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Abstract

This paper focuses on a major improvement on the analysis of reacha-
bility properties in large-scale dynamical biological models. To tackle such
models, where classical model checkers fail due to state space explosion
led by exhaustive search. Alternative static analysis approaches have been
proposed, but they may also fail in certain cases due to non-exhaustive
search. In this paper, we introduce a hybrid approach ASPReach, which
combines static analysis and stochastic search to break the limits of both
approaches. We tackle this issue on a modeling framework we recently
introduced, Asynchronous Binary Automata Network (ABAN). We show
that ASPReach is able to analyze efficiently some reachability properties
which could not be solved by existing methods. We studied also various
cases from biological literature, emphasizing the merits of our approach
in terms of conclusiveness and performance. keyword: Model checking,
Reachability problem, Asynchronous Binary Automata Network, Local
Causality Graph, Heuristics, Answer Set Programming.

1 Introduction

With increasing quantities of available data provided by new technologies, e.g.
DNA microarray [22], there is a growing need for expressive modelings and their
related high-performance analytic tools. Among them, works on concurrent
systems have been of interest in systems biology for over a decade [4, 5, 35].
If model validation is a major concern, one of the main challenges nowadays is
predicting the behavior of these systems.
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Reachability problem on formal models is a critical challenge where both
validation problems (whether the model satisfies the a priori knowledge) and
prediction problems (properties to be discovered) meet. From a formal point
of view, numerous biological properties in computational models can be trans-
formed to reachability properties. For example, the reachability of state 0/1
of a could represent the activation/inhibition of certain gene or synthesis of a
protein, while initial state could represent initial observation in an experiment.
If the reachability of a certain state contradicts with the a priori knowledge, one
can modify the model and/or design a new experiment to verify whether there
is an error in the a priori knowledge or former observation. Also, reachability
analysis is of help to medicine design: for example if one wants to prevent the
carcinogenesis of a cell (target state), one possible solution is to find the critical
pathways towards the target state and design a medicine to cut them in order
to keep the cell healthy.

In the domain of model checking, reachability has been of great interest for
over 30 years [10, 11]. Various modeling frameworks and semantics in bioin-
formatics have been studied: Boolean network [2], Petri nets [23, 14], timed-
automata [12, 36]. These approaches rely on global search and thus face state
explosion problem as the state space grows exponentially with the number of
variables. In [28], it has been shown that the reachability problem of Petri
net is exponential time-hard and exponential space-hard, and this conclusion
does not change even under some specific conditions [14]. For 1-safe Petri nets,
the complexity of reachability analysis is generally PSPACE-complete [8]. Li et
al. [20, 21] investigated theoretically the stability, the controllability and the
reachability of Switched Boolean Networks, but their method remains compu-
tationally expensive; Saadatpour et al. [30] researched only the reachability of
fixed points.

To tackle the complexity issue, symbolic model checking [6] based on ordered
binary decision diagrams (OBDDs) and SAT-solvers (satisfiability) [1] have been
studied over years, but still fail to analyze big biological systems with more than
1000 variables. Bounded Model Checking (BMC) [9] is an efficient approach but
generally not complete as its searching depth is limited to a given integer k.

Beside these approaches, abstraction is an efficient strategy to deal with
such models of big scale. It aims at approximating the model while keeping
the most important parts influencing the reachability. Abstract methods often
have better time-memory performance but with a loss of information. They
solve usually a simplified version of the original model, i.e. the results from
these approaches are not necessarily compatible with all the properties of the
original model. While studying reachability problems, the system dynamics is
abstracted to static causalities between states and transitions.

We have designed a new discrete modeling framework for a concurrent system
[7]: Asynchronous Binary Automata Network (ABAN). In ABAN, we applied
the approach developed by Paulevé et al. [25, 15, 26] to address reachability
problem. This approach refers to a static abstraction of the reachability (with
an over-approximation and an under-approximation of the real dynamics). It
is based on an abstract interpretation: Local Causality Graph (LCG). This
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interpretation drastically reduces the searching state-space thus avoids costly
global search [27]. However, this pure static analysis is not complete as there
are inconclusive cases which can not be decided reachable or not.

Many biological networks are encoded in Boolean style, e.g. [2, 18], because
BN is a simple formalism but with strong applicability: discretization in BN is
a way to handle the imprecision of a priori knowledge on the model. However
BN may be not expressive enough. As to the modeling of the dynamic behavior
“a← 1 at moment t+ 1 if b = 1 at moment t”, one has a(t+ 1) = b(t) in BN.
a always follows the evolution of b but with a potentially unwanted behavior
“a← 0 when b = 0 at moment t”. ABAN models this dynamics as via {b1} → a1

without this redundancy. Besides, BNs are transformable to ABANs, and this
property makes our approach applicable to a wider domain (Appendix A).

Our work shares similar concerns but we combine static analysis and bounded
model checking. We have developed a heuristic approach PermReach to attack
reachability problem [7] which is more conclusive than pure static analysis but
time-consuming and still not able to solve reachability problems under certain
conditions. In this paper, we propose a hybrid approach ASPReach based on
the former LCG reasoning and a non-exhaustive search in the LCG to obtain
a more conclusive solution of reachability problems. ASPReach allows one to
solve the cases where other static methods fail. Furthermore, it can also solve
the reachability of a set of states which to our knowledge has never been done
in static way. We assess the value of our contribution using benchmarks on
biological examples from the literature.

