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SUMMARY

This paper consists of an extension of simulation with direct estimation of stress intensity factors to the three-
dimensional case. Here, it combines X-FEM with localized multigrids and direct estimation of quantities of 
interest along the crack front (SIF, T -stress, etc.) based on crack tip asymptotic series expansion. In practice, 
a three-dimensional patch is introduced locally with a truncated basis of Williams series expansion and is 
linked in a weak sense with the X-FEM localized multigrids. Some examples (with available analytical 
solutions) illustrate the efficiency and the robustness of the method. These examples consider planar cracks 
with curved front, but the proposed method aims to apply to any continuously curved crack. 
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1. INTRODUCTION

Finite element simulations of three-dimensional cracks in complex bodies have a convergence rate

generally governed by the singularity [1]. The accuracy of such methods is enhanced by introducing

an analytical basis able to capture the singularity; for instance, Tong et al. [2] built a super-element

to locally introduce the singularity in FEM framework. Barsoum, in [3], proposed an even sim-

pler method using quadratic finite element with nodes on the quarter of an edge. However, these

methods need to have a mesh compatible with the crack surface. Therefore, heavy re-meshing [4]

is needed to simulate propagation. This drawback has been tackled in the eXtended Finite Element

Method (X-FEM) [5–8] by adding the crack discontinuity and singularity in the mechanical fields,

thanks to FEM partition of unity property [9]. This method, very close to the Generalized Finite

Element Method [10], allows to consider cracks non-conforming with the mesh that simplifies prop-

agation simulations. Considering minor modifications [11], the X-FEM convergence rate for crack

simulation sticks to the FEM convergence rate for regular problems.

Quantifying the crack tip singularity is physically useful in order to simulate propagation or

failure in brittle materials or under small-scale yielding assumption [12]. This singularity can be

decomposed on three modes (i.e., I the opening one, II the in plane shear one, and III the tearing

out-of-plane one) that are meaningful for propagation velocity and orientation. A Stress Intensity

Factor (SIF) is associated for each of these modes. These three SIFs are the first coefficients of a

crack tip asymptotic series expansion introduced by Muskhelishvili and Williams [13, 14]. Some

other terms of this series expansion have be proven meaningful, such as the T-stress [15, 16] or some

super-singular terms [17, 18].
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In FEM and X-FEM, the stress intensity factors are usually recovered after the simulation by a

post-processing method. The most accurate methods are based on the projection of the mechani-

cal field on a surface or domain around the crack front. Arising from energetic approaches, path

independent contour integrals, expressed as a domain/volume integral, have been proven efficient

in mixed modes three-dimensional problems in an X-FEM context [6, 19–21]. Such a projection

can also be applied to recover the T-stress as proposed by [22]. Besides, a method based on direct

projection (in the least squares sense) of the displacement on the asymptotic series expansion was

developed in experimental context [18].

Although X-FEM increases the mechanical field accuracy and enhances the convergence rate, the

enriched degrees of freedom associated with the singularity are neither proportional to the energy

release rate nor to the stress intensity factors. In References [23, 24], Xiao and Karihaloo proposed

a partition of unity (PU) based method that provides accurate SIFs for two-dimensional problems,

where higher order terms are introduced (i.e., the enrichment is a truncation of the asymptotic series

expansion) and constrained to have the same value in the crack tip vicinity. However, this method

does not provide accurate estimation of the higher order terms. These terms (and the SIFs) can be

obtained with the introduction of Hybrid Crack Element (HCE) [2, 25, 26]. In this approach, the

crack tip discretization is a truncation of asymptotic series expansion alone.

Réthoré et al. [27] proposed a domain decomposition method where the crack tip vicinity is

treated with the asymptotic series expansion only and provides two-dimensional stress intensity

factors more accurately than the PU based approach. This domain treated with the asymptotic series

expansion is coupled to an X-FEM domain with an Arlequin matching [28], but the coupling can

be simplified with an integral matching and made compatible with a multigrid X-FEM approach

[29, 30]. Such an approach provides accurate evaluation of the SIFs (hence its name DEK-FEM

for Direct Estimation of generalized stress intensity factors .K/ Finite Element Method) but also of

higher order terms.

In this paper, this last method is extended to three-dimensional problems. In three-dimensions, no

general series expansion exists for a crack problem; thus, the plane strain definition is generally con-

sidered in the bulk. For a planar crack with a straight front, such an approximation can be legitimate

when far from the free surfaces. However, for general crack geometry, a common approximation in

interaction integral methods [6, 20, 31] is to use the plane strain definition in local coordinates that

follow the crack. In the present, such an approximation was not satisfying; the approximation inves-

tigated here is to derive the displacement series expansion in the local coordinate system. Moreover,

the simulation of a complex three-dimensional crack requires local refinement that can lead to a

high degrees of freedom number. To deal with this problem, the proposed method is coupled with

the X-FEM localized multigrid approach proposed by Rannou et al. [32].

2. ASYMPTOTIC FIELDS IN THREE-DIMENSIONS

2.1. Two-dimensions development

The two-dimensional analytical study of the mechanical fields in a crack tip vicinity provides

[13, 14] first order (i.e., the singularity only) or higher series expansion. These asymptotic series

expansions are presented in this section and then used in numerical simulations.

