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Abstract

Laminar/turbulent transition of a channel entrance flow for uniform inlet condition is
revisited using global linear optimization analyses and direct numerical simulations. This
work focuses on the region near the inlet, for a subcritical Reynolds number flow. The
laminar flow developing from the entrance is linearly stable, but when perturbed by local
optimal modes from the inlet section can give rise to steady nonlinear streaks, developing
in the boundary layers on the walls. In this study, only the lower wall is perturbed.
The boundary layers are asymptotically stable, however, a secondary linear instability
analysis shows that for sufficiently high amplitude of the streaks, global optimal modes,
both varicose and sinuous, taking the form of wavepackets, are amplified. It is shown that
for short optimization times, varicose wavepacket grows through a combination of the Orr
and lift-up effects, whereas for larger target times, both sinuous and varicose wavepackets
(if exist) exhibit an instability mechanism driven by the presence of inflection points in
the streaky flow. In addition, while the initial conditions for the optimal varicose modes
obtained for short optimization times are localized near the inlet, where the base flow is
strongly three-dimensional, the sinuous and varicose optimal modes are displaced further
downstream, in the nearly parallel streaky flow, when the target time is increased. Finally,
the effects of nonlinearities are highlighted by investigating the space-time evolution of
the optimal wavepackets when superimposed to the streaky flow with a sufficiently high
amplitude to trigger breakdown to turbulence. It is noticed that the resulting turbulent
flow have the same wall-shear stress, whether the wavepackets have been obtained for
short or for long time optimization.

1 Introduction

Transition from laminar to turbulent of wall bounded flows has traditionally been studied by
considering the case of the Blasius boundary layer and the Poiseuille channel flow while less
attention has been paid to flow developing in the entrance region. The latter problem remains
of fundamental importance for giving a better understanding of transition in channel or pipe
where differences between theoretical, numerical and experimental approaches are frequently
attributed to flow development effects (see [1] for the pipe flow case for instance). In the entrance
region of the plane channel, at sufficiently high Reynolds number, the flow is characterized by
the development of boundary layers along the two flat plates that merge far downstream. Both
boundary layers are subjected to a favorable pressure gradient due to the confinement effect.
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It has for consequence to stabilize the flow with respect to the so-called Tollmien-Schlichting
mode. Up to now, linear theories fail to ascribe subcritical transition observed in the plane
channel flow to stability properties of the streamwise velocity profiles in the channel entry flow,
as shown by Biau [2]. However, these theoretical studies focus on the region downstream the
entry zone where the evolution of the flow has a universal character (see Asai and Floryan
[3]) and therefore are not directly connected to the flow behaviour near the inlet. The major
difficulty is that near the leading edges the flow is strongly dependent of the inlet geometry as
well as of the prescribed inflow velocity, as shown for instance by Sadri and Floryan [4]. For the
case where the inflow condition is uniform at the inlet, Buffat et al. [5] have recently shown by
direct numerical simulations (DNS) that, while boundary layers near the entrance are linearly
stable for exponentially growing modes, they may experience laminar/turbulent transition well
before their achievement to a fully developed flow (i.e. the Poiseuille flow solution). They show
that transition occurs by secondary instability of streaks (elongated regions of excess or defect
of streamwise velocity) leading to a rapid breakdown to turbulence. In their study, streaks
have been generated by superimposing the optimal mode of the linear stability analysis of the
inlet velocity profile. The optimal modes consist of a pair of streamwise vortices, located inside
the laminar boundary layer at the entrance of the channel. The streaks are amplified due to
the so-called lift-up mechanism [6] that yields to a significant nonlinear growth, resulting in
strongly distorted streaks compared to their linear counterparts. In that way, the path leading
to a turbulent flow highlighted by Buffat et al. [7] exhibits a strong resemblance to the bypass
scenario for a flat plate boundary layer flow (see for instance Brandt and Henningson [8], Zaki
and Durbin [9] and Durbin and Wu [10]). Buffat et al. [5] also show that the fully developed
turbulent regime downstream is similar to a turbulent channel flow. Despite these similarities,
the bypass transition scenario observed by the latter authors differs in some points from previous
DNS of streak breakdown. While it is commonly accepted that streak breakdown is often caused
by sinuous instability (i.e. an anti-symmetric pattern with respect to the low-speed streak),
Buffat et al. [5] show that streaks experience a transient varicose instability (i.e. characterized
by a symmetric pattern) near the inlet before to be dominated by a sinuous motion.