This paper is organized as follows: Section 2 introduces the formal back-
ground and the formalization necessary to the understanding of the work; Sec-
tion 3 presents the concrete methods and algorithms composing the whole ap-
proach; Section 4 shows the benchmarks evaluating our approach and other
alternatives; Section 5 concludes this paper.

2 Formalization

Notations:
ai means automaton a is taking value i;
x :: y is the sequential connector of entities x and y, where x appears just

before y;
a.next is the immediate successor of a; a.pred is the immediate predecessor

of a.
Boolean Network is a traditional and efficient modeling framework, with

many biological networks encoded in BN [18]. To describe the dynamical prop-
erties more precisely, Automata Network is introduced [7, 29]. It can be con-
sidered as a subset of communicating finite state machines or safe Petri Nets.

Asynchronous Binary Automata Network (ABAN) is a special case of Au-
tomata Network. “Asynchronous” implies the update scheme that no more than
one automaton can change its value at a time. Asynchronous update scheme
makes a trade-off between the biological reality and complexity. From a given
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state, biological systems may evolve to multiple future states (e.g. cell differ-
entiation), but it is costly to simulate generalized ANs where arbitrary subsets
of automata can be updated simultaneously. “Binary” implies that every au-
tomaton has exactly two possible states (0, 1). In Appendix A, we show how to
transform a Boolean Network into ABAN.

Definition 1 (ABAN). An ABAN is a triplet AB = (Σ, L, T ), where:

• Σ , {a, b, . . .} is the finite set of automata with every component having
a Boolean state;

• LS , ∪
a∈Σ
{a0, a1} is the set of all local states, L , ×

a∈Σ′
{a0, a1} is the set

of joint states where Σ′ ⊆ Σ. Particularly, if Σ′ = Σ, L is the set of global
states.

• T , {A → bi | b ∈ Σ ∧ A ∈ L} is the set of transitions, where A (called
head) is the set of required state(s) for transition tr = A → bi , which
allows to flip b1−i to bi (called body). In other words, transition tr is said
fireable iff A ⊆ s, where s is the current global state.

A local state represents the state of one automaton, e.g. a1, while a global
state represents the joint state of all the automata in the network, e.g. 〈a0, b1, c0〉
where L = {a, b, c}.

Definition 2 (Asynchronous Dynamics). From current global state s, the global
state after firing transition tr = A→ bi is denoted s·tr = s\{b1−i}∪{bi}, where
b1−i ∈ s. The state of a certain automaton a is noted (s · tr)[a]. Particularly,
if there is no fireable transition, the next state remains the same as the current
state.

To describe the evolution in an ABAN, we use the notion of trajectory.

Definition 3 (Trajectory). Given an ABAN AB = (Σ, L, T ) and a global initial
state α ∈ L, a trajectory t from α is a sequence of transitions t = tr1 :: · · · ::
tri :: · · · :: trn with tri ∈ T and each tri is fireable in (s · tr1 · . . . · tri−1). From
α, the global state after firing all transitions of t is (s · tr1 · . . . · trn), denoted
s · t.

Definition 4 (State sequence). Given an ABAN AB = (Σ, L, T ) and a global
initial state α ∈ L and trajectory t, the state sequence seq = s1 :: · · · :: si :: · · · ::
sn with si ∈ LS is formed by the updated local states during the trajectory t.

Example 1. Fig. 1 shows an ABAN with initial state α = 〈a0, b0, c0, d0, e0〉
and a possible trajectory is t = {d0} → b1 :: {b1} → d1 :: {d1} → c1 ::
{b1, c1} → a1. After firing the transitions in trajectory t, the state becomes
Ω = s · t = 〈a1, b1, c1, d1, e0〉, and ω = a1 = (α · t)[a]. The state sequence is
seq = b1 :: d1 :: c1 :: a1.
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0
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{b1, c1} {e1} {d0} {b1}{d1}

Figure 1: An example of ABAN

As to reachability problem, given an ABAN AB = (Σ, L, T ), the joint reach-
ability REACH(α,Ω) is formalized as: joint state Ω is reachable iff there ex-
ists a trajectory t s.t. α · t = Ω. Partial reachability reach(α, ω) is defined
analogously: local state ω = ai is reachable iff there exists a trajectory t s.t.
(α ·t)[a] = ai. REACH(α,Ω) and reach(α, ω) take Boolean values True, False
or Inconclusive if it cannot be decided. In Fig. 1, Ω = 〈a1, b1, c1, d1, e0〉 or
ω = a1 is reachable from initial state α via trajectory t, i.e. reach(a1) = True
and REACH(α,Ω) = True. In fact, the reachability of a joint state even a
global state is equivalent to that of one local state. Given a set of target states
{ai, . . . zj}, by adding a new automaton x to Σ, setting its initial state to x0

and adding transition {ai, . . . zj} → x1 to T , REACH(α, {ai, . . . zj}) is thus
equivalent to reach(α, x1). For convenience, we study partial reachabilities in
this paper.

Paulevé et al. [26] have proposed Local Causality Graph (LCG) to analyze
reachability problems statically. LCG abstracts the original problem through
an over-approximation (necessary condition) and an under-approximation (suf-
ficient condition). It is a very efficient tool as there is no global search and
all the operations are bounded in polynomial complexity. However LCG does
not guarantee to obtain a result, i.e. some inconclusive instances satisfy the
necessary condition and fail sufficient conditions. In this paper, we make use
of LCG by removing some elements needed only in multivalued networks, then
we try to analyze it more deeply to solve inconclusive cases of binary valued
systems. In fact, Didier et al. have shown a technique to transform a multi-
valued network to Boolean network [13], which provides us the applicability to
multivalued situations.