2.1.1. The Williams series expansion [13, 14]. Let us consider a straight crack in a linear elas-

tic two-dimensional domain (with plane strain/stress assumption with respect to the crack plane

.en; et / defined in Figure 1). Under small perturbations hypothesis, the resolution of the equilib-

rium equation provides an expression of the stress field. If the crack faces are free .� � n D 0/, the

stress can be developed [14] in rn=2�1 in the crack tip vicinity (i.e., r close to 0), in a polar coor-

dinate system defined in Figure 1. From this stress series expansion, the displacement field can be

computed

� .r; �/ D
X

iDI; II

1
X

nD0

bn
i rn=2�1f n

i .�/ and u.r; �/ D
X

iDI; II

1
X

nD0

bn
i rn=2gn

i .�/; (1)
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Figure 1. Local coordinate system around the crack tip. (a) Two-dimensions. (b) Three-dimensions.
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in the crack coordinate system defined Figure 1. � is the shear modulus and � is the Kolossov’s

constant (function of Poisson’s ratio �), which takes the value � D 3 � 4� in a plane strain state and

� D .3 � �/=.1 C �/ for plane stress conditions. The asymptotic coefficients bn
i define the stress

and displacement fields and mainly depend on non-local effects (boundary conditions, etc.). b0
I and

b0
II are in-plane rigid body translations, and b2

II is the in-plane rigid body rotation. b1
I and b1

II are

proportional to the SIF, and b2
I is related to the T -stress, with

b1
I D KIp

2�
and b1

II D KIIp
2�

and b2
I D T

4
: (3)

In the crack tip vicinity, all the terms f n
i are vanishing except the SIF (singular stress), the T -

stress (uniform stress), and the rigid body translations. These terms (and especially the SIF) are

of great interest to characterize the crack singularity and its influence on crack propagation (Paris,

KIC ). On the contrary, the higher order terms have a far-field influence ./ rn=2/.

2.1.2. Out-of-plane series expansion: mode III. A tearing mode of rupture is added; it results

from the same geometry with out-of-plane displacements u D u.r; �/e3, where e3 is the out-of-

plane direction. The asymptotic study of such displacement under linear elastic fracture mechanics

hypothesis provides series expansions of the displacement and stress fields [33]. They can be

expressed as in Equation (2) by extending the summation index to i D I; II; III
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(4)

Two out-of-plane rigid body motions are added—b0
III , the out-of-plane rigid body translation, and

b2
III , the out-of-plane rigid body rotation. The coefficient b1

III is proportional to the mode III stress

intensity factor.
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2.2. Three-dimensions extension

The three-dimensional asymptotic study is much more complicated. Leblond and Torlai [34] pro-

posed to account for the crack curvature and stress intensity factor evolution along the front as

perturbations and computed some first order corrections to the classical Williams series expansion.

Chaudhuri and Xie [35] also proposed an expression of the asymptotic displacement and stress field

near the surface corner point. However, there is no three-dimensional series expansion available;

thus, the two-dimensional plane strain modes of fracture are commonly used in three-dimensional

crack simulations. The three modes of fracture are considered, and the asymptotic coefficients are

expected to evolve continuously. They are generally written in local coordinates [6, 20, 31] without

accounting for the curvature and evolution along the front. However, some recent studies show that

accounting for the curvature in the definition of the auxiliary field can increase the SIF accuracy [21,

36]. This approximation has been proven efficient for post processing methods such as the inter-

action integral. However, in the proposed approach, the asymptotic fields are introduced locally in

the equilibrium problem; therefore, the displacement field is made compatible with the considered

stiffness. A primal approach is considered, from the classical displacements in three-dimensions

u.r; �; s/ D
X

iDI; II; III

1
X

nD0

bn
i rn=2hn

i .�; s/; (5)

where s is the position along the front.

Furthermore, the missing third rigid body rotation is added. From this statement, the evolution of

hn
i .�; s/ along the curvilinear abscissa has to be chosen; a proposition of evolution is developed in

Section 3.1.3. The asymptotic stress functions f n
i cannot be used directly since they do not account

for s variation; the corresponding displacement gradient is computed to obtain the stress field. This

computation is complex since the local basis .en; e� ; es/ is following the crack and the front, which

are curved in the general case. This basis is illustrated in Figure 1(b).

The displacement in Equation (5) is a function of local parameters .n; �; s/; the computation of

D (its derivative), with respect to these parameters, is therefore straightforward. D can be linked

to the displacement gradient, thanks to the Jacobian matrix J . This gradient is needed in the global

basis .e1; e2; e3/, in which the displacement is decomposed as u D V1e1 C V2e2 C V3e3
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The primal definition proposed here provides stress fields that are compatible with the displace-

ment and verify the constitutive law but does not exactly ensure the local equilibrium. To the best

of our knowledge, there is no three-dimensional fields satisfying all the local equations. The aux-

iliary fields of the interaction integral [6, 20] suffer the same difficulty, and for curved cracks, the

auxiliary stress field is not compatible to a displacement field. Nevertheless, this approximation is

assumed and its accuracy studied on some classical benchmarks.

