 

[1,2]. These functions can be described explicitly in the Fourier 

domain, whereas it is more complicated to obtain their 

formulation in the physical domain due to the general 

anisotropy of the material [9]. The Fourier domain is therefore 

used.  

A concentrated force (normal or tangential) is applied on 

the surface of an anisotropic elastic half space. In the absence 

of body forces, the equations of equilibrium in terms of 

displacements uk are written as 

Cijkluk,lj = 0 (1) 

Three matrices 3×3 are defined with the tensor Cijkl   and 

the vectors n  and  m, which form a right handed triad with the 

position vector x. Q, R and T are a double projection of the 

elastic stiffness tensor. 

Qik = Cijklnjnl, Rik = Cijklnjml, Tik = Cijklmjml (2) 

Six distinct eigenvalues p are obtained by calculating the 

roots of 

det (Q+p (R+R
T
)+p² T) = 0 (3) 

The roots are three pairs of complex conjugates. The 

complex eigenvectors a of eq. (4) are not a trivial solution. The 

eigenvectors b are derived by eq. (5) 

[Q+p(R+R
T
)+p²T].a = 0 (4) 

 b = (R
T
+pT).a (5) 

The vectors a and b are the Stroh eigenvectors and p the 

associated Stroh eigenvalues [10]. The Green's functions are 

then expressed as series forms, by superposing the 

eigensolutions. Three or four terms are enough to solve this 

complicated problem (the remaining terms are ignored). The 

first order is obtained with the boundary conditions, then the 

successive orders are calculated by a recursive form. 

APPLICATION TO A LAYERED ANISOTROPIC 
SPHERE ON FLAT CONTACT 

The influence of the properties of an elastic anisotropic 

half space with an anisotropic coating which is in contact with 

a rigid indenter, with a spherical tip, is studied here. The 

contact parameters, i.e. the contact area and the pressure 

distribution, will be more specifically investigated. The depth 

corresponds to direction 3, which means that the surface is 

defined by directions 1 and 2. The subscript C represents the 

coating and S the substrate.  

First, materials for the coating are orthotropic and the 

substrate is cubic (almost isotropic), with the same Poisson's 

ratio and the same Coulomb's modulus. For the cubic case the 

Coulomb's modulus is slightly modified relative to an isotropic 

material, in order to avoid singularities.  

The influence of EC1 and EC3 on the contact pressure 

distribution is shown in Figs. 1 and 2. The coating thickness is 

equal to the half of the Hertz radius, ZC=0.5aHertz. It is observed 

that a change of the Young's modulus in the coating along a 

direction parallel to the surface (EC1 here) has a moderate 

effect. The maximum contact pressure is increased by 2% when 

EC1 is doubled. Moreover it can be observed that the contact 

area is no more circular. The effect of the Young's modulus in 

the coating along the depth (EC3) is more pronounced: increase 

of 14% of the maximum contact pressure and decrease of the 

contact radius by 8% when the Young's modulus is increased by 

a factor 2.  
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Figure 1: Influence of EC1  on the contact pressure 
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Figure 2: Influence of EC3  on the contact pressure 
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The effect of the coating thickness is shown in Fig. 3. 

Here, the Young's Modulus of the coating in direction 3 is equal 

to EC3=2ES. The case ZC=0aHertz corresponds to an half space 

without coating and the case ZC=∞aHertz to the half space 

composed only with the coating. When the depth of the coating 

increases, the influence of the coating become predominant 

relative to the influence of the substrate. As EC3>ES, the 

maximum contact pressure increases with the depth. 

Now roles are reversed, the coating is cubic, almost 

isotropic, and materials which defined the substrate are 

orthotropic. 

The influence of ES1 and ES3, the Young's modulus of the 

substrate, on the contact pressure distribution is studied in Figs. 

4 and 5. The coating thickness is equal to the half of the Hertz 

radius, ZC=0.5aHertz. The effect of ES1 is limited. When ES1 is 

doubled, the maximum pressure increases by 0.7%. Conversely 

the Young's modulus of the substrate along the depth, ES3, has a 

strong influence. The maximum pressure is 13% higher when 

ES3 is multiplied by 2.  
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Figure 3: Influence of ZC on the contact pressure, EC3=2ES 
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Figure 4: Influence of ES1  on the contact pressure 

Figure 6 shown the effect of the isotropic coating thickness 

on an anisotropic substrate, for the pressure distribution. The 

Young's modulus of the substrate in direction 3 is equal to 

ES3=2EC. As EC<ES3, the maximum contact pressure decreases 

with the depth. It can be observed that from ZC>2aHertz, the 

difference between the maximum pressure of the isotropic half 

space and the layered half space is less than 1%, the coating 

erases the anisotropy effect of the substrate. 
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Figure 5: Influence of ES3  on the contact pressure 
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Figure 6: Influence of ZC on the contact pressure, ES3=2EC 

CONCLUSION 
       A semi analytical method has been developed for the 

contact problem of anisotropic elastic materials with an 

anisotropic coating, by using the Green's functions. The model 

has been validated by comparison with the results of O'Sullivan 

for isotropic materials with an isotropic coating and by 

comparison with a FE model for anisotropic half spaces. 

       Parametric studies have been done for anisotropic coating 

on an isotropic substrate and for the reversed case, anisotropic 

substrates with an isotropic coating. It is found that the stiffness 

along the normal to the contact, in the coating or in the 

substrate, has a strong influence on the contact solution in 

terms of pressure distribution and contact size. Conversely a 

change of the Young's modulus along a direction parallel to the 

surface (plane (1,2)) does not significantly affect the contact 

pressure distribution but the contact area is no more circular, it 

becomes elliptic. Finally it should be emphasized that, when 

the coating thickness exceeds the contact radius, the effect of 

the substrate anisotropy vanishes quickly. 
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