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Response properties of periodic materials
subjected to external electric and magnetic
fields.

Bernard Kirtman, Lorenzo Maschio, Michel Rérat, Michael Springborg

Abstract The ab initio treatment of external field response in crystalline solids poses
particular challenges, since the operator representing the external field must be re-
formulated so to be consistent with periodic boundary conditions. In this chapter,
we review our recent work to formulate implementable working equations for po-
larizability and hyperpolarizabilities in solids, in the framework of a local (gaussian)
basis set. This includes the combination of electric field response with geometrical
distorsion, i.e. infrared and Raman intensities, as well as piezoelectricity. In addi-
tion, we outline a pathway for including magnetic fields in a consistent way, and
speculate on future possible developments.
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1 Introduction

The polarization of molecular electrons in an external electric field and the mag-
netization due to orbital motion in a magnetic field give rise to a large variety of
physical properties that are of high interest in science and engineering. Apart from
the usual spectroscopic observables, electric and magnetic fields can significantly af-
fect chemical, mechanical and structural properties as well. For ordinary molecules
the required quantum theoretical treatment and ab initio computational methods to
determine these quantities are at a relatively advanced stage of development. The
situation is different, however, for materials that are modeled as being infinite and
periodic in 1, 2 or 3 dimensions. That is primarily because the interaction term in
the Hamiltonian appropriate for ordinary molecules, is either non-periodic [6] or is
periodic only for certain values of the (magnetic) field [7]. Although this difficulty
was initially considered over 50 years ago, not until much more recently have suit-
able solutions been developed (see Refs. [29, 54, 55, 10, 2, 63, 40, 30, 4, 58]).
Despite the fact that there are unique aspects for infinite periodic systems, our gen-
eral approach has been to exploit the methods that have been successfully developed
in molecular quantum chemistry as much as possible. Consistent with that perspec-
tive, the implementation of computational methods has been carried out within the
CRYSTAL code [14, 12, 9], which utilizes Gaussian-type orbitals (GTOs). This
code has the advantage that electron exchange interactions are treated accurately
and straightforwardly. It also takes maximum advantage of symmetry, and can run
in parallel with a large number of cores (easily up to 4096) for large systems using
a basis set containing more than 105 functions. There are, of course, other periodic
codes - mostly based on plane waves - that also treat some of the properties consid-
ered in this chapter.
Even though substantial progress has been made, the treatment of infinite periodic
systems is far less advanced than what has been achieved for ordinary molecules.
Thus, we shall indicate in our presentation some of the next steps that are on the
drawing board and some that may be envisioned in the longer term. Our emphasis
will be on the theoretical development although initial applications are included in
the references cited.
In the next section (Sec. 2) we specify the translationally invariant one-electron
operators that describe the interaction of static or dynamic electric and magnetic
fields with periodic systems. Moreover, the important properties of these operators,
with regard to their action on periodic orbitals, are discussed. This includes their
hermitian character as well as the effect on the orbital phases which, surprisingly
can be related to changes in the electric polarization of the material when boundary
surfaces are introduced. The Hartree-Fock and Kohn-Sham (HF/KS) perturbation
theory treatments of linear and nonlinear optical properties are presented in Sec.
3 and 4. This approach provides a model pathway for ultimately including mag-
netic properties and properties determined by the simultaneous action of electric and
magnetic fields in the future. Electronic spectra are also treated in Sec. 4 through the
frequency-dependent linear polarizability.
The next set of properties to be considered, in Sec. 5, concerns the effect of geomet-
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rical distortions on the electronic polarization or vice versa. This category includes,
for instance, infra-red and Raman intensities, which are determined by internal unit
cell deformations. Another example is the direct and converse piezoelectricity asso-
ciated with (external) strain.
Finally, there is a concluding section that summarizes the current and near term de-
velopments that have been discussed in this chapter. We also speculate there about
some of the advances, both theoretical and computational, that the longer term fu-
ture may bring.
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Let us briefly introduce the notation, adopted in the following:

- Greek indices µ,ν , ... will label AO basis functions in the unit cell.
- Direct space lattice vectors will be indicated as g,h,n...
- Latin letters i,j,... will indicate occupied molecular or crystalline orbitals; a,b,...

will indicate virtual orbitals; other latin letters like p,q,r,s,... will indicate a gen-
eral orbital (either occupied or virtual).

- k-vectors of the Brillouin Zone (BZ) sampling in reciprocal space will be indi-
cated as k

- A general cartesian direction (x,y,z) will be expressed by lower case letters t, u,
v, ...

- Matrices denoted as S(g),F(g),D(g), ... represent direct space quantities, while
reciprocal space quantities are denoted as S(k),F(k),D(k), ....

- Direct space and reciprocal space quantities are connected through standard
Fourier and back-Fourier transforms, F and F respectively:

S(k) = F [S(g) ]

S(g) = F [S(k) ]

Atomic units will be also used all along the text, so that we set the absolute value of
the electronic charge and its mass, |e| and m, as well as 4πε0, and h̄ all equal to 1.
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2 Translationally invariant one-electron operators for external
fields

2.1 Basics

In order to appreciate the challenges connected with the theoretical treatment of
an infinite, periodic system exposed to electromagnetic fields, it may be useful to
start with static fields (thus avoiding time dependence) for a large, finite system
(thus avoiding periodic boundary conditions) that is assumed to be neutral (thus
avoiding complications due to origin dependence of the dipole moment) and focus
on the exact solutions to the Hartree-Fock or Kohn-Sham equations (thus avoiding
complications due to a finite basis set). In that case, the complete non-relativistic
electronic Hamilton operator is hermitian and equal to

Ĥe =
Ne

∑
ν=1

ĥn(rν)+
1
2

Ne

∑
ν1 6=ν2=1

ĥ2(rν1 ,rν2)+
Ne

∑
ν=1

ĥC+xc(rν)

+
Ne

∑
ν=1

ĥel(rν)+
Ne

∑
ν=1

ĥk+m(rν), (1)

where ĥn(rν) is the potential due to the nuclei, ĥ2(rν1 ,rν2) describes the electron-
electron interactions, ĥC+xc(rν) is the Coulomb and exchange-correlation potential,
and Ne is the number of electrons. Within the Hartree-Fock approximation, ĥC+xc
is set equal to 0, whereas ĥ2 = 0 when using a pure Kohn-Sham density-functional
approach. Various hybrid approaches may also be written in the form of Eq. (1) by
combining the 2nd and 3rd term on the rhs appropriately.
However, our focus here is on the last two terms. In the next-to-last term we use
the scalar potential to take the presence of the electrostatic field into account. Then,
assuming that the field E is position independent

ĥel(r) = E · r. (2)

Any dependence of this term on the origin is compensated by a similar dependence
in the equivalent nuclear term (not shown). Finally, the operator for the kinetic en-
ergy plus magnetic terms is

ĥk+m(r) =
1
2

[
−ı∇+

1
2c

B× (r−RG)

]2

. (3)

where B is the uniform external magnetic field determined by the vector potential
with a gauge origin at RG. RG is unphysical and, in the ideal case that the electronic
orbitals are determined exactly, the results will not depend on its choice.
It is well-known that when approximating the exact Ne-electron wavefunction
through a single Slater determinant Ψ , the requirement that the expectation value
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〈Ψ |Ĥe|Ψ〉 is minimal under the constraint that the orbitals are orthonormal, 〈ψ j1 |ψ j2〉=
δ j1, j2 , can be cast into a single-particle Hartree-Fock or Kohn-Sham equations

ĥψ j(r) = ∑
j′

λ j, j′ψ j′(r). (4)

