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Don't forget, there is more than forgetting: new metrics for Continual Learning

Continual learning consists of algorithms that learn from a stream of data/tasks continuously and adaptively thought time, enabling the incremental development of ever more complex knowledge and skills. The lack of consensus in evaluating continual learning algorithms and the almost exclusive focus on forgetting motivate us to propose a more comprehensive set of implementation independent metrics accounting for several factors we believe have practical implications worth considering in the deployment of real AI systems that learn continually: accuracy or performance over time, backward and forward knowledge transfer, memory overhead as well as computational efficiency. Drawing inspiration from the standard Multi-Attribute Value Theory (MAVT) we further propose to fuse these metrics into a single score for ranking purposes and we evaluate our proposal with five continual learning strategies on the iCIFAR-100 continual learning benchmark.

Introduction and Related Work

For an exhaustive evaluation, we can assume to have access to a series of test sets T e i over time. The aim is to assess and disentangle the performance of our learning hypothesis h i as well as to evaluate if it is representative of the knowledge that should be learned by the correspondent training batch T r i . However, as discussed in [START_REF] Lopez-Paz | Gradient Episodic Memory for Continual Learning[END_REF], a different granularity of the evaluation at the task level can as well be achieved by having the same test batch for many T r i .

An overall performance Ω in a supervised classification setting was proposed in [START_REF] Hayes | New Metrics and Experimental Paradigms for Continual Learning[END_REF] based on the relative performance of an incrementally trained algorithm with respect to an off-line trained one (which has access to all the data at once, and acts as an upper bound). [START_REF] Serrà | Overcoming catastrophic forgetting with hard attention to the task[END_REF], instead, try to directly model forgetting with a proposed forgetting ratio metric ρ that considers a vector of test accuracies for each T e i at random initialization that represents a lower bound on accuracy. In the same setting, in [START_REF] Lopez-Paz | Gradient Episodic Memory for Continual Learning[END_REF] other three important metrics are proposed: Average Accuracy (ACC), Backward Transfer (BWT), Forward Transfer (FWT). In this case, after the model finishes learning about the training set T r i , its performance is evaluated on all (even future) test batches. The higher these metrics, the better the model. If two models have similar ACC, the most preferable one is the one with larger BWT and FWT. While forgetting and knowledge transfer could be quantified and evaluated in various ways [START_REF] Farquhar | Towards robust evaluations of continual learning[END_REF][START_REF] Hayes | New Metrics and Experimental Paradigms for Continual Learning[END_REF], these may not suffice for a robust evaluation of CL strategies in practice. We thus propose a comprehensive set of metrics that expands and complements existing ones.

Proposed Metrics for Continual Learning

In Continual Learning, D can be thought of a potentially infinite sequence of unknown distributions D = {D 1 , . . . , D N } over X × Y we encounter over time, with X and Y as input and output random variables respectively. Given h * as the general target function (i.e. our ideal prediction model), a task T is defined by a unique task label t and its target function g * t (x) ≡ h * (x, t = t), i.e., the objective of its learning. A CL algorithm A CL is an algorithm with the following signature:

∀D i ∈ D, A CL i : < h i-1 , T r i , M i-1 , t >→< h i , M i > (1)
Where h i is the model, T r i is the training set of examples drawn from the respective D i distribution, M i is an external memory where we can store previous training examples and t is a task label. For simplicity, we can assume N as the number of tasks, one for each T r i .

In this CL framework, we propose algorithm ranking metrics according to different desiderata attainable in CL divided on seven criteria. In order to provide bounds to each metric (originally lying in f : [0, ∞[), we map it to a [0, 1] range (as it is commonly done, e.g., in Multi-Attribute Value Theory (MAVT) [START_REF] Keeney | Decision with multiple objectives, preferences and value tradeoffs[END_REF]) and formulate it so that its optimal value is given by its maximization. This is to preserve interpretability of the proposed aggregating CL score metric, and allow to evaluate CL algorithms with respect to multiple criteria, rank them from best to worst, and accommodate weighting schemes according to constraints and desiderata.