Andersson et al. [11] carried out the first linear stability analysis on a frozen streamwise
invariant streaky boundary layer flow with various amplitudes. They reported the onset of high-
frequencies modal secondary instabilities for critical streak amplitudes of 26% and 37% for the
sinuous and varicose modes, respectively. The varicose instability is usually related to wall
normal inflectional velocity profiles whereas the sinuous one to the presence of inflection points
along the spanwise direction. This scenario is generally observed. However, Brandt [12] reported
that for a specific low-speed streak shape, sinuous instability may be amplified due to the
wall-normal shear. Nevertheless, discrepancies still remain between critical streak amplitudes
predicted by modal linear stability theory and experiments, as reported by Matsubara and
Alfredsson [13], Mandal et al. [14] where streak breakdown is observed for significantly lower
streak amplitudes. These last few years, many explanations have been addressed trying to fill
the gap between theoretical and experimental observed thresholds. Vaughan and Zaki [15] and
Hack and Zaki [16] suggest that discrepancies can be overtaken by considering more realistic
streaks (i.e. having a finite size in the streamwise direction and being unsteady). Brandt
and de Lange [17] show that streak collisions may lead to breakdown to turbulence for critical
streak amplitudes lower than the ones predicted by a modal linear stability theory. Finally,
it is also clear that bifurcations of streaks may not be necessary attributed to a secondary
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modal instability. Since the preliminary work of Schoppa and Hussain [18] that deals with
streaks populating the near-wall region of a turbulent channel flow, a viable scenario relying
on a breakdown mechanism triggered by the transient growth of secondary perturbations have
emerged. In particular, optimal modes having the highest potential in transient energy growth
are computed for idealized streaks that are invariants with respect to the streamwise direction
by Hoepffner et al. [19] and Cossu et al. [20], for flat plate boundary layer and channel flows.
The previous authors show that streaks may sustain large transient energy growth for both
sinuous and varicose symmetries at amplitudes significantly below the critical value beyond
which streaks are unstable with respect to an exponentially growing mode. In particular,
Hoepffner et al. [19] highlight the importance of Orr [21] and lift-up [6] mechanisms in extracting
energy from the base flow. The subcritical behaviour of streaks is further investigated by Cossu
et al. [22] for the case of a channel flow. The authors carried out nonlinear simulations in
the AU − AW plane, where AU and AW are associated with the nonlinear saturated streaks
amplitude and the amplitude of the secondary perturbation, respectively. Cossu et al. [22]
found that transition due to a modal instability is given for large streak amplitude and small
amplitudes for the secondary perturbations. Streaks breakdown caused by a transient growth of
secondary perturbations is obtained for significantly smaller streaks amplitudes. In the former
study, it is clearly enlightened that a full understanding of bypass transition scenario is not
only provided by the aim of computing streaks amplitude giving rise to a modal instability but
should also take into account the amplitude of secondary perturbations and nonlinear effects.

Recently, Cherubini et al. [23] carried out linear global optimizations (i.e. relying on a
three-dimensional basic state and aiming to compute localized perturbations in space inducing
the largest transient energy growth for a given time) for boundary-layer flow in the presence of a
smooth three-dimensional roughness element. In contrast to a parallel flat plate boundary layer
flow, the authors show that for short optimization times, the highest potential in kinetic energy
growth is obtained for a varicose symmetry. The three-dimensional optimal mode is seen to take
the form of a localized wavepacket in the wake of the bump. In particular, by superimposing
the optimal mode into the basic flow, the streaky motion behind the bump exhibits a subcritical
bifurcation when the amplitude of the secondary perturbation is sufficiently large. It yields to
the formation of hairpin packets that lead to laminar/turbulent transition.

The preceding discussion summarizes two mechanisms for which a streaky boundary layer
flow undergoes a secondary instability: a modal instability, mainly associated with sinuous
symmetry and a nonmodal mechanism where both the varicose and sinuous scenario may be
viable. It may be suggested that streaks developing at the entrance of a channel flow can also
support secondary instabilities for either a modal or nonmodal mechanism leading to turbu-
lence. The present work thus aims to investigate the relevancy of the last mentioned scenario
elaborated on a flat plate boundary layer for the case of the entrance channel flow and especially
in a region far upstream the merging of the boundary layers. It is devoted to the study of the
secondary instability mechanisms associated with steady streamwise varying streaks of various
amplitudes, located near the entrance of a channel flow. Based on the recent analysis carried
out by Cherubini et al. [23], instability properties is analyzed in the light of a global optimiza-
tion framework allowing to consider both nonmodal and modal mechanisms (Orr and lift-up
effects, and instability governed by inflection points, respectively) without any assumptions
on the basic state. The present study address fundamental questions such as the following:
do streaks developing near the inlet bifurcate by means of modal or nonmodal mechanisms ?
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What are the physical mechanisms responsible for the growth of secondary instability for either
the sinuous or varicose symmetry ? And what are the effects of nonlinearities associated with
secondary instabilities and their consequences for driving the flow into a turbulent regime ?