The Fock or Kohn-Sham operator ĥ is hermitian and the Lagrange multipliers λ may
be chosen so that λ j, j′ = ε jδ j, j′ (the canonical choice). Then, a unitary transforma-
tion amongst the occupied orbitals will leave the calculated value of any observable
unchanged. The reason we mention these well-known facts will become clear be-
low.
For the infinite, periodic system in the absence of any electrostatic or magnetostatic
field, the orbitals may be written as Bloch functions,

ψ j(k,r) = eık·ru j(k,r) (5)

with u j(k,r) being lattice-periodic. Moreover, the electronic Hamilton operator for
the energy per repeated unit will be identical to that of Eq. (1) divided by the number
of units Nu and evaluated in the limit Nu→∞. The number of electrons Ne = Nu ·ne
with ne equal to the number of electrons per repeated unit.
In this case, k is a good quantum number, and one may calculate the orbitals for
each k separately. Again, a unitary transformation (e.g., for each k separately) will
leave observables unchanged.
However, the interaction with an electrostatic field as represented by Eq. (2) destroys
translational invariance. Instead, one may use [44, 8, 45, 30, 23, 32, 4, 46]

E · r→ E · ıeık·r
∇ke−ık·r ≡ ĥel(k,r), (6)

a suggestion that goes back to the work of Blount more than 50 years ago [6]. It
is easily verified that ĥel(k,r) in Eq. (6) preserves translational symmetry. Blount’s
operator acts on k. Thus, a k-dependent unitary transformation of the occupied or-
bitals, may lead to a change in the energy. Actually, even the very simple unitary
transformation whereby the individual occupied are modified by k dependent phase
factors can lead to such an effect. In fact, by making a ‘pathological’ choice of
the phase factors it is possible to change the energy due to the electrostatic field
essentially arbitrarily, which implies that there is no lowest energy and that the vari-
ational principle will fail. The solution to this dilemma is that the phase factors or,
in general, the unitary transformation cannot be chosen randomly. Different choices
correspond to modeling large, finite samples of the same material but with different
shapes and/or surface charges [59, 60].
A second complication is that ĥel(k,r) is hermitian only for functions whose over-
lap is k independent, i.e., functions { fn} obeying ∇k〈 fp| fq〉 = 0. This is the case
for (orthonormal) electronic orbitals but not in the general case. Moreover, for static
magnetic fields the corresponding condition, as shown later, is much more difficult
to satisfy. Thus, we proceed here with a more general solution, which is to make the
replacement
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ĥel(k,r)→
1
2

[
ĥel(k,r)+ ĥ†

el(k,r)
]
. (7)

If one derives the Fock or Kohn-Sham equations in the usual manner [see below Eq.
(3)], then this substitution turns out to yield exactly the same k-dependent single-
particle operator that was given in Eq. (6). Nonetheless, for the reasons mentioned
above, one must still subsequently specify some criterion for how to choose the
orbital phase factors in order to find a unique solution of even the canonical form of
the single-particle equation,

ĥ(k)ψ j(k,r) = ε j(k)ψ(k,r) (8)

The story is different, however, when a magnetostatic field is included. In that event
it may be suggested to make a substitution like that of Eq. (6) in the expression
of Eq. (3). Actually, the magnetic field term in Eq. (3) is derived from the vector
potential A = A0eıq·(r−RG) where the wave vector q for a constant field goes to zero
and the magnetic field is given by B = ∇×A. The substitution of Eq. (6) can, then,
be viewed as replacing E · r by E · Ω̂(k) = E · ıeık·r∇ke−ık·r = E · (r+ ı∇k) [52].
Thus, one might consider replacing the linear magnetic field term in the kinetic-
energy operator 1

2

(
p̂+ 1

c A
)2

operator by an expression that involves the angular
momentum operator B · L̂ = 1

c B · (−ıΩ̂(k)×∇). However, the resulting operator
is hermitian only for special circumstances, i.e., for functions { fn} for which ∇k ·
〈 fp|p̂| fq〉= 0 that in most instances are irrelevant.
Hermiticity can be restored following an approach similar to that of Eq. (7); in this
case there are two different possibilities for the single-particle operator that come
readily to mind:

1
2m

[
−ı∇+

1
2c

B× (r−RG)

]2

→ 1
2m

(
−ı∇+

1
2c

B× ıeık·(r−RG)∇ke−ık·(r−RG)

)†

·
(
−ı∇+

1
2c

B× ıeık·(r−RG)∇ke−ık·(r−RG)

)
(9)

or

1
2m

[
ı∇− 1

2c
B× (r−RG)

]2

→ 1
4m

[(
−ı∇+

1
2c

B× ıeık·(r−RG)∇ke−ık·(r−RG)

)†
]2

+
1

4m

[
−ı∇+

1
2c

B× ıeık·(r−RG)∇ke−ık·(r−RG)

]2

≡ 1
2
[
ĥkm,1(k,r)+ ĥkm,2(k,r)

]
. (10)
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It can be shown [60] that the two expressions lead to the same expectation value
for the energy due to the magnetic field. Both operators in Eqs. (9) and (10) act,
again, on the k-dependence of the orbitals. In this case it can be demonstrated that
the effect of k-dependent orbital phase factors and/or k-dependent unitary transfor-
mations among the occupied orbitals is mathematically equivalent to introducing a
different magnetic field gauge origin for different orbitals.Since the gauge origins
are unphysical, however, they cannot alter the magnetic energy, at least in the case
that the single-particle orbitals are calculated exactly.
Again, we may derive single-particle equations by requiring that the total energy
is at a minimum together with the condition that the orbitals are orthonormal. It
turns out that the Fock or Kohn-Sham operator then involves either ĥkm,1(k,r) or
ĥkm,2(k,r), but not both, so that it is, in general, non-hermitian. However, one can
show that it is hermitian for the exact eigenfunctions.

2.2 LCAO-CO Formulation

The next step is to formulate the Fock or Kohn-Sham equation within the LCAO-
CO approximation. In the following we will focus on the electric field perturbation,
not the least because the magnetic field case has yet to be developed. As seen above,
in either case our approach relies on a formulation of the electronic operator for
interaction with the field which, in the Bloch basis, is diagonal with respect to the
reciprocal space k vector. Provided the system has a non-zero bandgap, this operator
may be written for the electric field operator as [see Eq. (6)]:

E · Ω̂(k) = E · ıeık·r
∇ke−ık·r = ∑

t=x,y,z
Et Ω̂t(k) . (11)

The evaluation of Ω̂ requires a derivative with respect to k. Algorithms capable of
dealing with this derivative have been implemented in plane wave codes [22, 16, 2,
15] although the role of crystal orbital phase factors is often ignored, as discussed
in this chapter and in Refs. [4] and [35]. A rather different approach, appropriate for
an atomic orbital (AO) basis, is employed herein.
The effect of the electric field interaction term in (11) can be treated by finite field
methods or by perturbation theory. Here we focus on the latter approach.
The first-order perturbation energy, which is equal to the mean value of Ωk deter-
mines the dipole moment. This property is ill-defined in infinite periodic systems.
For instance, the polymer ...ABAB... is equivalent to ...BABA... and, in that case, the
dipole moment could be either positive or negative. Mathematically, the ambiguity
is associated with the phases of the Bloch orbitals [4, 29]. Physically, the possible
values can be related to surface charges and/or shape of the large finite system that
is being modeled [61, 59], even though the corresponding infinite periodic system
does not have any surfaces. For the special case of 1D periodic systems, the dipole
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moment is limited to values that differ from each other by an integer multiple of
the cell parameter [4, 31] Although there is an ambiguity in the value of the dipole
moment, that is not the case for derivatives of the dipole moment with respect to
the field(s), i.e. for (hyper)polarizabilities. This has previously been demonstrated
for 1D periodic systems [4] and we will see in the next section that it can be gen-
eralized for 3D systems as well. We shall need the effect of the operator Ω̂(k) on
an arbitrary field-dependent crystal orbital (CO) expanded in an atomic orbital (AO)
basis | φi〉= ∑ν | ν〉Cν ,i. Projecting on the left hand side with the AO basis function
〈µ | yields the mixed AO/CO relation [45]

