
HAL Id: hal-01951247
https://hal.science/hal-01951247

Preprint submitted on 11 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Reachability Properties of Logic Program for
Revising Biological Models

Xinwei Chai, Tony Ribeiro, Morgan Magnin, Olivier Roux, Katsumi Inoue

To cite this version:
Xinwei Chai, Tony Ribeiro, Morgan Magnin, Olivier Roux, Katsumi Inoue. Using Reachability Prop-
erties of Logic Program for Revising Biological Models. 2018. �hal-01951247�

https://hal.science/hal-01951247
https://hal.archives-ouvertes.fr

Using Reachability Properties of Logic Program
for Revising Biological Models

Xinwei Chai, Tony Ribeiro, Morgan Magnin, Olivier Roux

Laboratoire des Sciences du Numérique de Nantes, 1 rue de la Noë,
44321 Nantes, France

Katsumi Inoue

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo 101-8430, Japan

Abstract

Learning system dynamics from the observations of state transitions
has many applications in bioinformatics. It can correspond to the identi-
fication of the mutual influence of genes and can help to understand their
interactions. A model can be automatically learned from time series data
by using methods like Learning from interpretation transition (LFIT).
This method learns an exact model if all transitions of the systems are
used as input. However, in real biological data, such complete data sets
are usually not accessible and we have to learn a system with partial ob-
servations. Usually, biologists also provide with a priori knowledge about
the system dynamics in the form of temporal properties. When building
models, keeping critical properties valid is one of the major concerns and
model checking plays a role in the verification of such desired properties.
Our research aims at providing a model checking approach to revise logic
programs thanks to temporal properties. In this paper, as a first step,
we propose a method that can exploit reachability properties to fit such
a model.

keywords: Model Checking, Learning From Interpretation Transi-
tion, Dynamical Systems, Temporal Properties, Local Causality Graph

1 Introduction

When modeling a real system, it is usually demanded to assess the correctness
of a Boolean network with the concrete system by checking if the observed con-
figurations are indeed reachable in the Boolean network. Whenever it is not the
case, it typically means that the designed Boolean functions do not model the
given system correctly, and thus should be revised before further model analy-
sis. In [4], it has been shown that Boolean networks can be represented by logic

1

programs. In this paper, we provide a method to revise a logic program to fit
temporal properties regarding reachability of partial states. Such logic program
can be learned from observations of state transition using LFIT algorithm in
[7], but the approach restricts the model to only synchronous update scheme.
One of the benefits of synchronous modeling is computational tractability, while
classical state space exploration algorithms fail on asynchronous ones. Yet the
synchronous modeling relies on quite heavy assumptions: all genes can make
a transition simultaneously and need an equivalent amount of time to change
their expression level. Even if this is not realistic from a biological point of
view, it is usually sufficient as the exact kinetics and order of transformations
are generally unknown. However, the asynchronous semantics helps one to cap-
ture more realistic behaviors [1]. At a given time point, at most one single gene
can change its expression level. Non-deterministic behaviors are often observed
in biological systems, e.g. cell differentiation. From a given state, several pos-
sible behaviors can be expected as future states. Asynchronous update scheme
results in a potential combinatorial explosion to the number of states. The first
contribution of this paper is a simple adaptation of the LFIT algorithm for
learning asynchronous dynamics. The main contribution is a method to revise
a logic program in order to fit given reachability properties. Reachability prob-
lem on formal models is a critical challenge where both validation (whether the
model satisfies a priori knowledge) and prediction (properties to be discovered)
problems meet. From a formal point of view, numerous biological properties
can be expressed in computation models as reachability properties [3]. Existing
approaches usually rely on global search and thus face state space explosion
problem as the state space grows exponentially with the number of components
of model. Abstraction is an efficient strategy to deal with such systems. In
[6], local properties of the model are exploited based on an abstract interpreta-
tion: Local Causality Graph (LCG). [2] provides a hybrid reachability analyzer
based on LCG, with which one can verify the model is consistent with given
reachability information with good runtime and conclusiveness. LFIT frame-
work so far can only capture finite dynamical properties, i.e. relation at T -1 or
T -k and the system has to be synchronous deterministic. In asynchronous sys-
tems, non-determinism can lead to loops for several times before taking a path
to a certain state. In this paper, we adapt the algorithms of [7, 5] to capture
asynchronous dynamics and extend upon this method to propose an approach
allowing to fit a logic program to reachability properties. By modifying rules of
the program using logic generalization/specialization operations, we iteratively
revise the program to fit a set of reachability/unreachability constraints while
keeping the observation and learned rules consistent.