3. FORMULATION

3.1. Mono-scale formulation

The considered problem is a material body in �, a domain of the three-dimensional space, with

well-posed boundary conditions: prescribed displacements ud on @1� and forces F d on @2�,
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with @� D @1� [ @2� and @1� \ @2� D ¿. A micro-structurally long crack is consid-

ered in this body under the assumption of small perturbations. The material is homogeneous,

and its behavior is linear elastic and isotropic. Therefore, the state of the structure is defined by

the displacement u alone. This displacement field belongs to the admissible displacement space

U D
®

u 2 H 1.�/ju D ud on @1�
¯

. The virtual work equation without body forces, equivalent to

the governing equations for the cracked body as shown in [37], is given by

Z

�

Hrsu W rsvd� D
Z

@2�

v � Fd dS 8v 2 U
0 (7)

where rsu is the symmetric part of the gradient of u, corresponding to the strain. H is the Hooke

tensor. v is a test function in U0, the vector space corresponding to U with ud D 0.

3.1.1. Domain decomposition. The crack tip vicinity is discretized with the asymptotic displace-

ments of Equation (5). This approach allows for the direct estimation of the stress intensity factors

(and the other asymptotic coefficients). Indeed, the associated degrees of freedom are directly

proportional to the asymptotic coefficients. These functions are specific to the crack tip with the

singularity, the discontinuity, and higher order terms. However, this development relies on strong

hypotheses, a semi infinite rectilinear crack in three-dimensions (i.e., planar crack with straight

front) in an infinite body. Therefore, the asymptotic fields can only be used in a small area, around

the crack tip �W , where boundary conditions are far and the crack almost plane. The subscript

W will be used for this domain. The complementary domain �X , such as � D �X [ �W and

¿ D �X \ �W , is treated with the X-FEM. The subscript X will be used for this domain.

The Equation (7) can be generalized to such an arbitrary decomposition. In order to close the

problem, the displacement continuity at the interface �W , between �X and �W , is ensured by

mortar approach as proposed in [29]. Such a matching is necessary because the considered displace-

ments in �X and �W are not compatible. This condition is enforced in a weak sense with Lagrange

multipliers � 2 L:

Z

�W

� .uW � uX / D 0 8� 2 L (8)

The virtual work equation without body forces for the coupled two domains and the displacement

matching can be written as follows, seeking .uW ;uX ;�/ 2 UW � UX � L:

Z

�W

HrsuW W rsvW d� C
Z

�X

HrsuX W rsvXd� C
Z

�W

� .uW � uX / dS C
Z

�W

� .vW � vX / dS

D
Z

@2�W

vW � Fd dS C
Z

@2�X

vX � Fd dS 8 .vW ; vX ;�/ 2 U
0
W � U

0
X � L: (9)

U0
W refers to the admissible displacement space on �W where imposed displacement is zero U0

W D
®

u 2 H 1.�W /ju D 0 on @1�W

¯

. Howewer, the asymptotic series expansion would not be able to

handle directly most of the Dirichlet boundary condition; thus, situations where @1�W D ¿ are

considered.

This equation is then numerically solved on the two sub-domains. The mechanical fields are

discretized, using the X-FEM method on the domain �X and the Williams series expansion on the

domain �W .

3.1.2. X-FEM domain �X . A classical three-dimensional extended finite element method, as intro-

duced in [38], is used in the domain �X . The domain is meshed, and a finite element interpolation

is set uX .x/ D
P

i2N ui'i .x/'i .x/ are the finite element shape functions, and ui the degrees

of freedom. The partition of unity property of this method is used to enrich the mechanical fields
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around the crack. The elements cut by the crack have their degrees of freedom Nc enriched with the

discontinuity generated by the crack

uX .x/ D
X

i2N

ui'i .x/ C
X

i2Nc

u0
i'i .x/H.x/: (10)

The function H.x/ is a the generalized Heaviside function, representing the crack discontinuity.

In the mono-scale approach with the analytical patch, the crack tip vicinity does not belong to �X .

Therefore, no singular enrichment is needed.

Let UX be the degrees of freedom vector containing ui and u0
i . Equation (10) can be rewritten as

a matrix uX D N T
X .x/UX . The stiffness matrix KX is then

KX D
Z

�X

HrsNT
X .x/ W rsN T

X .x/d�: (11)

3.1.3. Analytical patch. The resolution of the considered problem on �W is done, thanks to a

Galerkin method where the mechanical basis is a truncation of the asymptotic series expansion,

Equation (5). The upper-boundary of this truncation is referred to as nmax. Since �W is in the crack

tip vicinity, the first order terms represent well the mechanical fields. The continuous evolution along

the curvilinear abscissa s of the coefficients bn
i of Equation (5) is discretized with one-dimensional

finite elements

uW .x/ D uW .r; �; s/ D
X

k2Ns

2

4

nmaxX

nD0

X

iDI;II;III

bink g
n
i .�/ r

n
2

3

5'k.s/ (12)

D
X

j 2¹1;:::;Ns �.nmaxC1/�3º

bj j D N T
W .x/UW ; (13)

where 'k.s/ are one-dimensional shape functions of order one, as represented Figure 2(b). bink are

the bn
i coefficients at each of the k 2 Ns nodes. The curvilinear abscissa s on the front is computed in

the whole patch �W . The border shape functions are extended to keep the partition of unity property.