∑
ν

〈µ | Ω̂t(k) | ν〉Cν ,i(k)

= ∑
ν

[
(Zt)µν(k)+ ıS(kt )

µν (k)+ ıSµν(k)
∂

∂kt

]
Cν ,i(k)

(12)

Here Zt(k) is the AO matrix that represents the component of the electronic position
coordinate along t and S(kt )(k) is the derivative of the AO overlap matrix, S, with
respect to the wave vector kt . This last relation is valid at any arbitrary field and
geometry.
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3 Coupled Perturbed Hartree-Fock (CPHF) and Kohn-Sham
(CPKS) Static (Hyper)polarizabilities

In the previous section we have developed the proper form of the electric field in-
teraction term to be included in the Hamiltonian for a periodic system. The wave-
function and electric dipole properties can then be obtained, for example, through a
periodic coupled-pertubed Hartree-Fock (CPHF) or Kohn-Sham (CPKS) approach.
Such a CPHF/CPKS treatment has been developed [18] and implemented [19, 20],
by some of the present authors, in the CRYSTAL program, that uses a local Gaus-
sian basis set [13, 11]. In this section we will further develop the formalism, present
operative equations as they have been implemented, and focus on the role of the ∇k
operator in the electric field terms.

3.1 CPHF treatment

We write the reciprocal space eigenvectors of the Fock matrix as a function of elec-
tric field using a Taylor series in the field components:

C(k) =C(0)(k)+ ∑
t=x,y,z

Et C(Et )(k)+ ∑
t,u=x,y,z

Et Eu C(Et ,Eu)(k)+ ... (13)

Then the perturbed first-order k-space density matrix D(k) may be obtained as:

D(Et )(k) =C(Et )(k)nC(0)†(k)+C(0)(k)nC(Et )†(k) (14)

where n is the diagonal occupancy matrix and we will, henceforth, assume closed
shells so that the diagonal elements equal 0 or 2. Similarly, the second-order expres-
sion for D(Et ,Eu)(k) is given by:

D(Et ,Eu)(k) =C(Et ,Eu)(k)nC(0)†(k)+C(Eu)(k)nC(Et )†(k)
+C(Et )(k)nC(Eu)†(k)+C(0)(k)nC(Et ,Eu)†(k) (15)

It is common to express the perturbed coefficient vectors as a linear combination of
the unperturbed vectors, i.e.

∂

∂Et
C(k) = C(Et )(k) =C(0)(k)U (Et )(k) (16)

∂ 2

∂Et∂Eu
C(k) = C(Et ,Eu)(k) =C(0)(k)U (Et ,Eu)(k) (17)

where the U matrices are calculated self-consistently by solving the first- and
second- order non-canonical CPHF(KS) equations [25, 18]:
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U (Et )
i j (k) = 0 (18)

U (Et )
ab (k) = 0 (19)

U (Et )
ia (k) =

G(Et )
ia (k)

ε
(0)
a (k)− ε

(0)
i (k)

(20)

U (Et ,Eu)
i j (k) = −1/2Pt,u ∑

a
U (Et )∗

ai (k)U (Eu)
a j (k) (21)

U (Et ,Eu)
ab (k) = −1/2Pt,u ∑

i
U (Et )∗

ia (k)U (Eu)
ib (k) (22)

U (Et ,Eu)
ia (k) =

{
Pt,u

(
∑

j
G(Et )

i j (k)U (Eu)
ja (k)−∑

b
U (Et )

ib (k)G(Eu)
ba (k)+ ı

∂U (Et )
ia (k)
∂ku

)

+G(Et ,Eu)
ia (k)

}[
ε
(0)
a (k)− ε

(0)
i (k)

]−1
(23)

Here Pt,u represents a sum over the permutation of Et and Eu; also although not ex-
plicitly indicated, the unperturbed orbital energies ε

(0)
i and ε

(0)
a depend on k (for

a 0D system k = 0). The matrix element G(Et )
ia (k), for example, is obtained from

the partial derivatives of the AO Fock matrix with respect to the field, that is sub-
sequently transformed to the CO basis with i an occupied and a an unoccupied
orbital (∑µν C(0)∗

µi (k) ∂Fµν (k)
∂Et

C(0)
νa (k)). This matrix element contains the bielectronic

integrals multiplied by the first-order perturbed density matrix D(Et )(k) and thereby
depends upon U (Et )(k). It also contains the explicit first-order electric field term of
the Hamiltonian [see definition in Eq. (12)] which, in the CO basis, is:

Ωt(k) = C(0)†(k)
(

Zt(k)+ ıS(kt )(k) + ı
[
S(k)C(0)(k)Qt(k)C(0)†(k)S(k)

])
C(0)(k)

= C(0)†(k)
(

Zt(k)+ ıS(kt )(k)
)

C(0)(k)+ ıQt(k) (24)

The CO matrix Qt(k) is due to the partial derivative with respect to kt in Ω̂ acting
on the unperturbed coefficient matrix. It is defined through the relation:

∂

∂kt
C(0)(k) =C(0)(k)Qt(k) . (25)

and may be calculated as (for i 6= j):

Qkt
i j(k) =

Gkt
i j(k)− ε

(0)
j (k)Skt

i j(k)

ε
(0)
j (k)− ε

(0)
i (k)

(26)

where Gkt
i j(k) and Skt

i j(k) are the derivatives of the Fock and overlap matrices trans-

formed to the CO basis, i.e. ∑µν C(0)∗(k)
µi

∂Fµν (k)
∂kt

C(0)
ν j (k) and ∑µν C(0)∗

µi (k) ∂Sµν (k)
∂kt

C(0)
ν j (k),
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respectively. The diagonal elements of Qkt (k) are determined by the normalization
condition which leads to − 1

2 Skt
ii (k) for the real part. However, there is also an unde-

termined imaginary part (which reflects an arbitrary phase factor for each CO coef-
ficient vector) [4, 31, 26]. This imaginary contributionn leads to the indeterminacy
in the dipole moment described earlier. It does not, however, affect the polarizability
and hyperpolarizabilities as we will see later.
By applying the perturbation theory discussed above to the periodic Hartree-Fock
(see later for Kohn-Sham) equations, where the Hamiltonian contains the electric
field perturbation term characterized by Ωt , as defined in Eq. (24), one obtains the
following expressions for the static dipolar electric field properties of closed-shell
systems:

1. Dipole Moment

µt =−
∂ETOT

∂Et
=

2
nk

ℜ

BZ

∑
k

Tr [Ωt(k) n ] (27)

where n is the diagonal electronic occupation matrix.
Note that the imaginary diagonal elements of the Q matrix contribute to the
dipole moment [cf. Eq. (24)]. For real finite systems this contribution will cancel
when ignoring structural responses [61].

2. Polarizability

αtu = −∂ 2ETOT

∂Et∂Eu
=

2
nk

ℜ

{
Pt,u

BZ

∑
k

Tr
[
Ωt(k)U (Eu)(k) n

]}
(28)

The diagonal blocks of U vanish. Therefore, only the off-diagonal blocks of Ω ,
and thereby Q, contribute to the polarizability. Thus, there is no indeterminacy in
α .