2 Formalization

Boolean asynchronous systems can be non-deterministic, thus from the same
state a variable can take both value 0 or 1. To encode this dynamics, one re-
quires to have explicit rules for each value of a variable and the modeling of
[7] is not suitable. In [5], we proposed a modeling of multi-valued synchronous
systems as annotated logic program. This modeling can be applied to repre-

2

sent Boolean asynchronous systems and is recalled in the following section. In
order to represent multi-valued variables, all atoms of a logic program are now
restricted to the form varval. The intuition behind this form is that var repre-
sents some variable of the system and val represents the value of this variable.
In annotated logics, the atom var is said to be annotated by the constant val.
We consider a multi-valued logic program as a set of rules of the form

varval ← varval11 ∧ · · · ∧ varvalnn (1)

where varval and varvalii ’s are atoms (n ≥ 1). For any rule R of the form (1), left
part of ← is called the head of R and is denoted as h(R), and the conjunction
to the right of ← is called the body of R. We represent the set of literals in the
body of R of the form (1) as b(R) = {varval11 , . . . , varvalnn }. A rule R of the
form (1) is interpreted as follows: the variable var takes the value val in the
next state if all variables vari have the value vali in the current state. A state
of a multi-valued program provides the value of each variable of the system and
a transitions is a pair of states. The value of a variable in a state is called a
local state. The set of all local state is denoted LS. The subset of state is called
a partial state. A rule R matches a state s when b(R) ⊆ s. A rule R subsumes
a rule R′ when h(R) = h(R′), b(R) ⊆ b(R′). A Boolean Asynchronous system
can be represented by a multi-valued logic program. This section provides the
necessary additional formalization to interpret asynchronous dynamics by such
program and to learn from state transitions.

2.1 Modeling and learning of asynchronous dynamics

Due to the non-deterministic nature of asynchronous systems and its restric-
tion to atmost one variable change per transition, the notion of consistency,
realization and successor has to be adapted as follows.

Definition 1 (Consistency). Let R be a rule and E be a set of state transition
(I, J). R is consistent with E iff b(R) ⊆ I implies ∃(I, J) ∈ E, h(R) ∈ J . A
logic program P is consistent with E if all rules of P are consistent with E.

Definition 2 (Program realization). Let P be a logic program and E be a set
of state transitions. P realizes E if ∀(I, J) ∈ E,∃R, b(R) ⊆ I, (I \ J) = {h(R)}.

Definition 3 (Asynchronous successors). Let I be the current state of an asyn-
chronous system represented by a set of multi-valued rules S. Let TP (I, S) =
{h(R)|R ∈ S, b(R) ⊆ I}. The successors of I according to S is

T as
P (I, S) = {I \ {vval

′
} ∪ {vval}|vval

′
∈ I, vval ∈ TP (I, S)} ∪ {I | TP (I, S) = ∅}

We now adapt the LFIT algorithm of [7] to the learning of asynchronous sys-
tems. In synchronous case, the rules R learned by LFIT represent a necessity:
h(R) will be in the next state if R match the current state. In asynchronous
case, the rules represent a possibility: h(R) can be in next state if R match
the current state. It allows the modeling of non-determinism: two rules R,R′