The paper is organized as follows. In section 2, we formulate numerical methods and the
optimization theory that are employed to investigate stability properties of the streaks near the
entrance region. In section 3, after having presented the base flows associated with three dif-
ferent streaks amplitudes, we show the optimal modes and the underlying physical mechanisms
responsible for the growth. In the light of these results, the influence of nonlinearities will be
discussed by using Direct Numerical Simulations in section 4. The different paths leading to a
fully turbulent channel flow associated with instabilities near the inlet region will be presented
in section 5. Finally, section 6 is devoted in drawing conclusions and perspectives.

2 Theoretical background

2.1 Problem formulation

This paper is concerned with the stability properties of streaks embedded in a spatially develop-
ping plane channel flow. In the following, the variables are made dimensionless with the channel
half-width h and the flow rate velocity U0 across the channel inlet section, the Reynolds number
is defined by Re = U0h/ν where ν is the kinematic viscosity. Using the cartesian coordinate
system (x, y, z), the channel walls are the two semi-infinite planes y = ±1, 0 ≤ x and the inlet
section is at x = 0. We are especially interested in the entrance region, located downstream the
inlet section, but still distant from the the fully-developped stage corresponding to Poiseuille
solution (x ∼ Re). The flow satisfies the incompressible Navier-Stokes equations:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u,

∇ · u = 0,

(1)

and (u, v, w) will denote the cartesian components of the velocity u. The base flow under study
is specified by the velocity field U, which is a steady solution of (1). This field splits into two
parts : U = U2D+uS. The first partU2D is the two-dimensional steady solution of (1) obtained
when imposing uniform velocity U = (1, 0, 0) in the freestream. At the value of Re considered
hereafter, this flow consists of two Blasius-like boundary layers slowly evolving downstream
towards the Poiseuille solution. It will be referred to as the primary base flow. The second
part uS is a disturbance that takes the form of a three-dimensional streamwise/streak pattern.
The disturbance, referred to as the primary disturbance, is such that U satisfies (1) without
linearization assumption at this stage. Our interest is in the space-time evolution of secondary
perturbations u′ superimposed to U. Depending on whether we are interested in purely linear
effects or in the non-linear regime, this evolution will be determined using the linearized version
of (1) or its primitive form. The governing equations associated with the linear dynamics of u′

are found by substituting u = U + εu′ and p = P + εp′ (p′ is the pressure perturbation) into
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Flow cases Lx Ly Lz Nx Ny Nz

U2D 100 2 1920 193
U 100 2 λz 1920 193 24
u′ (linear) 100 2 λz 1920 193 24
U+ u′ (nonlinear) 100 2 4λz 1920 193 96

Table 1: Flow cases. The side lengths of the rectangular computational box are Lx, Ly and
Lz for the streamwise, wall-normal and spanwise directions, respectively. Nx, Ny and Nz are
the corresponding numbers of modes. λz ≃ 1.14 is the fundamental wave length of the primary
disturbance (i.e. the vortex/streak pattern).

equations (1) and keeping only the first order in ε. It yields the following system:

∂u′

∂t
= − (U · ∇)u′ − (u′ · ∇)U−∇p′ +

1

Re
∇2u′,

∇ · u′ = 0,

(2)

which is complemented by appropriate boundary and initial conditions.

2.2 Numerical methods

The numerical method is based on a spectral Galerkin approximation of the velocity fields using
Fourier expansions in both the streamwise and spanwise directions and Chebyshev polynomials
in the wall-normal direction. Using a divergence-free basis set of vectors, continuity is satisfied
implicitely [24] and the pressure disappears from the discretized equation. To overcome the
inherent difficulties when using Fourier modes along x, which is a direction of evolution for the
flow, a fringe region technique is employed [25]. By adding a forcing term into the Navier-Stokes
equations, the outgoing flow is smoothly driven to the prescribed inlet condition. In order to
build the target velocity field which is used in the fringe region, a preliminary calculation of
the primary base flow is carried out using a second-order finite difference code (see Nordstrom
et al. [26]). The numerical method employed to compute this preliminary solution is detailed
in Alizard et al. [27].

The discrete system attached to (1) is solved at each time step using a low storage semi-
implicit third-order Runge-Kutta scheme. Viscous terms are treated implicitly while an explicit
scheme is used for the convective term, as described by Spalart et al. [28]. Numerical methods
are further detailed in Buffat et al. [7]. To solve the linearized problem (2), the coupling term
with the base flow is also treated explicitely.