Thanks to this finite element decomposition, a continuous evolution of the asymptotic coefficients

along the front is evaluated as degrees of freedom. However, a new parameter is introduced for the

patch: the discretization increment along the front ds D skC1 � sk; k 2 Ns .

From this displacement field, the symmetric part of the gradient field is computed in order to

compute the stiffness matrix KW such as

KW D
Z

�W

Tr
h

HrsN T
W W rsN T

W

i

d�: (14)

Since the three variables r , � , and s are uncoupled, the computation of the matrix D is easily

performed.

Figure 2. Example of the numerical implementation of the patch, in the three-dimensional case. (a) Mesh of
the patch, in a plan containing the front. (b) One-dimensional finite element shape functions along s.
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3.1.4. Interface bounding. The numerical treatment of the interface consists of bounding the two

displacement fields UX and UW at their interface with Lagrange multipliers. This dual space is

written as the linear span of some (here l) chosen shape functions Ll

� D
X

l

�lLl D N T
Lƒ (15)

The choice of the discretization of these multipliers influences the accuracy of the SIF and the con-

vergence rate of the multigrid algorithm [29]. In two-dimensions, these considerations lead to the

choice of a space composed of the non-zero normal Williams stress field on the interface and the

Williams rigid body displacement modes. In three-dimensions, the Lagrange multipliers approxima-

tion space is chosen to be the patch displacement on the interface �W W NL.x/ D NW .x/; 8.x/ 2
�W . The discrete version of Equation (8) can be rewritten in the matrix form

CXUX C CWUW D 0 with CX D
Z

�W

N T
XNLdS and CW D �

Z

�W

N T
WNLdS: (16)

3.1.5. Practical implementation. The construction of the two sub-domains is represented in

Figure 2(a). It is realized from a FEM discretization of the whole domain. Then, the elements par-

tially inside a radius rW of the patch corresponds to the analytical domain �W . And the remaining

elements define the X-FEM domain �X and are directly used as X-FEM elements. The interface

�W is composed of the element faces between the two sub-domains.

The standard Gauss quadrature is not well fitted to integrate discontinuous functions of the X-

FEM; this difficulty is known from the beginning of the method [5] and can be overcome by

subdividing the cut elements. The mechanical fields are also discontinuous and not linear in the

analytical patch. The integration is performed with the finite element Gauss points used to build

the two sub-domains. The discontinuity can be handled in the same way, and a higher order Gauss

quadrature is performed to reduce the error introduced by the integration of asymptotic functions.

The computation of the projectors CX and CW requires to integrate products of shape functions

on the interface �W . This interface is composed of three-dimensional element faces with high order

Gauss quadrature.

Once discretized, the three-dimensional problem (9) is similar to the two-dimensional one [29]:

find UX , UW , and ƒ such that
2

6
4

KX 0 �C T
X

0 KW �C T
W

�CX �CW 0

3

7
5

0

@

UX

UW

ƒ

1

A D

0

@

F

0

0

1

A ; (17)

where F is the generalized force vector. However, in three-dimensions, KW is bigger than in two-

dimensions because of the discretization along the front and of mode III.

It has been shown in two-dimensions that a patch radius of rW D 2 finite elements, and a trun-

cation of the Williams series expansion to nmax D 7, was sufficient for an accurate estimate of the

SIFs [29]. The same assumption will be used in the three-dimensional case.

3.2. Multi-grid formulation

The simulation of a cracked body requires local refinement especially in three-dimensions and for

complex crack geometries. Indeed, the stress is singular near the crack tip; local refinement is needed

to increase the accuracy of the computed fracture parameters (i.e., SIF). If the crack is curved,

the analytical patch has to be small enough to make the quasilinear crack hypothesis acceptable.

Since the minimum patch size is linked to the surrounding X-FEM elements size, and as illustrated

in Section 4, local refinement can be needed to match the required accuracy or where the crack

curvature is important.

The mesh is locally refined with a X-FEM localized multigrid method, as introduced in [32],

and made compatible with the analytical patch in a very similar manner than it was proposed in
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Figure 3. Recursive grids example for a square cracked problem with four grids .ng D 4/.

two-dimensions in [29, 30]. The whole crack front has to be in the finest grid with a surrounding

layer of elements superior to rW . The analytical patch is introduced in the finest grid and interacts

with this grid only.

Within the localized multigrid framework, the crack tip is included in the X-FEM grids. Indeed,

the grids are overlapping as illustrated in Figure 3. Therefore, singular enrichments are also con-

sidered. The elements containing the front have their degrees of freedom Ne enriched with the

singularity in
p

r . The approximation space is then

uX .x/ D
X

i2N

ui'i .x/ C
X

i2Nc

u0
i'i .x/H.x/ C

X

i2Ne

X

j

u00j

i 'i .x/�j .x/: (18)

The functions �j .x/ are enrichment functions designed to introduce the singular behavior (term

n D 1 in Equation (5)) in the approximation space UX [5]

�j .x/ 2
²p

r sin
�

2
;
p

r cos
�

2
;
p

r sin
�

2
sin �;

p
r cos

�

2
sin �

³

: (19)

3.2.1. Localized multigrid algorithm with X-FEM grids. The principle of the multigrid approach

is to solve the considered problem (introduced in Section 3.1) on a fine discretization through an

iterative process on coarser grids. The idea is that the global displacement field, requiring many

preconditioned conjugate gradient iterations on a fine grid, can be estimated in less operations on a

coarse grid. A ratio of two between two successive grids has been shown to be quasi-optimal.