Definition 5 (LCG). Given an ABAN AB = (Σ, L, T ), an initial state α and
a target state ω, LCG l = (Vstate, Vsolution, E) is the smallest recursive structure
with E ⊆ (Vstate × Vsolution) ∩ (Vsolution × Vstate) which satisfies:

ω ∈ Vstate

ai ∈ Vstate ⇔ {(ai, solai
)|ai ∈ α} ⊆ E

solai
∈ Vsolution ⇔ {(solai

,Va(solai
)} ⊆ E

where Vstate ⊆ LS is the set of local states, Vsolution ⊆ T is the set of solutions
and Va is the set of required local states of solai .

Example 2. Fig. 2 shows the LCG for analyzing reach(a1) in Fig. 1.
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Figure 2: Visualization of LCG, with the squares representing local states and
small circles representing solution nodes. ∅ signifies that there is no need to
link any transitions, i.e the former state d0 is in the initial state.

Algorithm 1 describes how to construct an LCG from an ABAN AB =
(Σ, L, T ). Starting from a given target state Ls = ω, one can find all the
transitions Ts ⊆ T reaching ω and add edges ω → Ts. Then we find all the
heads A of Ts and add edges Ts → A and replace Ls with A (recursion). Finally,
we update the structure until Ls ⊆ α or there is no transition with body in Ls.

Algorithm 1 Construction of LCG

Input: an ABAN AB = (Σ, L, T ), an initial state α, a target state ω
Output: LCG l = (Vstate, Vsolution, E)
Initialization: Ls← {ω}, Vstate ← ∅, Vsolution ← ∅, E ← ∅
while Ls 6= ∅ do

Ls = Ls\Vstate

for ai ∈ Ls do
Ls← Ls\{ai}
if ai ∈ α then

E ← E ∪ {(ai,∅)}
else

// Choose the transitions reaching ai, i.e. with body a1−i
for sol = A→ a1−i ∈ T do

Vsolution ← Vsolution ∪ {sol}
E ← E ∪ {(ai, sol)}
Vstate ← Vstate ∪A
for bj ∈ A do

E ← E ∪ {(sol, bj)}
Ls← Ls ∪A
Vstate ← Vstate ∪ Ls

Vsolution ← Vsolution ∪ ai.next

return (Vstate, Vsolution, E)

Intuitively, when the recursive construction is complete, SLCG is in fact a
digraph with state nodes Vstate and solution nodes Vsolution. E consists of the
edges between local state nodes and solution nodes. To access certain local
states, at least one of its successor solutions (corresponding transitions from
solution nodes) need to be fired; to make one solution node firable, all of its
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successor local states need to be satisfied. A recursive reasoning of reachability
begins with a state node representing target local state, goes through ai →
solai

→ bj · · · and ends with initial state (possibly reachable) or a local state
without solution successor (unreachable).

With LCG, it is easy to verify whether their are potential pathways from the
target state ω to the initial state α. If there does not exist such a pathway, one
can ensure that ω is not reachable from α. [27] explains this local reasoning.

Definition 6 (Pseudo-reachability). Given an LCG l = (Vstate, Vsolution, E)
with global initial state α, the pseudo-reachability of node v ∈ Vstate is defined
as

reach′(α, v) =


True if v ∈ α
False if v 6∈ α and 6 ∃(s, sol) ∈ E∨

(s,sol)∈E(
∧

(sol,s)∈E reach
′(α, s)) otherwise

However, pseudo-reachability is named “pseudo” because it is only an over-
approximation of reachability, i.e. it reveals a necessary condition of reachability.

Example 3. In Fig. 3, reach′(l, c1) = reach′(l, a1)∧reach′(l, b1) = reach′(l, a0)∧
reach′(l, b0) = True. Both a1 and b1 are reachable, but they can not be reached
simultaneously. In such LCG, there are two branches, a1 7→ b0 and b1 7→ a0,
the automata a and b involve themselves in different branches, the reachability
of a1 impedes the reachability of b1 and vice versa.

a

0

1

b

0

1

c

0

1

{a1, b1}{b0} {a0}
c1

a1 b0 ∅

b1 a0 ∅

AND

Figure 3: Σ = {a, b, c}, T = {{b0} → a1, {a0} → b1, {a1, b1} → c1}, ω = c1

Also, the recursive reasoning does not terminate if there exists cycles in LCG.
While computing the pseudo-reachability, self-dependent form reach′(l, ai) =
. . . = reach′(l, ai) will appear. Dealing with cycles becomes inevitable.

Definition 7 (Cycle). In an LCG, a cycle is formed by a sequence of nodes
linked as follows: ai → ◦ → · · · → ◦ → ai

To identify cycles, we search instead Strongly Connected Components (SCC)
of size greater than one. Because cycles may interlace and there is no such
problem in SCC. In other words, a SCC may contain several nested cycles
which connect to each other. [33] shows that the detection of SCCs can be
done in O(|V | + |E|) time, with |V | the cardinality of the vertices and |E| the
cardinality of the edges. LCG is usually a sparse graph, as in biological systems,
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the components mostly interact with only a part of the system, hence the out-
degree can be considered of O(1) and the detection of SCCs1 can be done in
O(|V |), i.e. linear time.

Theorem 1. Given a cycle x → ◦ → · · · → ◦ → x in an LCG, if there is at
most one incoming edge to the cycle, the cycle can be removed.