The different types of flow simulation investigated hereafter are listed in table 1, as with
the chosen parameters of discretization. For all flow cases, the Reynolds number is fixed to
Re = 2500 and the computation domain is comprised between x = x0 and x = x0 + Lx, with
x0 = 16 and Lx = 100. In the following, we will make use of the notation xi = x − x0 for
the shifted streamwise coordinate. For all computations, the fringe region is located between
xi = 0.9Lx and xi = Lx.
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2.3 Linear global optimization

In this section, we describe the method used to identify optimal perturbations i.e. perturbations
undergoing the largest linear growth in energy for a given time horizon. Let us first write the
solution of the linearized Navier-Stokes equations around the steady state (2) as :

u′ (t) = A (t)u′

0, (3)

Under this form, in which the space variable is left out, the A (t) appears as a forward time-shift
operator for the initial perturbation, u′ (t = 0) = u′

0 6= 0. It is known that streaky boundary
layer flows are absolutely stable and that they can exhibit large energy growth due to convective
instabilities [29]. In fact, the dynamics of interest is quantified through the singular value
decomposition of A (t). We introduce the kinetic energy norm associated with the L2 inner
product, noted herein as <,> and focus on the space-time evolution of u′

0, a perturbation given
at t = 0 and having finite kinetic energy. The rate of change of perturbation energy is measured
by:

E (t)

E0

=
< u′ (t) ,u′ (t) >

< u′

0,u
′

0 >
, (4)

where E0 = E(t = 0). Using (3), we define thus the optimal energy growth over all possible u′

0

as:
E (t)

E0

=
< A⋆ (t)A (t)u′

0,u
′

0 >

< u′

0,u
′

0 >
. (5)

Thus, perturbations leading to the largest energy growth are the ones associated with the
dominant eigenvalue of A⋆ (t)A (t) which is also the largest singular value of A (t). An optimal
perturbation at the initial time is a right-singular vector associated with the largest singular
value. To determine the operator A (t) (or its adjoint), we follow the method developed by
Barkley et al. [30], the so-called time-stepper approach. The operator A (t) (or its adjoint) is
first approximated by integrating forward (or backward) in time the linearized Navier-Stokes
equations. Then, an Arnoldi algorithm based on a Krylov subspace constructed by successive
applications of A⋆ (t)A (t) is used to extract the dominant singular values of A (t) for various
time horizons. In the following, optimal disturbances of unit initial energy are referred to as
optimal modes.

3 Results

3.1 Primary and secondary base flows

We first consider the primary base flow U2D. As explained in the previous section, in order to
built the target velocity field for the fringe region. a preliminary computation has been carried
out on a large domain capturing the upstream influence of the leading edges of the two plates.
Figure 1(a) shows the streamwise evolution of the centerline velocity Uc. The result obtained
by using the fringe region technique and the one associated with the finite-difference code are
in perfect match. A similar observation can be made for integral boundary layers values (not
shown here). It should be noted that for sections of interest (x ≤ x0 = 16), the flow is also
similar to the one resulting from application of irrotational conditions in the entrance section
and the potential effects due to geometry is negligible at this distance [31].
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Figure 1: Primary base flow U2D. (a) Velocity at the center of the channel. : DNS
code with a fringe region technique. : preliminary computation carried out with a finite-
difference code of second order. (b) Integral boundary layer parameters: displacement
thickness δ⋆; , momentum thickness θ; ,shape factor H; , theoretical values for
laminar Blasius profile (where δ⋆ (xi = 0) is fixed equal to the entrance channel flow value).

As previously mentionned, we note that the domain of interest is located well upstream of the
fully-developed region (i.e. where Uc = 1.5). Defining the entrance length Le as the streamwise
position where Uc reaches 0.99% of the Poiseuille solution, there is a well-know criterion based
on Blasius boundary-layer argument suggesting that Le/h ∼ Re, for large enough Re and thus
quite a large extent for the flow developping zone. The data of Figure 1(a) give Le/h ≈ 433
which is very close to the value 442 obtained with the correlation proposed by [32].

In figure 1(b) we show the development of the displacement and momentum thickness (δ⋆,
θ, respectively) and the shape factor (i.e. H = δ⋆/θ), together with the well-known values for
a zero-pressure gradient flat plate boundary layer. Due to the favorable pressure gradient, the
boundary layers developing along the walls thicken slower than in flat plate case.

Let us now consider the secondary base flow U. To generate streamwise-elongated streaks
typical of the lift-up effect, a pair of streamwise vortices is injected in the section xi = 0 of the
boundary layer developing along the lower wall. The shape of the perturbation is obtained by
solving the local, linear optimization problem, that is to say that the vortex pair maximizes
kinetic energy in the framework of linear temporal stability analysis with parallel base flow
assumption. Only one spanwise wavelength of the optimal (i.e. one vortex pair) is considered.
Its numerical value is λz ≈ 1.14. When rescaled by the displacement thickness at the inlet,
the corresponding spanwise wavenumber ≈ 0.66 is very close to the value associated with a flat
plate boundary layer without pressure gradient (≈ 0.65, see [33] for instance). The code used
to compute the optimal vortex pair is detailed in Alizard et al. [34].