The construction of the grids is done from an initial coarse mesh of the whole structure; each

coarse element is subdivided in two and recursively (ng � 1 times), until the needed refinement in

the crack tip vicinity is reached. As represented in Figure 3, the coarser mesh is named M1 and

then two consecutive grids are named Mg and MgC1 (respectively, the coarse and the fine). Since

the refinement is local, a boundary �g exists between the refined domain and the non-refined one

(the boundary of the finer grid). The quantities Q on a grid g are referred with a g subscript Qg .

The jB subscript of the quantity Q refers to the restriction to a zone where a finer grid exists; QjB

is padded with zeros such that it has the same size than Q.

The interpolation of displacements from a coarse grid to a fine one is performed with the prolon-

gation operator P , and the return from fine to coarse one is performed with a restriction operator

PT . This P operator is computed by a direct collocation method presented in [32]. Once initiated

(step 0), the iterative algorithm (exponent i refers to the considered step) is described underneath

in the general case for ng grids. It is composed of two steps: (1) resolutions from fine grids bring

a corrective second member R to the coarser problem on which �1 conjugate gradient (CG) iter-

ations called relaxations are performed and (2) �2 conjugate gradient iterations are done with the

corrective residual term and the displacement is projected onto finer grid. The number of multigrid

sub-cycles for each stage is taken to 
g D 1 8g 2 ¹ng � 1; : : : ; 2º.

0. Initiation: the displacements are set to 0, g D ng ; cg D 1 8g 2 ¹ng � 1; : : : ; 2º and

Ri
ng

D 0.

(1) Corrective residual term from fine grids, g D g � 1

Ri
g D PT

g

��

KgC1 �KgC1jB

�

U i
gC1 CRi

gC1

�

; (20)
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�1 relaxations ofKgU
iC1
g D F g �Ri

g CKgjBU
i
g

with boundary condition U i
g j�g�1

D PgU
i
g�1 j�g�1

:
(21)

(a) If g D 1 : go to 2.

(b) If cg D 
g W cg D 1 and return to step 1

Else: cg D cg C 1 and g D g C 1.

(2) Relaxation of fine grid correction on coarse grids

(a) If g D 1 W
(i) U iC1

1 from exact resolution of K1U
iC1
1 D F 1 �Ri

1 CK1jBU
i
1,

(ii) Convergence test: if max
g

kU
iC1
g �U

i
gkE





U

iC1
1








E

< � stop, kU gkE D 1
2
U T

gKgU g .

Else:

(i) Interpolate displacements from coarse to fine mesh U iC1=2
g D U i

g C
Pg

�

U iC1
g�1 � U i

g�1

�

,

(ii) U iC1
g obtained from �2 CG iterations on U iC1=2

g

KgU
iC1
g D F g�Ri

gCKgjBU
i
g with boundaryU i

g j�g�1
D PgU

i
g�1 j�g�1

:

(22)

(b) If g D ng W Return to step 1

Else: Return to 2 with g D g C 1.

This method allows to solve an equivalent problem on a refined mesh, represented in Figure 3,

while only handling and solving smaller problems, either coarser or localized.

3.2.2. DEK-FEM coupled with the localized X-FEM multigrid method. The analytical patch is

inserted in the finest grid g D ng . Equation (22) is modified for the finer grid that includes the ana-

lytical patch. As introduced in [29, 30], the X-FEM model of the finer grid exists in the patch volume

but is inactivated at convergence by Kng jWU
i
ng

, where Kng jW is the finer grid X-FEM stiffness

matrix of the area overlapping the patch. This inactivation allows to decompose Equation (17) into

an X-FEM one (coupled with the analytical patch) and a resolution on the analytical patch

Kng
U iC1

ng
D F ng

�!

8

ˆ̂
<

ˆ̂
:

X-FEM model: Kng
U iC1

ng
D F ng

C C T
Xƒ

i CKng jWU
i
ng

;

Patch resolution:

"

KW �C T
W

�CW 0

# 

U iC1
W

ƒiC1

!

D
0

CXU
iC1
ng

!

:
(23)

The analytical patch influences the X-FEM model through ƒi . In [30], the authors noticed that

ƒiC1 can be expressed as a function of the coarse problem unknowns U ng
only

CWK
�1
W C T

W
„ ƒ‚ …

H W

ƒiC1 D �CXU
iC1
ng

�! ƒiC1 D �H �1
W CXU

iC1
ng

; (24)

whereHW is known as the Steklov–Poincaré operator [39]. From this expression, the resolution of

the finest grid including the patch is reduced to

2

6
4Kng

�Kng jW C C T
XH

�1
W CX

„ ƒ‚ …

H XW

3

7
5 U

iC1
ng

D F ng
: (25)
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This approach has been shown efficient in [30]. The patch resolution, Equation (23), is only treated

at the end of the multigrid iterations to recover the Williams’ coefficients. In practice, neither KW

norHW is inversed; the computation ofHXW D C T
XH

�1
W CX is performed in two steps:

(1) Find Y such that KW Y D C T
W ; thus,HW D CW Y .