Proof. If there is no incoming edge, the target state y must be in the cycle.
The edge y.pred → ◦ → y can be removed, because the reachability of y.pred
requires y, but y is the target state, which is never reached before the other
local states in the LCG are reached. Thus the transition corresponding to this
edge is never fired and the edge can be removed. Similarly, if there is an outside
incoming edge a → ◦ → x, a must be the successor of target state y or the
target itself, x.pred→ ◦ → x can hence be removed.

x

y

z

a

w · · ·

Figure 4: LCG l containing cycle x→ ◦ → y → ◦ → z → ◦ → x

Example 4. In Fig. 4, the pseudo-reachability of a is

reach′(l, a) = reach′(l, x) = reach′(l, y) = reach′(l, z) = reach′(l, x)∨reach′(l, w)

To reach x, we need to reach z, but z cannot depend on x as x is already to be
reached. Self-dependence appears: x is reachable if x is reachable. Thus edge
z → ◦ → x is deleted (dashed line).

Unfortunately, not all cycles are removable via Theorem 1. Example 5 ex-
plains the issue.

x

y

z

a

Figure 5: x, y, z all have external links, thus none of the links can be discarded

1Python3 implementation at https://github.com/alviano/python/blob/master/

rewrite_aggregates/scc.py
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Example 5. Cycle x→ ◦ → y → ◦ → z → ◦ → x is unbreakable according to
Theorem 1, is possesses 3 incoming edges. But with Theorem 2, if OR gates
are removed, the cycle can be dealt with. The removal of OR gates is stated
in the next section.

Theorem 2. Given a cycle, if it contains no OR gate, all the local states in
the cycles are unreachable.

Proof. Suppose an arbitrary cycle C = ai → · · · bj → · · · → ai, with → an edge
in the LCG. Note that reach′(α, ai) =⇒ reach′(α, bj) =⇒ reach′(α, bj .next) =⇒
· · · =⇒ reach′(α, ai). According to the definition of reach′, reach′(α, a) =
True only if ∃ck ∈ C and ck ∈ α. If there exists such ck, C should not
exist as the reasoning stops at ck and does not form a cycle, contradiction.
reach′(α, ai) = reach′(α, bj) = · · · = False.

3 ASPReach Algorithm

In this section, we present the main contribution of this paper, our analyzer
ASPReach: an algorithm for checking the reachability of a target local state ω
from a global initial state α (which can also be partial) in a given ABAN. How-
ever, exhaustive search leads to heavy computation and huge need of memory.
The algorithm proposed below tries to overcome those shortcomings by com-
bining static analysis and stochastic search into the following hybrid approach.

ASPReach:

• Input: An ABAN AB, an initial state α, a target state ω and a max
number of iterations k

• Output: reach(ω) ∈ {False,True, Inconclusive}

1. Construct the LCG l = LCG(AB,α, ω)

2. Try to remove all cycles and prune useless edges from l

3. Try to prove unreachability of ω in l using pseudo-reachability reach′(l, ω)
and return False if reach′(l, ω) = False

4. Try at most k times

• l′ ← l

• Simplify each OR gate such that l′ is a LCG with only AND gates

• If there remain cycles:

– Back to step (iv)

• Generate all trajectory that starts with α in l′ using ASP

– If a trajectory t ending with ω is found, return True
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5. return Inconclusive

LCG illustrates the causality between necessary transitions to be fired to
reach the target state; the tentative of removing cycles simplifies the LCG and
keep the reachability unchanged; pseudo-reachability allows one to filter some
unreachable cases based on the topology of LCG. The heuristic approach is
the core of our algorithm. Stochastic choices avoid combinatorial explosion on
different OR Gates. The ASP part searches thoroughly the result but does
not traverse the whole state space (ASP solver starts from constraints, finds one
consistent order and terminate the search).

Algorithm 2 ASPReach

1: Input: LCG l = (Vstate, Vsolution, E), an integer k
2: Output: reachability r and a trajectory t
3: Compute SCCs, classify them into SCC1(l) with at most 1 incoming edge

and SCC2(l) otherwise
4: // 1) Break all cycles and prune useless branches
5: for each (V ′state ⊆ Vstate, V

′
solution ⊆ Vsolution) ∈ SCC1(l) do

6: for each v ∈ V ′state do
7: if ∃(v, v′) ∈ E, v′ ∈ (Vsolution \ V ′solution) then
8: E ← E\{(v, v′′)|v′′ ∈ V ′solution, (v, v

′′) ∈ E}
9: // 2) remove useless nodes/edges

10: pruned = True
11: while pruned do
12: pruned = False
13: for v ∈ Vstate do
14: if 6 ∃(v, v′) ∈ E then
15: Vstate ← Vstate\{v}; E ← E\{(v′′, v) ∈ E}
16: E ← E\{(v′′, sol) ∈ E|sol ∈ {sol = (A→ a) ∈ Vsolution|v ∈ A}}
17: Vsolution ← Vsolution\{sol = (A→ a) ∈ Vsolution|v ∈ A}
18: pruned = True

19: // 3) Check pseudo-reachability
20: if pseudoReach(l) = False then
21: return (False,∅)

22: // 4) main search loop
23: for each i in 1 . . . k do
24: l′ = (V ′state, V

′
solution, E

′)← (Vstate, Vsolution, E)
25: for v ∈ V ′state do // Treat each OR gates
26: pick a random element (v, v′) ∈ E′
27: E′ ← E′\{(v, v′′) ∈ E′|v′′ 6= v′} with @i ∈ SCC2(l) and i ∈ E′

28: (r, t)← ASPsolve(l′)
29: if r = True then return (True, t)

30: return (Inconclusive,∅)