can have the same head variables but different values and match the same state

3

which occurs in these case: h(R) = varval, h(R′) = varval
′
, val 6= val′ and

varval
′′ ∈ b(R), varval

′′′ ∈ b(R′) =⇒ val′′ = val′′′.
Like in previous versions, LFIT takes a set of state transitions E as in-

put and outputs a logic program P that realizes E. In [5] multi-valued least
specialization was used to learn multi-valued synchronous systems dynamics.
Starting from the most general rules, least specialization allows to learn the min-
imal rules of such system iteratively from its state transition (I, J) ∈ E. For
every possible varval, varval 6∈ J the most specific rule that is not consistent,
with the transition, i.e. an anti-rule, was generated: MSR := varval ← I. Here,
for the asynchronous case, this anti-rule is generated and the revision occurs
only if @(I, J ′) ∈ E, varval

′ ∈ J ′, i.e. it is impossible to have a transition to
varval from I. Each rule of the currently learned program P that subsumes such
an anti-rule are specialized using least specialization. The resulting program P ′

is consistent and realizes all previously treated transition plus (I, J). Doing so
iteratively for each transitions, the algorithm output a program P which model
the dynamics of the system observed in the transitions E.

Asynchronous LFIT
• INPUT: B a set of annotated atoms and E a set of transitions

• Initialize P := {varval ← ∅ | varval ∈ B}

• For each (I, J) ∈ E

– For each varval ∈ B
∗ If @(I, J ′) ∈ E, varval ∈ J ′
∗ MSR := varval ← I

∗ Extract each rule R of P that subsumes MSR: MR := {R ∈
P | h(R) = varval, b(R) ⊆ I}, P := P \MR

∗ For each R ∈MR

· Compute its least specialization P ′ = ls(R,MSR,B).

· Remove all the rules in P ′ subsumed by a rule in P .

· Remove all the rules in P subsumed by a rule in P ′.

· Add all remaining rules in P ′ to P .

• OUTPUT: P

2.2 Reachability analysis

In the following definitions α is a state and ω a local state.

Definition 4 (LCG). Given a logic program P , an initial state α and a target
state ω, LCG(P, α, ω) = (Vstate, Vrule, Edges) is the smallest recursive structure
with Edges ⊆ (Vstate × Vrule) ∪ (Vrule × Vstate) which satisfies:

ω ∈ Vstate

ai ∈ Vstate ⇔ {(ai, R)|ai ∈ α, h(R) = ai} ⊆ Edges
R ∈ Vrule ⇔ {(R, b(R))} ⊆ Edges

where Vstate ⊆ LS and Vrule ⊆ P are the vertices of LCG.

4

Definition 5 (Trajectory). Given a logic program P and s0 = α, a trajectory
t from α is a sequence of rule-state pairs t = (R1, s1) :: . . . :: (Ri, si) :: . . . ::

(Rn, sn) s.t each i > 0, si ∈ T as
P (si−1, P), si = (si−1\vval ∈ si−1)∪vval′ , h(Ri) =

vval
′
), b(R) ⊆ si−1. From α, the reached state sn by t is denoted α · t.

Definition 6 (Reachability). Given a logic program P , ω is said reachable
in P from α iff there exists a trajectory t s.t. α · t = ω and is denoted
reachable(P, α, ω), otherwise unreachable(P, α, ω).

Definition 7 (Consistent program). Let P be a logic program, Re (resp. Un) be
a set of reachability (resp. unreachability) properties. P is said to be consistent
with Re (resp. Un) iff ∀(α, ω) ∈ Re,∃ a trajectory t in P s.t. α.t = ω and
∀(α, ω) ∈ Un,@ a trajectory t in P s.t. α.t = ω.

Specializing a rule is to add elements in the body of a rule, thus to make the
condition of a rule more difficult to be satisfied (in a more specialized situation)
as the condition of firing becomes more strict.

Definition 8 (Least Specialization of a rule). Let R be a rule, a least special-

ization of R is a rule R′ ∈ ls(R) := {h(R)← b(R) ∪ {varval},@varval′ ∈ b(R)}.
If R contains already all the variables in its body, the only way to specialize R
is to remove R.