(2) Find Z such thatHWZ D CX ; thus,H XW D C T
XZ .

4. NUMERICAL SIMULATIONS

Some classical cracked configurations are studied here, and the identified stress intensity factors
�

KDEK
i ; i D I; II; III

�

and T -stress are compared to former analytical and numerical solutions
�

K
ref

i

�

. The crack geometries considered here are planar crack with either straight or circular fronts.

For straight fronts, the Jacobian matrix J of Equation (6) is the identity. When the front is circu-

lar, the displacement gradient is easily constructed in cylindrical coordinates. This approach can be

generalized, as a first order approximation to planar crack with continuously curved front using the

local curvature of the front.

The circular cracks are considered first since analytical studies of elliptical cracks provide analyt-

ical SIF evolution. Most of these studies are performed in an infinite medium with remote boundary

conditions, where the considered cracks are small by comparison with the considered domain (i.e.,

the crack radius a is about a tenth of the length-scale l). As it was done in [6, 38], these two dif-

ferent length-scales are taken into account, thanks to a graded mesh. A penny-shaped crack under

remote tension or shear loading is considered, and the evaluated SIF and T -stress are compared to

analytical values. The crack is then inclined at 45° to activate all the fracture mode and to have vari-

ations along the front. Eventually, a corner edged crack under remote tension is considered. If not

mentioned otherwise, the patch parameters used for the simulations are nmax D 7, rW D 2, and

ds ' 2 finite elements. In a second time, the localized multigrid approach developed in Section 3.2

is applied to a straight crack in order to illustrate the efficiency of the DEK-FEM with multigrids in

three-dimensions (see [29] for the two-dimensional case)

4.1. Penny shaped crack under remote tension

As reminded in [40], under the Linear Elastic Fracture Mechanics (LEFM) hypothesis, the symmet-

ric problem (hence mode I ) of a penny shaped crack of radius a under remote tension .�0/ in an

infinite domain is subject to

KI D 2�0

r

a

�
and T D �1 C 2�

2
�0; (26)

where � is the Poisson’s ratio.

For the simulation, a cube of size 2l submitted to uniform tensile stress �0 is considered with an

embedded penny-shaped crack of radius a D l
10

. Such a ratio is considered to match the infinite

domain hypothesis. Two graded meshes with local refinement around the crack are considered (see

Figure 4)—(1) A coarse one, as fine as in [38] in the crack tip area. For this mesh, there is 3.5

elements in the crack radius; therefore, the mesh size is H D a
3:5

. (2) And a fine one, twice as fine.

For this mesh, the crack radius is about seven finite elements W h D a
7

.

As illustrated Figure 5, the fine mesh provides a good approximation .< 3%/ of the T -stress and

a uniform mode I SIF. The mode I SIF estimation is uniform but presents an offset .' 12%/ with

the analytical value. The mesh refinement increases the accuracy of the stress intensity factor (from

' 18% to ' 12%). On the other hand, the T -stress identification is not very sensitive to mesh

refinement; indeed, its area of influence is larger than the singular mode.

The influence of the patch dimension rw is evaluated on the fine mesh with three different radius.

The identified and projected SIF and T-stress are represented Figure 6. As it has been shown in two-

dimensions in [29], a patch of less than two elements of radius is too small for a proper identification

of the asymptotic parameters. Indeed, the displacement on the border of the analytical patch �W

10



(a) A face of the coarse mesh (b) A face of the fine mesh

Figure 4. Faces of the three-dimensional graded meshes used for penny shaped crack under remote tension.
The considered domain is cubic, and the mesh is the same in the three directions. (a) A face of the coarse

mesh. (b) A face of the fine mesh.
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(a) Evaluated mode I SIF
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(b) Evaluated T-stress

Figure 5. Penny shaped crack under remote tension. Numerical results of the comparison between a coarse
mesh and a fine mesh, ds ' 2 finite elements of the coarse mesh, and four finite elements of the fine mesh.

(a) Evaluated mode I SIF. (b) Evaluated T -stress.
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(b) Evaluated T-stress

Figure 6. Penny shaped crack under remote tension. Numerical results of the study of the influence of rw

for a fine graded mesh. (a) Evaluated mode I SIF. (b) Evaluated T -stress.

is too poor (not enough degrees of freedoms) to make the two sub-domains communicate. On the

other hand, when the patch is too large, it includes an area where the Williams expansion hypotheses

are no longer valid and the quality of the identification decreases. Therefore, the dimension used is

rw � 2 finite elements.
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(a) Geometry and boundary conditions
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(b) Numerical results : evaluated SIF

Figure 7. Penny shaped crack under remote shear. (a) Geometry and boundary conditions. (b) Numerical
results: evaluated SIF.

4.2. Penny shaped crack under remote shear

A penny shaped crack under shear loading is considered. As illustrated in Figure 7(a), tangential

displacement is enforced on the borders parallel to the crack plane
�

�0 D E
2C.1C�/

arctan
2ud

l

�

. This

example is interesting since the non-symmetric modes II and III are activated and evolve along the

front. An analytical value, also reminded in [41], exists for such a crack in an infinite body

K
ref
II D �0

4.1 � �/
p

�a

�.2 � �/
cos ˛ and K

ref
III D �0

4
p

�a

�.2 � �/
sin ˛: (27)

Where ˛ is the angle along the front. Here, considering a prism of height l and square section of

edge 2l with l D a is sufficient in order to compare the simulation to the analytical solution. A

structured mesh of 40 � 40 � 20 finite elements is used.