Algorithm 2 provides the detailed pseudocode of the algorithm taking an
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LCG l as input whose detailed construction is given in Algorithm 1. Lines 4-8
delete all cycles with at most one incoming edge. After removing cycles, the
LCG may contain nodes without successor. Such nodes can be pruned since they
do not lead to initial state (Line 9-18). This preprocessing reduces the search
space of the stochastic search performed in step 4. Now l is pruned and might
be cycle-free. Static analysis of l can then be used as heuristics to check pseudo-
reachability (Definition 6) in order to detect some unreachability cases (Lines 19-
21) which may conclude before searching. LCG shows the dependencies between
local states and transitions. A pathway in LCG suggests a possible trajectory of
reaching the target state. If pseudoReach(l, ω) = False, we can ensure that ω is
unreachable, as pseudo-reachability checks a necessary condition of reachability.
If reach′(l, ω) = True, static analysis is not sufficient for reachability analysis.
When static analysis fails, a stochastic search is performed at most k times
(line 22-29) to find a state sequence from the initial state α to target state ω.
If there remain cycles with multiple incoming edges, according to Theorem 2, ω
is unreachable. The value of k will be discussed later in the evaluation section.
Random choices are made to fix a value for each OR gate of the LCG allowing
to perform a reachability check by generating all possible variable assignment
order using ASP. Keep in mind that every state node is an OR gate, we have
to choose one of its successor solution nodes to access the state. A set of OR
gate choices is called an assignment.

3.1 Stochastic Search

As every OR gate has multiple choices, to avoid combinatorial explosion, we
use a simple heuristic: choose randomly one assignment for each trial. Then we
can construct a new LCG without OR gate, every state node has exactly one
successor solution node.

After applying heuristics to delete OR gates, we use ASP (Answer Set
Programming) [3] to analyze the newly obtained LCG with only AND gates.
ASP is a prolog-like declarative programming paradigm. It uses description and
constraints of the problem (called rule) instead of imperative orders. ASP solver
tackles problems by generating all the possibilities respecting the constraints.
We use Clingo[16] which is a combination of grounder Gringo and solver Clasp.
Given an input program with first-order variables, grounder computes an equiv-
alent ground (variable-free) program for an ASP program, while solver selects
admissible solutions (answer sets) in the ground.

A rule is in the following form:

a0 ← a1, . . . , am, not am+1, . . . , not an.

where the element on the left of the arrow is called head and the ones on the
right called body. a0 is True if a1, . . . , am are True and am+1, . . . , an are False.
Some special rules are noteworthy. A rule where m = n = 0 is called a fact
and is useful to represent data because the left-hand atom a0 is thus always
True. It is often written without the central arrow. On the other hand, a rule
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where n > 0 and a0 =⊥ is called a constraint. As ⊥ can never become True, if
the right-hand side of a constraint is True, this invalidates the whole solution.
Constraints are thus useful to filter out unwanted solutions. The symbol ⊥ is
usually omitted in a constraint.

Programs can yield no answer set, one answer set, or several answer sets.
For example, the program b:- not c. c:- not b. produces two answer sets:
{b} and {c}. Indeed, the absence of c makes b true, and conversely absence of b
makes c true. Cardinality constraints are another way to obtain multiple answer
sets. The most usual way of using a cardinality is in place of a0:

l{q1, . . . , qk}u← a1, . . . , am, not am+1, . . . , not an.

where k ≥ 0, l is an integer and u is an integer or ∞. Such cardinality means
that under the condition that the body is satisfied, the answer set X must
contain at least l and at most u atoms from the set {q1, . . . , qm}, or, in other
words: l ≤ |{q1, . . . , qm} ∩X| ≤ u.

ASP Encoding

After deleting OR gates, to encode the reachability problem in ASP, we first
describe the facts:

Predicate init(a,i) shows the automaton a is at initial state i. Predicate
node(a,i,n) shows the node ai in the LCG is numbered n, while parent(n1,n2)
expresses node No.n1 is the predecessor of No.n2. The LCG in Fig. 3 is encoded
as follows:

init(a,0). init(b,0). init(c,0).

node(a,1,1). node(b,1,2). node(c,1,3).

node(b,0,4). node(c,0,5).

parent(1,2). parent(1,3).

parent(2,5). parent(3,4).

After the facts, we want the nodes to appear in an order by which we can
fire all the transitions sequentially from initial state to target state.

The rough idea is: If different states of one automaton a appear, e.g. a0 and
a1. One of them must be in initial state (suppose a0). The transitions with
head a0 have to be fired before a0 flipping to a1, otherwise there is no solution
node in the LCG which allows a1 return to a0. In other words, the predecessor
of a0 must appear before a1. Core rule describes this constraint.

Predicate prior(N1,N2) signifies node N1 appears earlier than N2 in the
resulting state sequence. seq(O,a,i) shows that state node ai appears in the
O-th place in a trajectory. reachable/unreachable is the final result of the
program.

%Rule 1, a node appears always earlier than its predecessor

prior(N1,N2) :- parent(N2,N1).
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%Rule 2, transitivity

prior(N1,N3) :- prior(N1,N2), prior(N2,N3).

%Rule 3, Core rule

prior(N1,N2) :- node(P1,S1,N1), node(P2,S2,N2), node(P2,S3,N3),

parent(N1,N3), init(P2,S3), S2!=S3, P1!=P2.

%target is unreachable if there is a conflict in order

unreachable :- prior(N1,N2), prior(N2,N1), N1<N2.