3. First hyperpolarizability

βtuv =−
∂ 3ETOT

∂Et∂Eu∂Ev
=

2
nk

ℜ

{
Pt,u,v

BZ
∑
k

Tr
[

n U (Et )†(k)
(

G(Eu)(k)U (Ev)(k)

−U (Ev)(k)G(Eu)(k)+ ı ∂U(Ev)(k)
∂ku

)]}
(29)

Now diagonal terms of Q do appear in G(Eu), and also in ∂U(Ev)

∂ku
even though the

diagonal blocks of U (Ev) itself vanish. The signs are opposite and then β , like
α , is completely determined. The 3D expression for ∂U(Ev)

∂ku
and the cancellation

of the diagonal terms of Q is exactly analogous to the 1D treatment presented
elsewhere (see Refs. [4] and [30]).

4. Second hyperpolarizability
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γtuvw =− ∂ 4ETOT

∂Et∂Eu∂Ev∂Ew
=

1
nk

ℜ

BZ

∑
k

Pt,u,v,wTr
[

n U (Et )†(k)
(

G(Eu)(k)U (Ev;Ew)(k)−U (Ev;Ew)(k)G(Eu)(k)

+
1
2

W (Eu;Ev)U (Ew)(k)− 1
2

U (Ew)(k)ε(Eu;Ev)(k)
)
+ ın U (Ev;Ew)†(k)

∂U (Et )(k)
∂ku

]
(30)

In the previous equation, W (Eu;Ev) represents the second derivative of C(0)†BC(0)

with respect to the field along Eu and Ev where B is the sum of the Coulomb and
exchange potentials in the Bloch atomic orbitals basis set.
Under the same conditions as above, it can be shown that γ does not depend on
the imaginary diagonal elements of the Q matrix.

3.2 Extension to CPKS

As usual the exchange-correlation (XC) terms require special attention. In that re-
gard we utilize the numerical approach of Pople and co-workers [50]. Thus, the
electron density ρ(ri) and its derivative ρ t(ri) with respect to the field Et are ex-
pressed at each point ri of a grid as follows:

ρ(ri) = ∑
µ,ν

∑
g

Dg(0)
µν χ

0
µ(ri)χ

g
ν (ri) (31)

ρ
t(ri) = ∑

µ,ν
∑
g

Dg(Et )
µν χ

0
µ(ri)χ

g
ν (ri) (32)

which leads to the gradients:

∇ρ(ri) = ∑
µ,ν

∑
g

Dg(0)
µν ∇(χ0

µ(r)χ
g
ν (r))ri (33)

∇ρ
t(ri) = ∑

µ,ν
∑
g

Dg(Et )
µν ∇(χ0

µ(r)χ
g
ν (r))ri (34)

Dg(0)
µν and Dg(Et )

µν are the zeroth- and first-order perturbed density matrix elements
between µ and ν atomic orbitals belonging to the origin and g cells, respectively, in
the direct space.
If f XC denotes an exchange-correlation, then the XC part of the Fock-matrix is

FXC
DFT = ∑

i
wi

[
∂ f XC

∂ρ
χ

0
µ χ

g
ν +2

∂ f XC

∂ |∇ρ|2
∇ρ ·∇(χ0

µ χ
g
ν )

]
ri

(35)
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with the geometrical weights wi determined according to an atomic partition, which
is field-independent. Since the atomic orbitals are also field-independent the field
derivatives of FXC

DFT , which are needed to obtain the first-order perturbed orbitals, as
described in the previous sub-section, are given by:

FXC(Et )
DFT = ∑

i
wi

{[
∂ 2 f XC

∂ρ2 ρ
t +2

∂ 2 f XC

∂ρ∂ | ∇ρ |2
∇ρ ·∇ρ

t
]

χ
0
µ χ

g
ν

+2
[

∂ 2 f XC

∂ρ∂ | ∇ρ |2
ρ

t +2
∂ 2 f XC

(∂ | ∇ρ |2)2 ∇ρ ·∇ρ
t
]

∇ρ ·∇(χ0
µ χ

g
ν )

+2
∂ f XC

∂ | ∇ρ |2
∇ρ

t ·∇(χ0
µ χ

g
ν )

}
ri

(36)

where the field derivatives are taken from Eqs. (31)–(34). In the expression Eq. (35),
we have assumed that the exchange-correlation depends only on ρ and |∇ρ|2, but
it can be easily generalized to include more complicated functionals. In addition,
there is a direct contribution to the static β , for example, due to the third derivative
of f XC with respect to the fields [42]:

β
DFT
tuv = ∑

i
wiPt,u,v

[
∂ 3 f XC

∂ρ3 ρ
t
ρ

u
ρ

v +2
∂ 3 f XC

∂ρ2∂ | ∇ρ |2
(
ρ

t
ρ

u
∇ρ ·∇ρ

v)
+ 4

∂ 3 f XC

∂ρ∂ (| ∇ρ |2)2

(
ρ

t
∇ρ ·∇ρ

u
∇ρ ·∇ρ

v)
+ 8

∂ 3 f XC

∂ (| ∇ρ |2)3 ∇ρ ·∇ρ
t
∇ρ ·∇ρ

u
∇ρ ·∇ρ

v +2
∂ 2 f XC

∂ρ∂ | ∇ρ |2
(
ρ

t
∇ρ

u ·∇ρ
v)

+ 4
∂ 2 f XC

(∂ (| ∇ρ |2)2

(
∇ρ ·∇ρ

t
∇ρ

u ·∇ρ
v)]

ri

(37)

A similar, but considerably more complicated, expression using also the second
derivatives ρ tu(ri) and ∇ρ tu(ri) with respect to Et and Eu can be written for the sec-
ond hyperpolarizability (see Ref. [41]). This expression contains functional fourth
derivatives of f XC with respect to ρ and/or its gradient. Fortunately, these deriva-
tives can be obtained automatically (see Ref. [41]). Finally, in the above we have,
for convenience, assumed that f XC depends only on ρ and |∇ρ|2, although it can be
extended to more complicated functionals as well.
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4 Linear and Nonlinear Optical Properties

4.1 Dynamic Linear Polarizabilities and Optical Spectra

If the field is frequency (ω)-dependent, time-dependent perturbation theory leads to
the two following U matrices (see Refs. [56, 28] for the molecular or k = 0 case,
and Refs. [3, 17] for periodic systems):

U (Et [±ω])
ia (k) = lim

η→0+

G(Et [±ω])
ia (k)

ε
(0)
a (k)− ε

(0)
i (k)±ω + ıη

=−U (Et [∓ω])∗
ai (k) (38)

where G(Et [±ω])
ia (k) is defined in Sec. 3.1 except that now the electric field in Fock

matrix element is ω-frequency dependent. η is a physical damping factor giving the
width of the peak due to the inverse lifetime of the excited states (supposed to be
the same in the UV-visible range of energy) It is not easy to evaluate the lifetime.
Usually the energy resolution of the experimental equipment - typically η ' 0.1eV
in UV-visible measurements - is used.
Solution of Eq. (38) for the U (Et [±ω])(k) matrices can be obtained by fixing the value
of ω and, then, solving iteratively. Near resonances (ω ' ε