Similarly, generalization of a rule is to remove certain elements in the body
of a rule, thus to make the condition of a rule easier to be satisfied.

Definition 9 (Least Generalization of a rule). Let R be a rule, a least gener-
alization of R is a rule R′ ∈ lg(R) := {h(R)← b(R) \ {x}, x ∈ b(R)}.

Definition 10 (Revisable). A logic program P is said revisable w.r.t. a reach-
ability (resp. unreachability) property if: ∃P ′ ∈ {(P \RP)∪{R′ | R ∈ RP , R

′ ∈
ls(R) ∪ lg(R)}} | RP ⊆ P}. P is revisable w.r.t. to a set of property S: if
their exists an ordering S′ of the elements of S such that each ith revision,
0 ≤ i ≤ |S′|, (P being the 0th revision) is revisable w.r.t. the i+ 1th property.

From definition 10, it follows that the revision of logic program P w.r.t.
a set of reachability/unreachability properties S can be found (or proved to
be non-existent) by brute force enumeration of all possible ordering of S and
trying all possible iterative revisions of P . In the next section we propose an
algorithm exploiting the LCG structure to restrict the search to valid ordering
of the properties.

3 Algorithm

In this section we propose an algorithm that exploits the previous formalization
to fit a logic program to reachability properties. Given a set of transition E of
an asynchronous system S, a logic program P is learned via the adaptation of
LFIT of section 2.1. When E is partial, the learned program P does not have
the exact dynamics of S. Given a set of reachability properties Re and a set
of unreachability properties Un of S, we propose an algorithm to revise P so

5

that the dynamics of P satisfy S. As discussed previously, this can be done by
complete brute force but here we propose a first attempt to reduce the search
space. Furthermore, our aim is to find what could be considered a metric of
minimal revision of P : a revision P ′ s.t. @P ′′, (P ′′ \ P ∩ P ′′) ⊆ (P ′ \ P ∩ P ′)

Specialization/generalization operations aim to revise the rule nearest to the
target state in the LCG. If it is not possible, they try to revise the successor,
if there is no possible solution, return ∅ to show the input logic program is
not revisable. Specialization operation is limited by the observation. If P after
specialization can not explain all the transitions, the specialization is not admis-
sible. Generalization is similar but without the constraint of the observation, as
the observation is partial, P may describe some state transitions never observed.

Specialization:

• Input: a logic program P , an unsatisfied element (α, ω), a reachable set
Re, an unreachable set Un

• Output: modified logic program P or ∅ if not revisable

1. Rev ← {ω}

2. For each R s.t. h(R) = Rev, for each R′ ∈ {R′′|R′′ ∈ ls(R) ∧ @(I, J) ∈
E, s.t. @R′′′ ∈ P ∪ {R′′} \ {R}, h(R′′′) ∈ J, b(R′′′) ∈ I}

• If P ′ ← P \ {R} ∪ {R′}, unreachable(P ′, α, ω) and P ′ satisfies all
previous properties, return P ′

3. Rev ← b(R) with h(R) = Rev and back to step 2

4. There is no revision for (α, ω), return ∅

Generalization:

• Input: a logic program P , an unsatisfied element (α, ω), a reachable set
Re, an unreachable set Un

• Output: modified logic program P or ∅ if not revisable

1. Rev ← {ω}

2. For each R s.t. h(R) = Rev, for each R′ ∈ lg(R)

• If P ′ ← P \ {R} ∪ {R′}, reachable(P ′, α, ω) and P ′ satisfies all pre-
vious properties, return P ′

3. Rev ← b(R) with h(R) = Rev and back to step 2

4. There is no revision for (α, ω), return ∅

6

Complete revision:

• Input: a logic program P , a reachable set Re and an unreachable set Un

• Output: revised logic program P or ∅ if not revisable

1. Construct the cycle-free LCGs for the elements in Re and Un and compute
unsatisfied sets Re′ ⊆ Re and Un′ ⊆ Un which are to be revised