Different secondary base flows are computed for different amplitudes of the vortex pair at
the section xi = 0. In particular, we use the kinetic energy norm to measure amplitudes of
initial streamwise vortices :

A0 =

∫ 1

−1

(
vs

2 (xi = 0) + ws
2 (xi = 0)

)1/2
dy,

with vs and ws being the normal and spanwise components of the primary disturbance. To
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Figure 2: Secondary base flow U. Streamwise evolution of the streak amplitude for A0 = 0.015;
, A0 = 0.025 and , A0 = 0.04.

quantify the size of the streak at each streamwise position, we define its amplitude As as follows:

As (x) =
1

2Uc

[

max
(y,z)

(
U(x, y, z)− U(x, y)

)
−min

(y,z)

(
U(x, y, z)− U(x, y)

)
]

,

where U is the z-average streamwise velocity and Uc the mean centerline velocity: Uc = U(x, 0).
The streamwise evolution of the streak amplitude is shown in figure 2 for the three increasing
values A0 = 0.015, 0.025 and 0.04. The maximum of amplitude observed during the transient
growth process also increases, albeit more moderately, from 0.33 to 0.42, as an effect of nonlinear
saturation. While for the lowest value the streak amplitude has rather smooth variations,
for the higher value, we observe that the top of the profile is strongly pinched as it shifts
upstream. For all flow cases, the three-dimensional flow evolves gradually into a quasi-parallel
streaky motion further downstream. In figure 3, the streak is represented for the different
initial amplitudes through streamwise velocity isocontour plots in the (y, z)-section where its
amplitude is maximum. As observed by several authors for the case of a flat plate boundary
layer, regions of strong spanwise shear are formed on both sides of the low-speed region which
is also displaced further away from the wall, as the initial amplitude increases. For the largest
value of A0, non-linear effects are also responsible for shaping the low-speed streak into a typical
mushroom pattern.

3.2 Local exponential secondary instability

In this section, we carry out a local modal stability analysis of the secondary base flow U for
A0 = 0.015, 0.025 and 0.04. For that purpose, we consider that U is invariant in the x direction
(i.e. U = U (y, z)). A traveling wave is assumed for the secondary instability u′ such as:

u′ = û (y, z) ei(αx−ωt) + c.c, (6)

where α ∈ R is the streamwise wave number, ω ∈ C is the complex circular frequency, and c.c
denotes the complex conjugate. We may decompose ω into a real part ωr and an imaginary
part ωi, where the latter is the temporal amplification rate. A positive value of ωi indicates the
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Figure 3: Secondary base flowU. Streamwise velocity contour plot in a (z, y) cross-stream plane
at (a) xi = 11.7, (b) xi = 7.4 and (c) xi = 5.8 for A0 = 0.015, 0.025 and 0.04, respectively.

onset of an exponential growth mode. The linear system (2) reduces into a eigenvalue problem
for ω. The code described in Alizard [35] is used to compute the least damped mode for various
xi-stations and α. In addition, we restrict our analysis to sinuous and varicose modes defined
as:

û(y, z) = −û(y,−z), v̂(y, z) = −v̂(y,−z), ŵ(y, z) = ŵ(y,−z),

and
û(y, z) = û(y,−z), v̂(y, z) = v̂(y,−z), ŵ(y, z) = −ŵ(y,−z).

respectively.
In figure 4, we report results for A0 = 0.015, 0.025 and 0.04. For the lowest streak amplitude,

panel (a) shows that an exponentially growing mode exists for the sinuous case when xi > 6. In
addition, the temporal amplification rate reaches a maximum near xi ≈ 20 where ωi ≈ 0.28. For
the varicose symmetry, modes are seen temporally damped. The case A0 = 0.025 is displayed
in panels (c) and (d) for the sinuous and varicose symmetries, respectively. It shows that while
the sinuous exponential mode is unstable for xi > 3.5, the varicose wave is stable until xi ≈ 7.5.
It exhibits for all streamwise positions a lower temporal amplification rate than the sinuous
mode. In particular, ωi reaches a maximum at xi ≈ 10 for the sinuous mode and xi ≈ 20
for the varicose mode where ωi ≈ 0.44 and ωi ≈ 0.18, respectively. Results for A0 = 0.04
are shown in panels (e) and (f). The temporal amplification rate for the sinuous symmetry
exhibits two peaks at xi ≈ 5 and xi ≈ 12 where ωi ≈ 0.48 and ≈ 0.4, respectively. One may
remark that the onset of several modes for large streak amplitudes have also recently been
observed by John et al. [36] for the leading edge boundary layer near the attachment line. For
the varicose case, ωi peaks for xi ≈ 12 with a value ≈ 0.5. While the most amplified mode has
a sinuous symmetry for xi < 8, it exhibits a varicose pattern for larger streamwise position.
The phase velocity c = ωr/α scaled by the maximum streamwise velocity Umax = maxy,z U for
maxα ωi (α, xi) is shown in panel (b). The figure shows that both sinuous and varicose modes
propagate with a phase velocity 0.7 < c/Umax < 0.85. It is interesting to notice that the onset
of an exponentially growing mode is observed when As ≈ 30% and As ≈ 38% for the sinuous
and varicose cases, respectively. These values are closed to the ones computed by Andersson
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Figure 4: Secondary base flow U. Local stability analysis. Isocontours of the growth rate ωi