(0)
a − ε

(0)
i ), convergence

can be difficult to obtain; in that case a convergence accelerator such as direct inver-
sion in the iterative subspace (DIIS) becomes necessary (see Refs. [51, 21]). Then
an optical absorption spectrum can, in principle, be simulated through a scan of ω

values in the desired UV-visible frequency range with the relative peak intensity
at a given frequency being obtained from the imaginary part of the optical (high-
frequency) dielectric matrix ε∞ for a non-zero value of the damping factor η . At
low frequency (ω < 1 eV or λ > 1000 nm), the vibrational contribution to the po-
larizability can become large depending upon the magnitude of the Born charges.
This contribution will not be considered in the following. Thus, we will assume that
the vibrational transition frequencies are negligible compared to ω . The wavelength
λ , on the other hand, is assumed to be much larger than the dimensions of the unit
cell.
If we replace the static U in Eq. (28) with its frequency-dependent counterpart from
Eq. (38), then (after including a simple multiplicative factor to convert from polar-
izability to dielectric matrix) we find that the imaginary part of ε∞

tu is:

ℑ(ε∞
tu[ω]) = ℑ

(
4π

V
αt[−ω]u[+ω]

)
=

8π

V
1
nk

ℑ{Pt[−ω],u[+ω]

BZ

∑
k

occ

∑
i

virt

∑
a

Ωt,ia(k)U
(Eu[+ω])
ai (k)} (39)

where α and V are the unit cell polarizability and volume, respectively. Note that
the dielectric matrix elements are purely real if η = 0.
In order to exhibit the pole structure of the dielectric matrix we reformulate Eq. (38)
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as:

U (Et [±ω])
ia (k) =

lim
η→0+

Ωt,ia(k)+∑k′∑ j ∑b

(
U (Et [±ω])

jb (k′)Bia, jb(k,k′)+U (Et [∓ω])∗
jb (k′)Bia,b j(k,k′)

)
ε
(0)
a (k)− ε

(0)
i (k)±ω + ıη

(40)

where Bia, jb(k,k′) and Bia,b j(k,k′) are defined as follows:

Bia, jb(k,k′) = [2〈ikbk′ |ak jk′〉−〈ikbk′ | jk′ak〉] (41)

Bia,b j(k,k′) = [2〈ik jk′ |akbk′〉−〈ik jk′ |bk′ak〉] (42)

The notation 〈i j|ab〉 is used for the bielectronic integral 〈i(1) j(2)| 1
r12
|a(1)b(2)〉.

Even if the explicit calculation of such quantities poses practical challenges related
to the convergence of the Coulomb Fourier series, we introduce them here since
they are useful from a formal point of view to elucidate connections with the TDHF
formalism.
We may, then, solve for the converged self-consistent U(k) by re-writing Eq. (40):

U (Et [±ω])
ia (k)

= lim
η→0+

{
Ωt,ia(k)+U (Et [±ω])

ia (k)Bia,ia(k,k)+U (Et [∓ω])∗
ia (k)Bia,ai(k,k)

ε
(0)
a (k)− ε

(0)
i (k)±ω + ıη

+
∑(k′, j,b)6=(k,i,a)

(
U (Et [±ω])

jb (k′)Bia, jb(k,k′)+U (Et [∓ω])∗
jb (k′)Bia,b j(k,k′)

)
ε
(0)
a (k)− ε

(0)
i (k)±ω + ıη


(43)

which yields after some manipulation1:

U (Et [±ω])
ia (k) = lim

η→0+

{
Ωt,ia(k)+U (Et [∓ω])∗

ia (k)Bia,ai(k,k)

ε
(0)
a (k)− ε

(0)
i (k)−Bia,ia(k,k)±ω + ıη

+
∑(k′, j,b)6=(k,i,a)

(
U (Et [±ω])

jb (k′)Bia, jb(k,k′)+U (Et [∓ω])∗
jb (k′)Bia,b j(k,k′)

)
ε
(0)
a (k)− ε

(0)
i (k)−Bia,ia(k,k)±ω + ıη


(44)

The dielectric matrix elements become infinite when U (Et [±ω])
ia (k) is infinite, i.e. at

each i→ a resonance. According to the expression of the denominator in Eq. (44),
the pole is shifted by the real Bia,ia(k,k) value with respect to the transition en-

1 In going from Eq. (43) to Eq. (44), we use x = a+bx
c ⇒ x(1−b/c) = a

c which leads to x = a
c−b
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ergy ε
(0)
a (k)− ε

(0)
i (k) between unrelaxed crystalline orbitals, as in SOS, for each

k-point. This is the exciton effect for the monoexcitation ik→ ak, assuming there is
no ”overtone” due to other jk′ → bk′ resonances.
For computational purposes it is more convenient to obtain the transition frequen-
cies directly using the standard TDHF format; in principle, the results are the same
in either case. For this purpose we may start, again, with Eq. (40) but this time set
η to zero and the perturbation Ωt,ia(k) = 0. Note that the position of the poles
is unaltered by the perturbation term. After multiplying both sides of Eq. (44)
by the denominator (ε

(0)
a (k)− ε

(0)
i (k)−Bia,ia(k,k)±ω) and some mathematical

manipulations, as well as use of the relation U (Et [±ω])
ia (k) = −U (Et [∓ω]) ∗

ai (k) (and
Bai, jb(k,k′) = B∗ia,b j(k,k

′)), we obtain the following pair of equations:

(ε
(0)
i (k)− ε

(0)
a (k)+Bia,ia(k,k)−ω)U (Et [+ω])

ia (k)−Bia,ai(k,k)U
(Et [+ω])
ai (k)

+ ∑
(k′, j,b)6=(k,i,a)

(
Bia, jb(k,k′)U

(Et [+ω])
jb (k′)−Bia,b j(k,k′)U

(Et [+ω])
b j (k′)

)
= 0

(45)

and

(ε
(0)
i (k)− ε

(0)
a (k)+Bai,ai(k,k)+ω)U (Et [+ω]) ∗

ai (k)−B∗ai,ia(k,k)U
(Et [+ω])∗
ia (k)

+ ∑
(k′, j,b)6=(k,i,a)

(
B∗ai,b j(k,k

′)U (Et [+ω]) ∗
b j (k′)−B∗ai, jb(k,k

′)U (Et [+ω]) ∗
jb (k′)

)
= 0

(46)

A pair of equations is obtained for each jb,k′ transition giving rise to the well-
known non-hermitian TDHF system of 2×Nocc×Nvirt×Nk equations for the eigen-
vectors (X ,Y ) = (U (Et [ω])

ia,k ,U (Et [ω])
ai,k ) (see also Refs. [27, 24]):(

A B
B∗ A∗

)(
X
Y

)
= ω

(
1 0

0 −1

)(
X
Y

)
(47)

where

A =

(
ε
(0)
i (k)− ε

(0)
a (k)+Bia,ia(k,k) Bia, jb(k,k′)

Bia, jb(k,k′) ε
(0)
j (k′)− ε

(0)
b (k′)+B jb, jb(k′,k′)

)
(48)

and

B =

(
−Bia,ai(k,k) −Bia,b j(k,k′)
−Bia,b j(k,k′) −B jb,b j(k′,k′)

)
(49)

The matrices in Eq. 47 have the dimension 2×Nocc×Nvirt×Nk on a side with Nocc,
Nvirt and Nk being, respectively, the number of occupied and virtual orbitals and
the number of k points of the reciprocal space. Finally, the oscillator strengths are
obtained from the eigenvectors and their transition moments.
Both methods of simulating the uv-visible absorption spectrum that were described
here lead to the same results (poles and oscillator strengths) but via two different
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approaches: either by diagonalization of the unperturbed hamiltonian in the ik→ ak
basis set or by plotting the imaginary part of the linear response to a dynamic field.