Accuracy: Given the train-test accuracy matrix R ∈ R N ×N , which contains in each entry R i,j the test classification accuracy of the model on task t j after observing the last sample from task t i (Lopez-Paz and Ranzato, 2017), Accuracy (A) considers the average accuracy for training set T r i and test set T e j by considering the diagonal elements of R, as well as all elements below it (see Table 2):

A = N i≥j R i,j N (N +1) 2
(2)

While the A criteria was originally defined to asses the performance of the model at the end of the last task (Lopez-Paz and Ranzato, 2017), we believe that an accuracy metric that takes into account the performance of the model at every timestep i in time better characterizes the dynamic aspects of CL. The same idea is applied to the modified BWT and FWT metrics introduced below.

Backward Transfer (BWT) measures the influence that learning a task has on the performance on previous tasks [START_REF] Lopez-Paz | Gradient Episodic Memory for Continual Learning[END_REF]. The motivation arises when an agent needs to learn in a multi-task or data stream setting. The lifelong abilities to both improve and not degrade performance are important and should be evaluated throughout its lifetime. It is defined as the accuracy computed on T e i right after learning T r i as well as at the end of the last task on the same test set. (see Table 2).

Here, as in the accuracy metric, we expand it to consider the average of the backward transfer after each task:

BW T = N i=2 i-1 j=1 (R i,j -R j,j ) N (N -1) 2 (3)
Because the original meaning of BWT assumed positive values for backward transfer and negative values to define (catastrophic) forgetting, in order to map BWT to also lie on [0, 1] and give more importance to two semantically different concepts, BWT is broken into two different clipped terms:

The originally negative (forgetting) BWT (now positive), i.e., Remembering, as

REM = 1 -|min(BW T, 0)| (4)
and (the originally positive) BWT, i.e., improvement over time Positive Backward Transfer

BW T + = max(BW T, 0) (5) 
Forward Transfer: FWT measures the influence that learning a task has on the performance of future tasks [START_REF] Lopez-Paz | Gradient Episodic Memory for Continual Learning[END_REF]. Following the spirit of the previous metrics we modify it as the average accuracy for the train-test accuracy entries R i,j above the principal diagonal of R, excluding it (see elements accounted in Table 2 in light gray and additional information in the appendix). Forward transfer can occur when the model is able to perform zero-shot learning. We therefore redefine FWT as:

F W T = N i<j R i,j N (N -1) 2 (6)
Model size efficiency: The memory size of model h i quantified in terms of parameters θ at each task i, M em(θ i ), should not grow too rapidly with respect to the size of the model that learned the first task, M em(θ 1 ). Model size (MS) is thus:

M S = min(1, N i=1 M em(θ1) M em(θi) N ) (7) 
Samples storage size efficiency: Many CL approaches save training samples as a replay strategy to not forget. The memory occupation in bits by the samples storage memory M , Mem(M ), should be bounded by the memory occupation of the total number of examples encountered at the end of the last task, i.e. the cumulative sum of T r i here defined as the lifetime dataset D (associated to the set of all distributions D). Thus, we define Samples Storage Size (SSS) efficiency as:

SSS = 1 -min(1, N i=1 Mem(Mi) Mem(D) N ) (8) 
Computational efficiency: Since the computational efficiency (CE) is bounded by the number of multiplication and addition operations for the training set T r i , we can define the average CE across tasks as:

CE = min(1, N i=1 Ops↑↓(T ri)•ε 1+Ops(T ri) N ) (9) 
where Ops(T r i ) is the number of (mul-adds) operations needed to learn T r i , and Ops ↑↓(T r i ) is the number of operations required to do one forward and one backward (backprop) pass on T r i . When the value of Ops ↑↓(T r i ) is negligible w.r.t. Ops(T r i ), a scaling factor associated to the number of epochs needed to learn T r i , ε larger than a default value of 1, can be used to make CE more meaningful (i.e. avoiding compression of the values very near to zero). Since we are essentially moving the lower bound of the computation, which depends on the benchmark complexity, this adjustment also translates on better interpretability of CE (Fig. 1)2 .