in the (α, ωr) plane for A0 = 0.015 (a), A0 = 0.025 (c),(d) and A0 = 0.04 (e),(f). The sinuous
fundamental modes are shown in (a),(c) and (e). The fundamental varicose modes are shown
in (c) and (d). Panel (b) Phase velocity c = ωr/α dimensionless by Umax = maxy,z U (x, y, z)
for maxωi. Cases A0 = 0.015, 0.025 and 0.04 are referenced as 1, 2 and 3, respectively.
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Figure 5: Optimal energy gain as a function of the target time for A0 = 0.015, 0.025 and
A0 = 0.04 with respect to (a) the sinuous symmetry and (b) the varicose symmetry. In red
dashed lines, a least-square exponential fitting is also reported for 8 ≤ topt ≤ 12.

et al. [11] for the case of a flat plate boundary layer (26% and 37%, respectively). Finally, the
local stability analysis for the case A0 = 0.04 is not able to predict which symmetry is selected
by modal secondary disturbances. For the latter, temporal amplification rates reach similar
values for both the varicose and sinuous case.

3.3 Global optimal perturbations: linear dynamics

3.3.1 Effect of streak amplitude and optimization time

Optimizations are carried out for secondary base flows illustrated in the previous section. In
figure 5, we report the evolution of the optimal energy gain as a function of the target time
for both sinuous and varicose symmetries. For all sinuous cases, optimization curves exhibit a
strong amplification between topt = 0 and topt = 2 and is seen to grow almost exponentially with
time after. It may suggest that optimal perturbations are subjected to a nonmodal amplification
for short times and behaves as an exponential mode for long times. For the sinuous case, an
exponential least square fit for 8 < t < 12 provides exponential growth rates varying from
0.51 to 0.71 when A0 is increased from 0.015 to 0.04. Recalling that G (t) measures a kinetic
energy, figure 5(a) shows that optimal sinuous modes exhibit an exponential behaviour for
t > 8 with a temporal amplification rate σ ≈ 0.26 for A0 = 0.015 and σ ≈ 0.36 for A0 = 0.025
and 0.04. One may notice a close correspondence between amplification rates provided by the
global optimization and modal local stability analysis especially for the lowest streak amplitude
where nonparallelism effects are weaker (for instance max(α,xi) ωi ≈ 0.28 for A0 = 0.015). For
the largest streak amplitude (i.e. A0 = 0.04), global optimization suggests that local instability
mode corresponding to the secondary peak observed in figure 4 (e) is selected for long times.

A similar behaviour is observed for the varicose case for A0 = 0.025 and 0.04. Furthermore,
the figure 5 shows that for topt = 2, optimal gains for varicose type reach levels of energy
comparable to those of the sinuous one for all amplitudes that are considered. The figure also
shows that while optimal disturbances have a sinuous symmetry for A0 = 0.015 and 0.025, anti-
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symmetric configuration is the most amplified for A0 = 0.04. It is interesting to notice that
such a behaviour is not well predicted by a local stability theory. In addition, for A0 = 0.015
optimal energy gains with respect to varicose symmetry reach a maximum for topt = 8 and are
seen to decrease for larger time horizons. It suggests that in this case, the varicose mode is not
driven by an exponential instability. The latter remark is consistent with local stability results
discussed in the previous section. For topt = 4, 8 and 12, we report time evolutions of E (t) /E0

for optimal sinuous disturbances and A0 = 0.015 in figure 6(a) and in figures 6 (b), (c) for
the varicose type, where the amplitude is fixed to A0 = 0.015 and 0.025, respectively. For the
sinuous type, kinetic energy curves exhibit an algebraic growth for short times and an almost
exponential behaviour for t ≥ 8 for all initial conditions that are considered. In particular,
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Figure 6: Kinetic energy amplification of disturbances as a function of time in the case of (a)
sinuous symmetry and A0 = 0.015; (b),(c) varicose symmetry for A0 = 0.015 and A0 = 0.025,
respectively; for target times topt = 4 ( ), topt = 8 ( ) and topt = 12 ( ). The
optimal gains associated with topt = 4, 8 and 12 are also indicated by •.

kinetic energy curves are superimposed for topt = 8 and 12.
To firstly characterize optimal perturbations in terms of optimization times and streak

amplitudes, we introduce a measure of its streamwise localization such as

Ex (xi, t) =

∫

Ly

∫

Lz

(u′ · u′) (xi, y, z, t) dydz.