4.2 Dynamic First Hyperpolarizabilities

In order to derive our 2n+ 1-rule working formula for the Hartree-Fock dynamic
first hyperpolarizabilities of a 3D periodic system given by Eq. (50) below, we
start with the expression for the static limit due to Ferrero, et al. [see Eq. (58) in
Ref. [18]]. This expression has exactly the same form as that shown below except,
of course, that all frequencies are set equal to zero. The 3D static result was ob-
tained, in fact, by generalizing the 1D periodic frequency-dependent treatment of
Kirtman et al. [30] which, in turn, was based on the time-dependent Hartree-Fock
formulation for molecules developed by Karna and Dupuis [28] (KD). Thus, we use
KD to introduce the 3D frequency-dependence.
KD considered just four special cases (see Table VII in Ref. [28]), including static,
and their treatment pertains only to the first two terms in square brackets below.
Nonetheless, it is straightforward to generalize their formulation as we have done.
Finally, the use of the operator Pt[−ωσ ]u[+ω1]v[+ω2] which permutes the pairs (t[−ωσ ]),
(u[+ω1]), and (v[+ω2]) has been introduced by Orr and Ward [43], and used by
Bishop and Kirtman in Ref. [5].
From the approach just described the general expression for the first hyperpolar-
izability of closed-shell periodic systems in the presence of frequency-dependent
fields may be written as (see Ref. [53]):

βtuv(−ωσ ;ω1,ω2) =−
∂ 3ETOT

∂Et[−ωσ ]∂Eu[ω1]∂Ev[ω2]

=
2
nk

ℜ

{
Pt[−ωσ ],u[+ω1],v[+ω2]

BZ

∑
k

Tr
[

n U (Et[−ωσ ])†(k)
(

G(Eu[+ω1 ]
)(k)U (Ev[+ω2]

)(k)

−U (Ev[+ω2 ]
)(k)G(Eu[+ω1 ]

)(k)+ ı
∂U (Ev[+ω2 ]

)(k)
∂ku

)]}
(50)

where ωσ = ω1 +ω2. The last term of Eq. 50 appears only for infinite periodic
systems. A working expression is:
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∂U
(Ev[+ω2 ]

)

ia (k)
∂ku

=

∂

∂ku
G
(Ev[+ω2 ]

)

ia (k)

ε
(0)
a (k)− ε

(0)
i (k)+ω2

−
G
(Ev[+ω2 ]

)

ia (k) ∂

∂ku

(
ε
(0)
a (k)− ε

(0)
i (k)

)
(

ε
(0)
a (k)− ε

(0)
i (k)+ω2

)2

(51)

in which the development of ∂

∂ku
G
(Ev[+ω2 ]

)

ia (k), the second derivative of the Fock
matrix elements Fia(k) with respect to the field and k, can be found in Ref. [30]:

∂G
(Ev[+ω2 ]

)

ia (k)
∂ku

=
all

∑
p

(
Qu

pi(k)
)∗G

(Ev[+ω2]
)

pa (k)+
all

∑
p

G
(Ev[+ω2 ]

)

ip (k)Qu
pa(k)

+∑
µ,ν

C(0)∗
µi (k)

∂F
(Ev[+ω2 ]

)

µν (k)
∂ku

C(0)
νa (k) (52)

The evaluation of the last term on the r.h.s. of Eq. (52) is straightforward except
for the term

∂Qv
pq

∂ku
contained in it. This term, however, does not depend on the ω2

frequency, and can be thus computed as in the static case [4, 18]. As regards the

calculation of ∂ε
(0)
i

∂ku
it is equal to: ∑µ,ν C(0)∗

µi (k)
(

∂F(0)
µν

∂ku
− ε

(0)
i

∂Sµν

∂ku

)
C(0)

ν i (k). As in

the case of the static first hyperpolarizability there is an additional XC contribution
in DFT to the corresponding dynamic property. Within the adiabatic approximation
the generalization to frequency-dependent fields is [37]:

β
DFT
tuv (−ωσ ;ω1,ω2) = ∑

i
wiPt[−ωσ ],u[+ω1],v[+ω2]

[
∂ 3 f XC

∂ρ3 ρ
t
(−ωσ )

ρ
u
(+ω1)

ρ
v
(+ω2)

+ 2
∂ 3 f XC

∂ρ2∂ | ∇ρ |2
(

ρ
t
(−ωσ )

ρ
u
(+ω1)

∇ρ ·∇ρ
v
(+ω2)

)
+ 4

∂ 3 f XC

∂ρ∂ (| ∇ρ |2)2

(
ρ

t
(−ωσ )

∇ρ ·∇ρ
u
(+ω1)

∇ρ ·∇ρ
v
(+ω2)

)
+ 8

∂ 3 f XC

∂ (| ∇ρ |2)3 ∇ρ ·∇ρ
t
(−ωσ )

∇ρ ·∇ρ
u
(+ω1)

∇ρ ·∇ρ
v
(+ω2)

+ 2
∂ 2 f XC

∂ρ∂ | ∇ρ |2
(

ρ
t
(−ωσ )

∇ρ
u
(+ω1)

·∇ρ
v
(+ω2)

)
+ 4

∂ 2 f XC

(∂ (| ∇ρ |2)2

(
∇ρ ·∇ρ

t
(−ωσ )

∇ρ
u
(+ω1)

·∇ρ
v
(+ω2)

)]
ri

(53)

in which the frequency-dependent density and density gradient are:
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ρ
t
(±ω)(ri) = ∑

µ,ν
∑
g

D
(Et[±ω])
µν (g)χ

0
µ(ri)χ

g
ν (ri) (54)

and

∇ρ
t
(±ω)(ri) = ∑

µ,ν
∑
g

D
(Et[±ω])
µν (g)∇(χ0

µ(r)χ
g
ν (r))ri (55)

In principle, exactly the same approach as applied here to obtain the dynamic first
hyperpolarizability can be employed for the dynamic second hyperpolarizability.
That is a project, however, which remains to be done. When completed it will
provide access to properties such two-photon absorption, field-induced second har-
monic generation and the optical Kerr effect among others.
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5 Effects of geometric distortions on cell dipole and
polarizability

In this section, we will discuss how the coupled-perturbed methods presented in
previous sections can be combined with analytical gradients - with respect to ei-
ther atomic positions or cell shape - to yield mixed derivatives. Some of the most
interesting experimentally observable quantities arising from such treatment are:

Infrared Intensities (Born charges) ⇐= ∂

∂Et

∂ETOT

∂RA
v

∣∣∣∣
E=0,R0

(56)

Raman Intensities ⇐= ∂ 2

∂Et∂Eu

∂ETOT

∂RA
v

∣∣∣∣
E=0,R0

(57)

Piezoelectric tensor ⇐= ∂

∂Et

∂ETOT

∂aαv

∣∣∣∣
E=0,a0

(58)

Photoelastic Tensor ⇐= ∂ 2

∂EtEu

∂ETOT

∂aαv

∣∣∣∣
E=0,a0

(59)

(60)

Here, as in previous sections, t,u,v are cartesian directions, RA
v represents a dis-

placement of atom A along cartesian direction v, and R0 represents the equilibrium
(optimized) geometry of the atoms within the unit cell. Analogously, aαv are Carte-
sian components of the three (in the 3D case) lattice vectors aα , α = 1,2,3 and a0

represents the equilibrium (optimized) set of lattice parameters.
When such mixed derivatives are considered, the 2n+1 rule breaks down. In the
case of Raman intensities, for example, third-order energy derivatives are needed
and second-order wavefunction derivatives are required. But there is a choice. One
may determine either mixed second derivatives or second-order electric field deriva-
tives. The latter is preferred since the calculations scale more favorably with respect
to the size of the unit cell due to the smaller number of perturbation equations to be
solved. Details of the derivation of optimal and computable expressions for Equa-
tions (56), (57) and (58) above can be found in Refs. [35, 34], [36] and [1], while
work for analytical implementation of photoelasticity is in progress.
Unlike the pure electric field case treated in previous sections, we now have to
consider gradients of mono- and bi-electronic integrals over atomic orbitals, since
now they depend on the perturbation. However, the time-consuming calculation of
derivatives of orbital coefficients with respect to nuclear displacements is avoided
by taking advantage of the eigenvalue-weighted density matrix. Finally, derivatives
with respect to the wave-vector are carried out analytically, so that the entire treat-
ment is analytical. In the following, we briefly review the operative equations, un-
derlining their key aspects in connection with the discussion in previous sections.
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5.1 Infrared and Raman intensities