The identified symmetric coefficients (mode I ) are almost zeros,

ˇ
ˇ
ˇ
ˇ

KI

�0

p
a

ˇ
ˇ
ˇ
ˇ

< 0:3% and

ˇ
ˇ
ˇ
ˇ

T

�0

ˇ
ˇ
ˇ
ˇ

< 1:3%: (28)

As displayed on Figure 7(b), the non-symmetric coefficients evolutions and amplitudes are in good

agreement .< 5%/ with the analytical values even with the considered raw mesh.

4.3. Inclined penny shaped crack under remote tension

Let us consider the geometry and loading of Section 4.1 with an inclined crack (of angle 
 D 45ı

with respect to the tension direction), as represented in Figure 8. This problem also has an analytical

solution in the general case for an elliptical crack, reminded in [42], which can be reduced to the

case of a circle

K
ref

I D 2�0 sin2 


r

a

�
;

K
ref
II D �2�0 sin 
 cos 


r

a

�
cos ˛;

K
ref
III D 2�0 sin 
 cos 
.1 � �/

r

a

�
sin ˛:

(29)

This configuration is particularly interesting since the three modes are activated and both the shear

mode and the anti-plane mode evolve along the front. The same two meshes as used in Section 4.1

are considered.
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Figure 8. Geometry and boundary conditions of the inclined .45ı/ penny shaped crack under remote tension.
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(a) Evaluated asymptotic coefficients for coarse mesh (b) Evaluated asymptotic coefficients for fine mesh

Figure 9. Inclined .45ı/ penny shaped crack under remote tension. Numerical results for a graded mesh (T -
stress is normalized by � ). An order one finite elements discretization is used along the front for the three
modes. (a) Evaluated asymptotic coefficients for coarse mesh. (b) Evaluated asymptotic coefficients for fine

mesh.

The evolution of the identified stress intensity factors are represented in Figure 9. The evolution

of KDEK
II and KDEK

III is correctly identified, but the mode II amplitude is overestimated. For mode

I SIF, the results are even worst since it oscillates strongly around the analytical value. The mode

I oscillations and the KDEK
II overestimation do not decrease with the mesh refinement and seem

coupled with the other modes or other orders.

The mode III stress field computed from the displacement given Equation (12) is coupled with the

Mode I . Indeed, as it was noticed in [34], the crack curvature and the evolution along the front (i.e.,

's.s/ in the present) bring out-of-plane stress for mode I and in-plane stress for mode III. A simple

solution to reduce this coupling is to use a different discretization along the front for mode III

uW .r; �; s/ D
X

k2Ns

2

4

nmaxX

nD0

X

iDI;II

bink g
n
i .�/ r

n
2

3

5'k.s/ C
X

k2Ns

nmaxX

nD0

bIIInk g
n
III.�/ r

n
2 '0

k.s/: (30)

For the sake of simple numerical implementation, '0
k
.s/ is chosen to be a finite element decomposi-

tion of order 0 with the same nodes. The asymptotic coefficients identified thanks to this method are

represented in Figure 10 for the two discretizations. For the fine discretization, the identified evolu-

tions are satisfactory but an overestimation remains, ' 10% for KDEK
II and ' 15% for KDEK

III . On

the other hand, KI is accurate < 4%, and the T-stress is oscillating as cos.2˛/. When the mesh is

coarser, the 0 order discretization of mode III leads to uneven KDEK
III , which follows the analytical

tendency. For the three modes, the discretization enhances the accuracy. This uncoupling method
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(a) Evaluated asymptotic coefficients for coarse mesh
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Figure 10. Inclined .45ı/ penny shaped crack under remote tension. Numerical results for a graded mesh
(T -stress is normalized by � ). The direct extraction is based on Equation (30) where 's.s/ are order one
finite elements shape functions and '0

s.s/ are order zero. (a) Evaluated asymptotic coefficients for coarse
mesh. (b) Evaluated asymptotic coefficients for fine mesh.

(based on Equation (30)) works well in this case, and for all the previous test-cases. In the next parts,

this approach will be considered.

4.4. Corner edge cracked bar

A square bar containing a corner crack loaded with remote tension �0 is now studied. The crack

is perpendicular to the tensile loading as represented Figure 11(a). The bar has a square section of

edge w, and its height is 2h D 2w. It includes a quarter penny shaped corner crack of dimension

a D w
10

. This ratio is chosen in agreement with available closed-form solutions, reminded in [42]

for such a corner edge crack

K
ref

I D 2�0

r

a

�

�

1:211 � 0:186
p

sin ˛
� �

1:211 � 0:186
p

cos ˛
�

: (31)

This expression is reported to be accurate at 3% between �=18 and 4�=9 and will be considered as

reference. A graded mesh represented in Figure 11(b) is considered, with 10 finite elements in the

(a) Geometry and boundary 

condition

(b) A face (cut by

the crack) of the

considered mesh

Figure 11. Corner edge cracked bar. (a) Geometry and boundary condition. (b) A face (cut by the crack) of
the considered mesh.
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Figure 12. Corner edge cracked bar. Numerical result of the DEK-FEM simulation. (a) Evaluated mode I
SIF. (b) T -stress, reference � geometry.

crack radius. The T -stress intensity is compared to tabulated values proposed in [43] for elliptical

cracks in plate. This reference is for a pretty different geometry, but the bulk value and the tendency

near free surfaces of the T -stress have the same numerical behavior.