%One node appears once and at least once in a sequence

1seq(1..O,P,S)1 :- O=node(P1,S1,N1):node(P1,S1,N1),

node(P,S,N), not unreachable.

%Nodes in the sequence are consistent with the order

:- prior(N1,N2), node(P1,S1,N1), node(P2,S2,N2),

seq(O1,P1,S1), seq(O2,P2,S2), O1>O2.

%One place in the sequence cannot be taken by multiple nodes

:- seq(O1,P1,S1), seq(O2,P2,S2), P1!=P2, O1=O2.

:- seq(O1,P1,S1), seq(O2,P2,S2), S1!=S2, O1=O2.

%--------output formatting, displaying initial states first

:- seq(O1,P1,S1), seq(O2,P2,S2), init(P1,S1),

not init(P2,S2), O1>O2.

:- seq(O1,P1,S1), seq(O2,P2,S2), init(P1,S1), init(P2,S2),

P1<P2, O1>O2.

reachable :- not unreachable.

Notation: aB b means a appears before b.
When analyzing the LCG in Fig. 3, Rule 1 gives b0 B a1, a1 B c1, a0 B b1,

b1 B c1; Rule 2 gives a0 B c1 and b0 B c1; Rule 3 gives a1 B b1 and b1 B a1 which
is impossible, therefore there does not exist a state sequence to reach c1 from
initial state. c1 is unreachable.

If we find a state sequence consistent with all the order constraints, we can
obtain its corresponding trajectory, thus we are sure that the target state is
reachable.

a1

d1

e1d0

e0

∅

∅

ANDAND

OR
b1 c0 ∅

c1 b0 ∅

Figure 6: If an LCG contains such structure, the result could be inconclu-
sive. However the inconclusiveness requires a1 does not possess other reachable
branches.

Still, ASPReach is not complete. A counter-example is shown in Fig. 6,
when there are multiple branches of one OR gate leading to unreachability, the
result can be inconclusive. There is a tricky way to deal with this issue when
|ORgates| is not big: we set a limit n, if |ORgates| < n, we shift the heuristics
on the assignment of OR gates to the enumeration of all possible assignments.
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This “hacking” can deal with some inconclusiveness. In the benchmarks in the
next section, inconclusive instances appear neither in biological examples nor in
random generated tests.

We also show some algorithmic properties of ASPReach:

Theorem 3 (ASPReach termination and correctness). Let l = (Vstate, Vsolution, E)
be an LCG with initial state α and target local state ω and k > 0 be an integer.
The call ASPReach(l,k) terminates.
ASPReach(l, k)=(False,∅) only if @t a trajectory in l from α to ω.
ASPReach(l, k)=(True, t) only if ∃t a trajectory in l from α to ω. The proof
is given in appendix B.

Theorem 4 (ASPReach complexity). Let l = (Vstate, Vsolution, E) be an LCG
with initial state α and k > 0 be an integer. Let s = |Vsolution| be the number of
target state of l. Let v = |Vstate| be the number of vertices of l. Let e = |E| be
the number of edges of l. The complexity of ASPReach(l,k) is O(v + e+ v/2×
v × e × s + v2 × e + v × e + k × (v × e2 + 2v)) which is bound by O(k × 2v).
Proof is given in Appendix B.

4 Evaluation

In this section we evaluate our approach through various experiments. All tests
were run on a Intel Core i7-3770 CPU, 3.4GHz with 8Gb of RAM computer.

To validate our approach, we first tested a small model, λ-phage model [34]
to compare with an alternative reachability analyzer Pint [27] implementing
solely analysis using LCG [25, 15, 26]. In this model with 4 automata and
12 transitions (without taking consideration of the self-regulations), our result
shows complete conclusiveness while Pint cannot (Fig. 7). PermReach [7] is
not able either to handle some of the special cases where multiple states of one
automaton appear in different branches (Fig. 8). Theses cases are solvable by
ASPReach. The whole approach is implemented in Python32. The call of ASP
is done by package pyasp3.

To evaluate the scalability in in silico networks, we take T-cell Receptor
model (TCR) [31] and epidermal growth factor receptor model (EGFR) [32] as
examples, with the former one containing 95 automata and 206 transitions and
the latter one containing 104 automata and 389 transitions respectively.

These models are originally Boolean networks. According to the approach
in Appendix A, BNs are transformed into ABANs. Here, we ran the same
test as in [15]. In the TCR model, we take 3 automata as input (cd4 cd28

tcrlig), varying exhaustively their initial states combinations (23), take the
reachability of states of 5 automata (sre ap1 nfkb nfat sigmab) as output.
Similarly we carried a bigger test on EGFR model with 13 automata as input
and 12 automata as output. We first tested the performance of traditional model

2Code and testing data available at https://github.com/XinweiChai/LCG-in-ASP
3https://pypi.python.org/pypi/pyasp
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cro1

cll0 cl1 ∅

cl0

AND

Figure 7: One LCG in λ-phage model, automaton cl appears in both branches
of the AND gate. Static analyzer Pint cannot decide whether in this case cro1

is reachable or not, because it does not consider the order in the state sequence
even though there exists a solution is of length 3: cll0 :: cl0 :: cro1 corresponding
to the trajectory {cl1} → cll0 :: {cll0} → cl0 :: {cll0, cl0} → cro1.

a1

b1

d0 ∅

a0 ∅

c1 d1 c0 ∅

e0 ∅

AND

AND

AND

Figure 8: This counterexample shows former PermReach is inconclusive if mul-
tiple states of one automaton appear in the branches of one AND gate (d0

and d1 in this example). However there exists a consistent state sequence:
d1 :: b1 :: c1 :: a1 corresponding to the trajectory {c0} → d1 :: {d0, a0} → b1 ::
{d1, e0} → c1 :: {b1, c1} → a1 which could be found by ASPReach.

checkers, Mole4 and NuSMV5, in which Mole turns out to be memory-out for 6
in 12 outputs, and all memory-out for NuSMV in model EGFR. Due to the big
state space, traditional model checkers are not applicable. In the TCR tests,
our approach gives exactly the same result as Pint did. As for EGFR tests,
ASPReach returned no inconclusive output.