The mixed second derivatives of the total energy with respect to the atomic dis-
placements and the electric field (along b), which determine the infrared transition
intensities, are conveniently formulated in direct space as:

∂

∂Et

∂ETOT

∂RA
v

∣∣∣∣
E=0,R0

= Tr
(

1
2

(
H(RA

v )(g)+F(RA
v )(g)

)(0)
D(Et )(g)

+
1
2

[
Ω

(RA
v )

t (g)+
(
F(RA

v )(g)
)(Et )

]
D(0)(g)−S(R

A
v )(g)D(Et )

W (g)
)

R0

−ZAδtv , (61)

These derivatives are evaluated at zero field and equilibrium geometry. In Eq. (61)
ZA is the nuclear charge of atom A and H(g) is the core Hamiltonian. The notation
F(RA

v ) signifies that the derivative of the Fock matrix F(g) is taken with respect
to atomic displacements while holding the density matrix constant. Note that the
definition of the “eigenvalue-weighted density matrix” DW (g) given by

DW (g) =
BZ

∑
k

C(k)ε(k)C†(k)eık·g (62)

allows the computation of its perturbed form D(Et )
W (g) as:

D(Et )
W (g) =

BZ

∑
k

(
C(Et )(k)ε(k)C†(k)+C(k)ε(Et )(k)C†(k)+C(k)ε(k)C(Et ) †(k)

)
eık·g

(63)
As widely discussed in previous sections, the Q(k) matrix [Eq. (26)] contains un-
determined imaginary diagonal elements that could, in principle, pose problems in
solving equation 61. However, the derivative of these matrix elements with respect
to the atomic displacements of interest vanishes because the derivatives are taken
with the unit cell parameters held fixed. Thus, the dependence on the crystal bound-
aries vanishes and the physical quantity is correctly obtained.
The Raman intensities involve one further derivative with respect to the electric field
and we obtain the following expression for the Raman tensor in Cartesian coordi-
nates [36]:
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∂ 2

∂Et∂Eu

∂ETOT

∂RA
v

∣∣∣∣
E=0,R0

=Tr
{

1
2

(
H(RA

v )(g)+F(RA
v )(g)

)(0)
D(Et ,Eu)(g)

+
1
2

Pt,u

[(
Ω

(RA
v )

t (g)+
(
F(RA

v )(g)
)(Et )

)
D(Eu)(g)

]
+

1
2

[
Pt,u Ω

(RA
v ,Eu)

t +
(
F(RA

v )(g)
)(Et ,Eu)

]
D(0)(g)

−S(R
A
v )(g)D(Et ,Eu)

W (g)
}

R0
(64)

In Eq. (66) all quantities have been defined in connection to Eq. (61). D(Et ,Eu)
W (g),

in particular, is obtained by differentiating Eq. (63) with respect to a second field

Eu). The notation
(
F(RA

v )(g)
)(Et )

signifies that perturbation in the Fock matrix with
respect to atomic displacements is taken at constant density, but perturbation with
respect to the electric field affects the density. As in the case of infrared intensities,
it can be shown [36] that the diagonal elements of Q(k) vanish when the above ex-
pression is evaluated. This must be true since these elements do not contribute to the
polarizability.
We remark that in equations (61) and (64) - as well as in (72) below - all ingredients
are obtained either by a coupled-perturbed self-consistent procedure or through an-
alytical gradients of the AO integrals. Although not immediately obvious, no mixed
derivatives of any matrix appear and there are no derivatives of the density matrix
(or eigenvalue-weighted density matrix) with respect to atomic displacements.

5.2 The Piezoelectric tensor

The “proper” direct piezoelectric response of a crystal is represented by a third-rank
tensor that is the sum of an electronic and a nuclear term, e = eele + enuc.[1] The
electronic term measures the variation of the current density J with strain when no
nuclear relaxation is allowed (clamped-nuclei condition, clamp) [64]:

eele
tuv =

∂Jt

∂εuv

∣∣∣∣
clamp

= ∑
α

∂Jt

∂aαu
aαv

∣∣∣∣
clamp

. (65)

Here ε is the symmetric second-rank pure strain tensor and the aαv are Cartesian
components of the three lattice vectors aα , α = 1,2,3. The nuclear relaxation con-
tribution can be expressed as [57]:

enuc
tuv =

1
V ∑

s

∂ 2ETOT

∂Et∂us

dus

dεuv
, (66)

where V = a1·(a2×a3) is the cell volume and the us are 3N−3 fractional coordinates
(N being the number of atoms per cell) obtained from the 3N atomic fractional
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coordinates by orthogonalization to the three translations along x̂, ŷ and ẑ.
The dus/dε jk derivatives can be obtained in either of two ways: i) optimization of the
internal geometry at strained configurations or ii) from the full Hessian matrix H of
energy second derivatives with respect to both fractional atomic displacements and
lattice deformations (with a truncation to quadratic terms in the Taylor’s expansion
of the energy) [65]. We have found that ii) is preferable [1]. In that procedure the
following relation is utilized:

dus

dε jk
=−

3N−3

∑
s′=1

H jk,s′ × (H−1)s′s , (67)

in which

H jk,s′ =

(
∂ 2E

∂ε jk∂us′

)
, (68)

and (H−1)s′s is an element of the inverse of the atomic Hessian:

Hs′s =

(
∂ 2E

∂us′∂us

)
. (69)

We can now write the electronic contribution to the “proper” piezoelectric tensor in
terms of the polarization P as [64]:

eele
tuv =

∂Jt

∂εuv

∣∣∣∣
clamp

=
∂Pt

∂εuv

∣∣∣∣
clamp

+Ptδuv−Pvδtu , (70)

with the first term on the right-hand-side being the electronic contribution to the
“improper” piezoelectric tensor. By expressing the polarization in terms of a total
energy derivative, and by exploiting the second equality in equation (65), one gets:

∂Jt

∂εuv

∣∣∣∣
clamp

=
1
V ∑

α

aαv
∂ 2ETOT

∂Et∂aαu

∣∣∣∣
clamp

−Pvδtu . (71)

The analogue of Equation (61), where the nuclear displacements are replaced by
cell deformations, can be cast (for equilibrium lattice parameters a0) as:

∂

∂Et

∂ETOT

∂aαv

∣∣∣∣
E=0,a0

= Tr
([

H(aαv)(g)+F(aαv)(g)
]

D(Et )(g)

+
1
2

[
Ω

(aαv)
t (g)+

(
F(aαv)(g)

)(Et )
]

D(0)(g)−S(aαv)(g)D(Et )
W (g)

)
a0

−∑
A

ZA fA,α δtv + eδtvNα ,

(72)
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where D(Et )
W (g) is defined in Eq. (63). fA,α is the fractional coordinate of atom A

along lattice vector α , that is RA
t = ∑α fA,α aαt , e is the magnitude of the electron

charge and Nα is an arbitrary integer, arising from the imaginary diagonal elements
of Q(k). While the latter term appears for the improper piezoelectricity [30] , it
vanishes for the “proper” one since it is exactly cancelled by the −Pvδtu term in Eq.
(71).