In order to assess a CL algorithm A CL , following [START_REF] Ishizaka | Multi-criteria decision analysis: methods and software[END_REF], each criterion c i ∈ C (where

c i ∈ [0, 1]) is assigned a weight w i ∈ [0, 1] where C i w i = 1.
Each c i should be the average of r runs. Therefore, the final CL score to maximize is computed as:

CL score = #C i=1 w i c i ( 10 
)
where each criterion c i that needs to be minimized is transformed to c i = 1 -c i to preserve increasing monotonicity of the metric (for overall maximization of all criteria in C). CL stability is thus:

CL stability = 1 - #C i=1 w i stddev (c i ) (11)

Experiments and Conclusions

We evaluate the CL metrics on cumulative and naïve baseline strategies as in [START_REF] Maltoni | Continuous learning in single-incremental-task scenarios[END_REF], Elastic Weight Consolidation (EWC) [START_REF] Kirkpatrick | Overcoming catastrophic forgetting in neural networks[END_REF], Synaptic Intelligence (SI) [START_REF] Zenke | Continual learning through synaptic intelligence[END_REF] and Learning without Forgetting (LwF) [START_REF] Li | Learning without Forgetting[END_REF]. iCIFAR-100 Results for each proposed metric are illustrated in Table 1 (each criterion c i reports the average over 3 runs); Fig. 1 illustrates the CL metrics variability for each criterion reflecting a desirable property of CL algorithms, as well as the needs of novel techniques addressing different aspects than accuracy and forgetting, that can be important depending on the application. For simplicity, we chose an homogeneous configuration of criteria weights that values each CL metric equally (i.e., each

w i = 1 #C
). However, the Appendix shows results on other possible configurations. While the CL score is optional to report, the aim of the metrics and results is to stimulate comprehensive evaluation practices. In future work we plan to refine these metrics and assess more strategies in more exhaustive evaluation settings. More thorough studies should also provide insights that assess the importance of different metric schemes and their entanglement, and how to use these metrics wisely to assist choosing among algorithms. 

. R * = R ii , T r i = training, T e i = test tasks. R T e 1 T e 2 T e 3 T r 1 R * R ij R ij T r 2 R ij R * R ij T r 3 R ij R ij R * Matrix R ∈ R N ×N contains in each entry R i,j
the test classification accuracy of the model on task j after observing the last sample from task i (Lopez-Paz and Ranzato, 2017). N is the number of tasks (one per T r i ). Here, for simplicity, we make the number of distributions equal to N . Table 2 shows the elements in the accuracy matrix used for each metric for an example matrix of N = 3 tasks. R * = R ii coincides with the (normally) optimal accuracy right after using training set T r i and testing on test set T e i .

Note that in order to compute Accuracy, we do not only consider as (Lopez-Paz and Ranzato, 2017) the last row of the accuracy matrix R, but also steps in between each new training set learned, to acknowledge the degradation and improvement through every time step in time. Notice that N corresponds to the number of unique tasks, but can also be seen as the number of distinct data distributions: if a same task or data distribution is repeated, its R ij values will be evaluated within the corresponding same set of batches T r i and T e i if they co-occur in time within the same timed batch id i. As soon as a change on task or distribution i in the stream of input data occurs, it will be considered as a new task with new T r i and T e i . This allows for a fair evaluation of A, REM, BW T + and F W T over time.

In FWT, the substraction term (vector b i of test accuracies for each task at random initialization) in the original FWT formula in (Lopez-Paz and Ranzato, 2017) was removed in our definition of FWT in order to guarantee non negative values (i.e. in case of negative FWT) and allow for potential positive transfer, as they demonstrate it is possible to happen with a shared output space. The idea is supporting the fact that algorithms can do worse than random accuracy for some strategies (we refer the reader to (Lopez-Paz and Ranzato, 2017) for cases of positive FWT).

The Model: The CNN model used in this experiment is the same used in [START_REF] Zenke | Continual learning through synaptic intelligence[END_REF] and [START_REF] Maltoni | Continuous learning in single-incremental-task scenarios[END_REF] and consists of 4 convolutional + 2 fully connected layers (details available in Appendix A of [START_REF] Zenke | Continual learning through synaptic intelligence[END_REF]). Hyper-parameters are chosen to maximize the accuracy metric A for each strategy.