As seen in Table 1, our approach can be more conclusive than Pint for
ABANs. In the configuration of heuristics, we set a threshold for OR gates.
If there are less than 10 OR gates after preprocessing, the computation will
be shifted from heuristic to the enumeration of all combinations of OR gates.
Here is the case for these three benchmarks. The experiments show the ability
of ASPReach is already more conclusive than Pint in “simple” cases.

To test the global applicability of ASPReach, we ran two sets of tests on
random models generated as follows: Given the number of transitions, for every
transition tr, the head ah is randomly chosen from LS, the first element of the
body A1 is chosen from LS1 = LS\{ah, a1−h}. For i > 1, if Ai−1 = bx exists, we
generate Ai with an 80% probability, choosing from LSi = LSi−1 \ {bx, b1−x}.

Fig. 9(a) shows the average run time of ASPReach on randomly generated

4http://www.lsv.fr/~schwoon/tools/mole
5http://nusmv.fbk.eu
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Model λ-phage TCR EGFR
Inputs 4 3 13

Outputs 4 5 12
Total tests 24 × 4 = 64 23 × 5 = 40 213 × 12 = 98, 304
Analyzer Pint AR Pint AR Pint AR
Reachable 36(56%) 38(59%) 16(40%) 64,282(65.4%) 74,268(75.5%)

Inconclusive 2(3%) 0(0%) 0(0%) 9,986(10.1%) 0(0%)
Unreachable 26(41%) 24(60%) 24,036(24.5%) 24,036(24.5%)
Total time < 1s < 1s 7s 40s 9h50min 3h46min

Table 1: AR=ASPReach. Results of the tests on small (λ-phage) and large
(TCR,EGFR) examples from biology literature. Results of model-checkers us-
ing global search are memory-out so are not listed in the table. “Reachable”,
“Inconclusive” and “Unreachable” give respectively the number of different re-
sults of reachability. It is worth noticing that the inconclusive cases in Pint are
caused by time-out [15].

ABAN. In this experiment, we fixed the number of transitions to |Σ| × 3 and
each transition has a random number of heads from 1 to |Σ − 1|, with Σ the
number of automata of the generated ABAN. For traditional model checkers
like NuSMV and Mole, memory-out cases begin to appear when |Σ| > 50, so
the runtime results are not displayable in Fig. 9(a). Also, Pint is not able
to check all test sets of any |Σ|. Even though the curve of average runtime
of our approach shows an exponential-like tendency, ASPReach is very fast for
|Σ| < 100 (less than 0.03s) and can also perform on models with 1000 automata.
Moreover, the longest runtime among the test sets is less than 20s. Because we
stop the computation if one reachability check takes more than 20s and we note
it as timeout. This result suggests that the heuristic approach of ASPReach
has a good performance in conclusiveness in general as the testing models are
generated randomly.

Another test is on the different density with the same number of automata.
In Fig. 9(b), we fixed |Σ| = 20 and vary the number of the transitions per
automaton (density) from 1 to 12. The runtime peak is at density 8, a possible
explanation is that even the topology of the network is more complex with the
growth of density, more available transitions lead to more pathways from the
initial state to the target state, thus the heuristics may end with less trials.

These experimental evaluations show that ASPReach has a better scalability
on reachabilty analysis than traditional exhaustive model checkers and a better
performance regarding conclusiveness than existing static analyzer.

5 Conclusion

In this paper, we present the ABAN modeling framework and its model-related
reachability analyzer ASPReach. Facing the two critical challenges: complexity
and conclusiveness, we combine static analysis and Answer Set Programming for
a good performance on both criteria. ASPReach performs normally on models
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Figure 9: Runtime of ASPReach on random ABANs

with 1000 automata while traditional model checkers fail to compute and static
analyzer Pint also fails to give conclusive results on certain instances.

We are now considering an incorporation of heuristics in the preprocessing
phase, like the work of [19], to improve the performance of our approach regard-
ing runtime. The development of dedicated heuristic for the orientation of the
random search in ASPReach remains also a future work.

As to biological application, one path of research is the interfacing of our
approach with model inference approaches. Biological models can be inferred
from experimental data through machine learning techniques (e.g. [17]), but
obtained models are not necessarily consistent with the a priori background
knowledge about the dynamics of system. Thus it is important to check these
obtained models and revise them to make them consistent with such background
knowledge. In the case of reachability properties, our approach could be use
as a model checker and a mean to enforce such properties in a model under
construction.
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[25] Löıc Paulevé. Reduction of qualitative models of biological networks for
transient dynamics analysis. IEEE/ACM transactions on computational
biology and bioinformatics, 2017.
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A Transformation from BNs to ABANs

Given Boolean functions vi(t + 1) = fi(Vi), with Vi the set of participating
variables among v1(t), · · · , vn(t). Boolean functions could be transformed to
equivalent CNF (conjunctive normal form) and DNF (disjunctive normal form)
if the length of Boolean functions is limited to O(1) [24] which is often the case.