5.3 Extension to DFT

The extension of the above expressions for the infrared, Raman and piezoelectric
tensors to DFT is done along the same lines as for the polarizability and hyperpo-
larizability discussed in Section 3.2. We report here, as a representative case, the
expression for the closed-shell Born charges (infrared) tensor:

∂EXC (RA
v )

R
∂Et

∣∣∣∣∣
E=0,R0

= ∑
i

wi

{[
∂ 2 f XC
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(RA
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+ 2
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∂ρ
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∂ f XC
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(RA
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∂ρ(RA
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∇ρ · ∂∇ρ(RA

v )

∂Et

}
ri

+ ∑
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∂wi

∂RA
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{
∂ f XC

∂ρ

∂ρ

∂Et
+

∂ f XC

∂ |∇ρ|2
∂ |∇ρ|2

∂Et

}
ri

(73)

There are two key differences due to replacing an electric field derivative by a deriva-
tive with respect to an atomic displacement. One is that the AO derivatives in the
expression for the density no longer vanish. The other is that the dependence of the
weights on the atomic position must be taken into account as in the last term of Eq.
(73).

5.4 Converse piezoelectric effect

Piezoelectricity is a coupling between electrical and mechanical responses of a sys-
tem. Whereas the piezoelectric effect describes the generation of polarization due to
mechanical strain or stress, the converse piezoelectric effect describes the genera-
tion of strain or stress due to an applied electric field or voltage. Thus, in both cases
structural as well as electronic responses are at the center of attention.
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When structural responses to an electric field are accounted for some subtleties oc-
cur. The responses in the bulk of any large, finite sample (modeled as being infinite
and periodic) may contain a finite contribution from the boundaries of the sample
irrespective of its size as long as the sample is so large that the thermodynamic limit
has been reached. Therefore, different piezoelectric property values may be obtained
for samples of the same material that differ only in shape and/or surface charges. In
addition, as a secondary effect, differences in the piezoelectric structural response,
may also lead to differences in other properties.
Mathematically, when the system is described as being infinite and periodic, the in-
formation on the effects due to the shape and/or surface charges are contained in
(k and band dependent) crystal orbital phase factors. Thus, even if the effects are
due to the boundaries of the sample, they can, in principle, be calculated as a bulk
property in the sense that the effects are contained in the information for the infinite,
periodic system.
It is easy to verify that the crystal orbital phase factors show up in the imaginary
part of the diagonal elements of the Q matrices. As long as it can be assumed that
the applied electric field does not change the lattice vectors, the imaginary parts of
the diagonal elements of the Q matrices can be ignored. This is the case for high
frequency fields. However, for the converse piezoelectric effect the applied electric
field has an essentially vanishing frequency and the changes in the lattice vectors
due to the applied field are the quantities of interest.
If ai j is the j-th component of the i-th lattice vector and Fk is the kth component of
the vector describing the field (see further below), a converse piezoelectric tensor
may be defined as

ηi jk =
∂ai j

∂Fk

∣∣∣∣∣
Fk=0

. (74)

When F = E , it can be shown [39] that one may write

ηi jk = ηi jk,0 + ñi jkηi jk,1, (75)

where ηi jk,0 is a reference value and different values of ñi jk correspond to modeling
samples of different shapes and/or surface charges. For chemical/physical reasons,
ñi jk cannot vary more than roughly −2≤ ñi jk ≤+2.
At this time we do not know the precise relation between the parameters ñi jk and
the shape/surface charge of a given sample, which implies that when calculating
the converse piezoelectric tensor, deviations between theory and experiment may
be due either to theoretical and experimental inaccuracies or to differences in the
shape/surface charges. A relevant question, therefore, is whether ηi jk,1/ηi jk,0 is so
small that ηi jk,1 can be ignored. Exploratory calculations on some perovskite crys-
tals [39] have shown that ηi jk,1/ηi jk,0 is typically about 1/10, but larger (and smaller)
values can be obtained.
A special case is that of quasi-one-dimensional systems (chains). For the compo-
nents parallel to the chain direction (defined as z), ñzzz can take only integral values.
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Moreover, if F is taken to be the potential drop over one unit cell (i.e., Fz = Ezazz),
then ηzzz becomes independent of ñzzz.
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6 Summary and Prospects

Our overall goal has been to put property calculations for infinite periodic systems
on the same footing as the corresponding calculations for ordinary molecules. The
CRYSTAL computer program is well-suited for this task since it utilizes Gaussian-
type basis functions and takes maximum advantage of symmetry. Considerable
progress has been made in adapting the treatment of molecules to account for
the change in boundary conditions and subsequently implementing the appropri-
ate methodology in CRYSTAL. This is particularly so for electric field properties
as well as mixed properties involving a combination of electric fields and geomet-
ric displacements. For the former, we have adopted the coupled perturbed Hartree-
Fock and Kohn-Sham (CPHF/CPKS) approaches to treat linear polarizabilities and
nonlinear optical properties. Although the most important second-order nonlinear
optical properties, including second harmonic generation and the dc-Pockels effect,
are now available the treatment of arbitrary frequencies and third-order properties
remains to be accomplished in the near term. We have now also implemented the
determination of optical spectra through the frequency-dependent linear polarizabil-
ity. As far as the mixed derivatives are concerned, infrared and Raman spectra have
been completed as well as the piezoelectric effect. Immediate next steps in this cat-
egory include the hyper-Raman effect and photoelasticity.
Our treatment of the orbital electronic response to a magnetic field is still in its early
stages. A new translationally invariant form for the interaction Hamiltonian, which
allows for a simultaneous electric field so as to treat chiral properties, has been pre-
sented. However, the CPHF/CPKS perturbation treatment remains to be formulated
and implemented.
The P (Parallel) and MPP (Massive Parallel Processing) versions of the code for the
electric field properties is at an advanced stage. Right now it is possible to compute
frequencies and IR intensities of systems up to about 1000 atoms in the unit cell;
Raman intensities, first and second hyperpolarizabilities will become feasible for
systems of this size in the near future.
Vibrational contributions to nonlinear optical properties can also be evaluated, but
only in the static or high frequency limit and only in the lowest order of approx-
imation (known as the finite field nuclear relaxation (FF-NR) treatment). FF-NR
requires a geometry optimization in the presence of a finite field. At present the
finite field can be applied only in a non-periodic, direction for 1D or 2D systems.
This limits the tensor components that can be considered. Removal of these several
restrictions can be envisioned, but certainly that will be a longer term effort.
Another longer-term perspective is the development of optical properties calcula-
tions for solids at the post-Hartree-Fock level. This could be done in connection
with the local-correlation CRYSCOR code, [47, 48, 49] which presently features a
very efficient implementation of the local MP2 approach for periodic systems. This
implementation makes use of advanced techniques such as density fitting [38] and
orbital-specific virtuals [62], as well as efficient parallel implementation.[33] The
extension to local coupled-cluster is also envisaged in the future.
The treatment of properties associated with the orbital electronic response to a mag-
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netic field is still in its infancy. A new periodic formulation of the interaction Hamil-
tonian has been presented. However, the CPHF/CPKS An appropriate Hamiltonian
for the response to a homogeneous static field was presented in Sec.3. There already
exist methods for the computation of magnetic shielding and magnetic susceptibili-
ties, but this Hamiltonian opens the possibility for a new approach to these proper-
ties. Further down the line, in combination with electric fields, we should be able to
obtain various optical rotatory properties, such as circular dichroism and Faraday ro-
tation. At the moment, however, it remains to develop the CPHF/CPKS formulation
along with the response to frequency-dependent magnetic fields.
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