The evolution of mode I SIF from the simulation, represented Figure 12(a), compares well with

the reference. As noticed for the penny shaped crack under tension (Section 4.1), KDEK
I presents

an offset (an underestimation of about 3%). The T -stress on the other hand has the same negative

intensity than the approximate reference (see Figure 12(b)).

At the vertices, it has been shown in [44] that the order of singularity is no longer 1
2

when the

crack is perpendicular to the surface. Therefore, the considered asymptotic evolution is no longer

accurate to describe the mechanical fields. However, a diminution of the stress intensity factor and

and the increase of the T -stress are expected. The decrease of KDEK
I is observed, and the T -stress

tends to increase, expressing an increasing of the stress triaxiality.

The proposed description of the mechanical fields in the crack tip vicinity is an approximation

which shows promising results. Yet, as illustrated in Sections 4.1 and 4.3, this approximation may

require some local refinement near the crack tip to provide accurate asymptotic stress intensity

factors. That is why the DEK-FEM strategy has been associated with an X-FEM localized multigrid

approach. At this stage of development, this strategy is efficient for straight cracks. It is illustrated

on the following example.

4.5. Single edge-crack tension specimen

A simple geometry, the single edge crack tension specimen is considered to evaluate the stress

intensity factor identification method. It consists of a rectangular bar half cut by a single plane crack

with a straight front. The considered loading is a unit normal stress, in order to activate the opening

mode .I /. The considered geometry is defined in Figure 13(a); the width is W D a, the thickness

t D 3a, and the height h D 3:5a. This example is also studied by Li et al. [41] with a boundary

element method and by Sukumar et al. [38] with an extended finite element method analysis and a

domain integral. These two previous study provides numerical references for KI .

As shown in Figure 13(b), the mode I stress intensity factor evaluated with DEK-FEM is close

to References [38, 41] in the bulk, with the same mesh in [38]. At the vertices, the stress intensity

factors are less accurate but decrease as expected.

The mutligrid approach introduced in Section 3.2 has been developed for straight cracks and

is tested here. Three simulations are presented, a monogrid one with cubic mesh of 24 � 36 �
42 elements3 and two multigrid ones with two and three grids from a coarse grid of 12 � 8 �
21 elements3. As represented in Figure 14(a), the fine grids are localized around the crack tip in

order to include at least one layer of elements around the finer grid and two layers around the

analytical patch for the finest grid.
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Figure 13. Single edge-crack tension specimen, with the monogrid mesh used in Sukumar et al. [38]. (a)
Single edge-crack tension specimen. (b) Evaluated SIF for a structured mesh 203.

Figure 14. Single edge-crack tension specimen, with the localized multigrid method. (a) Multigrid mesh. (b)
Comparison of the KI .

The multigrid simulation with two grids has a discretization as fine as the monogrid one around

the crack tip and provides very similar KI in the bulk. The refinement provided by the third grid is

more effective where the stress intensity factor evolves and increases the accuracy of the identifica-

tion as expected. Another lever to improve the accuracy is the choice of the basis of the analytical

domain.

5. CONCLUSION

In the proposed method, the simulation of three-dimensional cracked bodies with curved cracks and

the identification of meaningful asymptotic coefficients are performed jointly. The asymptotic series

expansion is used in the crack tip vicinity since it is shaped to represent well the singularity. The

considered bases evolve continuously along the front, providing smooth asymptotic coefficients.
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In three-dimensions, an underlying difficulty resides in the stress intensity factors estimate.

Indeed, there is no general expression of the singular field for a three-dimensional crack with com-

plex geometries. The two-dimensional asymptotic fields are used, but some local equations have to

be approximated. Here, a method to construct these approximate fields is proposed. This method is

shown to be efficient when the analytical patch is small enough with regards to crack size param-

eter. In order to have a patch as small as needed, a numerically efficient local refinement method

is proposed.

This strategy is applied to numerous classical three-dimension benchmarks with known stress

intensity factors, in which planar cracks with circular front are considered. This first study is

promising; the evolution of the asymptotic coefficients (i.e., stress intensity factors and T -stress)

is evaluated correctly with rather coarse meshes. However, the method aims to apply to any con-

tinuously curved cracks in further developments. Moreover, the higher order coefficients are also

estimated as it was done in [29, 45], but their accuracy is still to be considered.

The proposed method can easily be adapted to some other crack tip discretizations. With the one

proposed, the convergence rate, with respect to the underlying X-FEM mesh, is still to be evalu-

ated in detail. This method, based on the asymptotic Williams series expansion, is close to the one

proposed by Lachambre et al. [46] to identify three-dimensional experimental asymptotic coeffi-

cients. Then, work is in progress to build a strong link between three-dimensional imaging and

three-dimensional X-FEM in order to capture the behavior of three-dimensional cracks.
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