As shown in figures 7 and 8, optimal disturbances for both the varicose and sinuous cases are
seen to be localized in the streamwise direction whereas optimal modes for wall-bounded flows
without streaks are dominated by infinitely elongated structures [33]. In the case of the primary
base flow for the entrance channel flow, optimal disturbances computed with a similar method
yield to strongly elongated streaks similarly as the ones obtained by Monokrousos et al. [37]
for a flat plate boundary layer.

Optimal sinuous and varicose modes are seen to propagate downstream as they gain in
kinetic energy. The latter behavior is expected due to the convective nature of streaks as
reported for the flat plate boundary layer by Brandt et al. [29]. For the sinuous symmetry,
distributions of Ex for t = 0 and t = topt are shown in figure 7 as a function of the distance
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Figure 7: Sinuous case. (a) A0 = 0.015. Distribution of Ex as a function of the streamwise
position for topt = 4 ( ), topt = 8 ( ) and topt = 12 ( ) at t = 0 and t = 12. (b) topt = 12.
Distribution of Ex for the optimal perturbation as a function of the streamwise position for
A0 = 0.015 ( ), A0 = 0.025 ( ) and A0 = 0.04 ( ) at t = 0. Ex is normalized by its
maximum for all cases.

from the inlet. For all amplitudes, the figure shows that for topt = 4, 8 and 12 optimal modes
starts to be amplified close to the streamwise position where local stability theory predicts the
onset of an exponentially sinuous growing mode. Consistent with results shown in figure 6 (a),
the spatial support of optimal mode for topt = 8 remains coincident with the one for topt = 12
between t = 0 and t = 12. The envelope of the optimal perturbation is seen to be unchanged
for larger topt (not shown here for the sake of conciseness). When considering the effect of A0,
the figure 7 (b) shows that as the streak amplitude increases, the optimal mode tends to be
shifted upstream and exhibits a narrow envelope in the streamwise direction.

For the varicose symmetry, when A0 = 0.015 an algebraic growth dominates for all times. In
particular, the distribution of the optimal energy gain as a function of the target time exhibits
a concave shape (see figure 5(b)). For a longer optimization time (topt > 10) the optimal
kinetic energy gain tends to decrease. This behaviour is also observed through kinetic energy
curves shown in figure 6 (b). It is consistent with results provided by local stability analyses
indicating that the flow is temporally stable at all streamwise positions. When the amplitude
is increased up to A0 = 0.025, we observe that the growth is due to a transient mechanism for
short optimization time. In particular, the kinetic energy curve for topt = 4 (and also below)
exhibits a bump whereas for topt = 8 and 12 (and also above), the increase in kinetic energy
is due to the combined effect of an algebraic short time mechanism and a quasi-exponential
growth (see figure 6 (c)). This can be explained by the fact that the spatial distribution of the
latter optimal modes are located in different regions. As shown in figure 8, while the optimal
mode that maximizes kinetic energy for topt = 4 is located in the upper part of the streaky
base flow at the initial time, the one associated with topt = 12 is located far downstream. In
particular, at the initial time, optimal mode for topt ≥ 6 exhibits a spatial distribution mainly
concentrated upon the streamwise position where local stability theory predicts the onset of
an unstable exponential varicose mode whereas optimal mode for topt ≤ 4 gets amplified in a
convectively stable region.

For sinuous cases, Ex (xi, t) is not too affected by time optimization as shown in figure 7.
A similar behaviour is also observed for A0 = 0.04 (not shown here).

Hereafter, we will consider representative varicose and sinuous perturbations that are defined
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Figure 8: Varicose case. (a) A0 = 0.025. Distribution of Ex as a function of the streamwise
position for topt = 4 ( ), topt = 8 ( ) and topt = 12 ( ) at t = 0 and t = 12. (b)
topt = 12. Distribution of Ex for the optimal mode as a function of the streamwise position for
A0 = 0.025 ( ) and A0 = 0.04 ( ) at t = 0. Ex is normalized by its maximum for all
cases.