Proposition 1 (Transformation from BN to ABAN). Given a BN GB = (V, F ),
with its functions in CNF form vi(t+ 1) = A1 ∧ . . . Aj . . . ∧ An and DNF form
vi(t+1) = A′1∨. . . Ak . . .∨A′m, an equivalent ABAN AB has transitions Aj → vi1
and ¬Ak → vi0 where Aj are disjunctions and A′K are conjunctions.

Example 6. Let GB = (V, F ) a BN with V = {a, b, c, d, e}, and has only one
Boolean function, F = {f(a) = (b∨c)∧(d∨e)}, we have f(a) = (b∧d)∨(b∧e)∨
(c∧d)∨(c∧e), and ¬f(a) = (¬b∧¬c)∨(¬d∧¬e). The equivalent ABAN is then
constructed: 5 automata Σ = {a, b, c, d, e}, with transitions: T = {{b1, d1} →
a1, {b1, e1} → a1, {c1, d1} → a1, {c1, e1} → a1, {b0, c0} → a0, {d0, e0} → a0}.

B Proofs

Theorem 5 (ASPReach termination and correctness). Let l = (Vstate, Vsolution, E)
be an LCG with initial state α and target local state ω and k > 0 be an integer.
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The call ASPReach(l,k) terminates.
ASPReach(l, k)=(False,∅) only if @t a trajectory in l from α to ω.
ASPReach(l, k)=(True, t) only if ∃t a trajectory in l from α to ω.

Proof. 1: The algorithm starts by breaking all cycles of the LCG and according
to Theorem 1 it terminates and does not affect the reachability of α in l.

2: Then all nodes of Vstate and (resp. solution) with no (resp. missing)
outgoing edges are removed. Such nodes cannot be part of a trajectory leading
to initial state α and thus this operation does not affect the reachability of α in
l. The internal for loop of this operation iterates over Vstate which is finite. To
continue looping, it requires one state deletion thus this operation will terminate
atleast when Vstate becomes ∅.

Conclusion 1: ASPReach(l, k) = False only if @t a trajectory in l from α
to v ∈ Vsolution.

Conclusion 2: the call ASPReach(l,k) terminates.
Conclusion 3: After this pre-processing, pseudo reachability is checked and

according to [27], it terminates and is correct. It is the only possibility for
ASPReach to output False.

Conclusion 4: Stochastic search follows by randomly reducing each OR gate
of l to one of its edges to form l′. This operation is run a finite time k and iterates
over Vstate which is finite and thus it terminates. This operation does not create
new edges, i.e. E′ ⊆ E. ASPsolve(l′) generates all possible trajectories of l′

leading to α. The number of possible trajectory is finite and thus ASPsolve(l′)
terminates.

Furthermore when ASPsolve(l′) = (True, t), t is a trajectory of l proving
reachability of α in l and it is the only possibility for ASPReach to output True.

Conclusion 3: ASPReach(l, k) = (True, t) only if ∃t a trajectory in l from
α to v ∈ Vsolution.

Theorem 6 (ASPReach complexity). Let l = (Vstate, Vsolution, E) be an LCG
with initial state α and k > 0 be an integer. Let s = |Vsolution| be the number
of target state of l. Let v = |Vstate| be the number of vertices of l. Let e = |E|
be the number of edges of l. The complexity of ASPReach(l, k) is O(v + s +
e+ (v+ s)/2× v× e× s+ v2 × e+ v× e+ k× (v× e2 + 2v)) which is bound by
O(k × 2v).

Proof. 1: computing SCC(l) has a complexity of O(v + s + e). In worst case
|SCC(l)| = (v + s)/2 and breaking one cycle of SCC(l) is O(v × e × s), thus
complexity of removing cycle is op1 = O(v + e+ s+ (v + s)/2× v × e× s)

2: To remove useless nodes ASPReach iterates over all states and checking if
one state has no successor in l requires to iterates over all edges. In worst case
all states will be removed one by one and thus the complexity of this operation
is op2 = O(v × (v + s)× e).

3: Computing pseudo reachability over l which have no loop correspond to
perform a depth first search on all branch of a tree and thus bound to op3 =
O((v + s)× e).
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4: the stochastic search iterates atmost k times. Treating each OR gate to
form l′ have a cost of O(v× e× e) ASPsolve(l′) generates trajectories that can
prove reachability of α in l′. Each trajectory is a sequence where each element
of |Vstate| appears exactly once. It correspond to the number of total order
of |Vstate| which is 2v. Thus ASPsolve(l′) is bound by O(2v) and the whole
stochastic search by op4 = O(k × (v × e2 + 2v)).

Conclusion 1: The complexity of ASPReach(l, k) is O(op1 + op2 + op3 +
op4) = O(v+e+s+(v+s)/2×v×e×s+v×(v+s)×e+v×e+k×(v×e2 +2v)).

Conclusion 2: The complexity of ASPReach(l, k) is bounded by O(k ×
2v)

C Pseudo Code of Pseudo-reachability

Algorithm 3 Pseudo-reachability reach′

Input: an LCG l = (Vstate, Vsolution, E), an initial state α, a target state ω
Output: a Boolean reach′

procedure pseudoReach(s)
// If ω is in initial state, it is already reached
if ω ∈ α then return True
// The reachability of s depends on its successor solution nodes
if 6 ∃(s, sol) ∈ E then return False

for each (s, sol) ∈ E do
if fireable(sol) then return True

return False
procedure fireable(sol)

for each (sol, s′) ∈ E do
if pseudoReach(s′) then return False

return True
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