2. If Re′ = ∅ and Un′ = ∅, return P

3. Let L = {li, . . .} with i ∈ Re′ ∪ Un′, li = {j, . . .}, with j = (α, ω),
ω ∈ LCG(i) and j ∈ Re ∪ Un

4. Pick one of li ∈ L of the smallest cardinality: @l′i, |l′i| < |li|

5. If li ∩ (Re′ ∪ Un′) 6= ∅,

(a) Reconstruct the LCG for i

(b) If li becomes consistent because of former revision, L← L \ {li} and
back to step 4

6. If i ∈ Un′, specialize P to make i unreachable, if not revisable, return ∅

7. Otherwise generalize P to make i reachable, if it is not revisable, return
∅

8. L← L \ {li}

9. If L 6= ∅ , back to step 1

10. Return P

The main algorithm starts with constructing the LCGs to verify Re and
Un in order to ensure the reachability/unreachability properties to be satisfied.
Then, for the unsatisfied properties, the program P has to be revised. LCG can
share the elements s.t. revising one can modify the others. By starting with
the LCGs with least dependencies with others, i.e. the ones with the smallest
cardinality of li, it increases the chance of partially satisfying other unsatisfied
properties (step 3 and 4). Then all possible revision of P are generated using
least specialization or generalization according to li ∈ Re or li ∈ Un (step
6 and 7). Each revision of P is checked against Re and Un to verify that all
properties satisfied by P are still satisfied. If new ones are satisfied, L is updated
accordingly (step 5). We update P until there is no unsatisfied properties (step
8 and 9). Finally, if a revision of P consistent with all given properties is found
the algorithm terminates and output it.

7

4 Conclusion

In this paper, we strengthen the capability of LFIT framework to the learning
of Boolean asynchronous systems in the form of logic programs. Asynchronic-
ity implies non-determinism which is meaningful to the modeling of uncertain
parts in biology. We propose a method revising the logic program learned by
LFIT w.r.t. the knowledge on reachability properties. If the logic program is
revisable, the revision is consistent with both state transitions and reachability
information. However, our algorithm does not guarantee the minimal revision of
the logic program. As future works, considering the metric for minimal revision
and designing a related algorithm will be interesting. Adapting more dynamical
properties other than reachability also remains as our future work.

References

[1] G. Bernot and F. Tahi. Behaviour preservation of a biological regulatory
network when embedded into a larger network. Fundamenta Informaticae,
91(3-4):463–485, 2009.

[2] X. Chai, M. Magnin, and O. Roux. A Heuristic for Reachability Problem in
Asynchronous Binary Automata Networks, 2018. arXiv:1804.07543v1.

[3] E. M. Clarke and Q. Wang. 25 years of model checking. In International
Andrei Ershov Memorial Conference on Perspectives of System Informatics,
pages 26–40. Springer, 2014.

[4] K. Inoue. Logic programming for boolean networks. In Proceedings of
the Twenty-Second international joint conference on Artificial Intelligence-
Volume Volume Two, pages 924–930. AAAI Press, 2011.

[5] D. Mart́ınez Mart́ınez, T. Ribeiro, K. Inoue, G. Alenyà Ribas, and C. Tor-
ras. Learning probabilistic action models from interpretation transitions.
In Proceedings of the Technical Communications of the 31st International
Conference on Logic Programming (ICLP 2015), pages 1–14, 2015.

[6] L. Paulevé, M. Magnin, and O. Roux. Static analysis of biological regulatory
networks dynamics using abstract interpretation. Mathematical Structures
in Computer Science, 22(04):651–685, 2012.

[7] T. Ribeiro and K. Inoue. Learning prime implicant conditions from interpre-
tation transition. In Inductive Logic Programming, pages 108–125. Springer,
2015.

8

	Introduction
	Formalization
	Modeling and learning of asynchronous dynamics
	Reachability analysis

	Algorithm
	Conclusion