Benchmark: CIFAR-100 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF] classification dataset has 100 classes containing 600 natural images (32×32) each (500 training + 100 test). The CL setting of iCIFAR-100 splits the 100 classes in groups. In this paper we consider groups of 10 classes, and therefore obtain 10 incremental batches.

Baselines: The lower and upper bound CL strategies are naïve and cumulative learning, respectively. The naïve learning strategy starts at T r 1 and learns continuously the coming training sets T r 2 , ..., T r N simply tuning the model across batches without any specific mechanism to control forgetting, except early stopping. The cumulative strategy starts from scratch every time, learning from the accumulation of T r 1 , ..., T r i-1 , T r i retrained with the patterns from the current batch and all previous batches (only in this approach we assume that all previous data can be stored and reused). This cumulative method is a sort of upper bound, or ideal performance that CL strategies should try to reach [START_REF] Maltoni | Continuous learning in single-incremental-task scenarios[END_REF]. 1 shows all objective criteria, where the larger the area occupied under the CL algorithm curve, the highest CL score (more optimal) it is. Fig. 2 shows each of the main CL strategies put in context compared with the considered lower and upper bounds respectively, i.e., naïve, and cumulative strategies. The farther away the evaluated strategy is from the cumulative (blue) surface, the larger room for improvement for the CL strategy. 
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 1 Figure1: a) Spider chart: CL metrics per strategy (larger area is better). b) Accuracy per CL strategy computed over the fixed test set as proposed in[START_REF] Lomonaco | Core50: a new dataset and benchmark for continuous object recognition[END_REF][START_REF] Maltoni | Continuous learning in single-incremental-task scenarios[END_REF].

  original BWT (Lopez-Paz and Ranzato, 2017) would return domains for BW T -∈ [0, 0.5), and for BW T + ∈ [0.5, 1], respectively which, through the clipping, are transformed, as the rest of criteria in the CL metric, to stay in [0,1]. Criteria weights setting and experiments Despite the experiments showing the CL score to be optional and context dependent; the aggregation score is most meaningful when a community agrees on a particular evaluation criteria (similarly to the mAP metric), or in specific settings where the weights for the different criteria are clearly definable. Our experiments use three weight configurations W = [w A , w M S , w SSS , w CE , w REM , w BW T + , w F W T ]. The first one used homogeneous weights (each w i = 1 #C ) and the second and third use W 2 = [0.4, 0.1, 0.1, 0.1, 0.2, 0.05, 0.05] and W 3 = [0.4, 0.05, 0.2, 0.2, 0.05, 0.05, 0.05], as particular examples aiming at reflecting what the recent CL literature has roughly been valuing the most; however, any configuration could be used.

Figure 2 :

 2 Figure 2: Spider chart with CL metrics showing CL strategies EWC, LWF and SI with their respective lower and upper bound (Naïve and Cumulative resp.) as reference baselines (to properly visualize Fig. 1). The weight configuration for each criterion used is W 1 where w i = 1 7 for each w i ∈ W .

Table 1 :

 1 CL metrics and CL score for each CL strategy evaluated (higher is better).

	Strategy A	REM BWT + FWT MS	SSS	CE	CL score CL stability
	Naïve 0.3825 0.6664 0.0000 0.1000 1.0000 1.0000 0.4492 0.5140	0.9986
	Cumul. 0.7225 1.0000 0.0673 0.1000 1.0000 0.5500 0.1496 0.5128	0.9979
	EWC 0.5940 0.9821 0.0000 0.1000 0.4000 1.0000 0.3495 0.4894	0.9972
	LWF	0.5278 0.9667 0.0000 0.1000 1.0000 1.0000 0.4429 0.5768	0.9986
	SI	0.5795 0.9620 0.0000 0.1000 0.4000 1.0000 0.3613 0.4861	0.9970

Table 2 :

 2 Elements in R accounted to compute the Accuracy (white and cyan elements), BWT (in cyan), and FWT (in light gray) criteria

In our classification experiments we used ε = 10.
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