Mode Symmetry topt A0

V11 Varicose 2 0.015
V12 Varicose 2 0.025
V22 Varicose 12 0.025
S Sinuous 12 0.025

Table 2: Representative optimal modes for sinuous and varicose symmetries.

in table 2. V11, V12 and V22 are associated with mostly amplified varicose perturbations for short
and large optimization times, respectively. Considering the weaker effect of topt on the sinuous
case, only a single mode is considered for A0 = 0.025, noted S.

3.3.2 Linear space-time dynamics and amplification mechanisms

In this section, we will analyze the linear space-time dynamics for optimal wavepackets asso-
ciated with varicose and sinuous symmetries. To this end, we consider two varicose modes,
obtained for A0 = 0.025, topt = 2 and topt = 12 (i.e. V12 and V22, respectively); and the sinuous
optimal mode for the same amplitude and the target time topt = 12: S. Let us first investigate
the V12 case. In figure 9, we show the streamwise vorticity, spanwise vorticity and the stream-
wise velocity components of the perturbation for time varying from t = 0 to t = 3. The optimal
mode takes the form of a wavepacket localized upstream at the initial time. For such a time,
the perturbation is inclined in the upstream direction and is composed of both wall-normal and
spanwise vorticity components, mainly localized in the flanks of the low-speed streak. Then, as
time evolves the mode is reoriented along the wall-normal shear direction where the streamwise
component gets amplified and is elongated in the streamwise direction. For times shown in fig-
ure 9, wavepacket is localized in a region where local stability theory predicts that exponential
modes are damped temporally. From above discussion, figure 9 suggests a combined effect due
to Orr and lift-up mechanisms for the growth of initial disturbances. To gain further insight
into these amplification mechanisms, we analyze hereafter the different terms involved in the
time evolution of the integrated kinetic energy of disturbances. For that purpose, we introduce
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Figure 9: Varicose case V12. The L2 norm of the perturbation is fixed equal to unity at t = 0.
Isosurfaces of spanwise and streamwise perturbation vorticity components are shown in panels
(a),(b) and (c),(d), respectively for times t = 0 ((a) and (c) )and t = 1 ((b) and (d)). Surface
levels correspond to ±500. Isosurfaces of the streamwise perturbation velocity component is
shown in panels (e) and (f) for t = 1 and t = 3. Surface levels correspond to +/ − 100. The
surface level 0.7 for the streamwise component of the base flow is represented in gray for all
panels.
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Figure 10: Varicose case V12. (a) Time evolution of the kinetic energy budget. (b) Time
evolution of the barycenter position. In dashed lines, a linear regression is used to fit the curve
for three space intervals. The velocity varies from 0.63, 0.75 to 1.1.

the so-called Reynolds-Orr equation:

dE

dt
= −

∫

D

(u′ · ∇U) · u′ dD −
1

Re

∫

D

∇u′ : t∇u′ dD (7)

where : represents the double dot product operator and D the computational box. The first
term on the right-hand side are production terms associated with interactions with the mean
shear and the second term is the dissipation due to viscous effects, respectively. In particular,

we note hereafter Ty = −

∫

D

u′v′∂U/∂y dD, Tz = −

∫

D

u′w′∂U/∂z dD the production terms

associated with the work of the Reynolds stresses against, respectively, the wall-normal shear
∂U/∂y and spanwise shear ∂U/∂z. The time evolution of contributions to the kinetic energy
budget for V12 is reported in figure 10(a). We also report in figure 10(b) the time evolution of
the wavepacket barycenter defined as:

Xm (t) =

∑

i γ[i] (t)X[i]
∑

i γ[i] (t)
,

where i indicates the grid-point in the streamwise direction, γ[i] and X[i] represent the inte-
grated kinetic energy over the cross-section (y z) and the corresponding streamwise position,
respectively. Figure 10(a) shows that production terms Ty and Tz contribute mainly to the
growth, the other ones can be thus considered as negligible. As reported in figure 10(b), the
wavepacket is concentrated near the inlet, above the onset of a varicose exponentially growing
mode, and propagates with a low velocity ≈ 0.6 Uc for t < 4. This velocity is substantially
lower than the velocity speed of modal secondary varicose instability given by local stability
analysis carried out in section 3.2. We may also remark that the wavepacket is localized in
a region where the base flow varies significantly along the streamwise direction (see figure 2).
The production term associated with the wall normal shear of the basic flow is positive until
t = 2 and then becomes negative. We also note that the production term that corresponds to
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Figure 11: Varicose case V12. Cross-sections of production terms (a) Ty at t = 1.2 for xi =
Xm (t = 1.2) ≈ 2.7 and (b) Tz at t = 3 for xi = Xm(t = 3) ≈ 3.7. Full line represents position
where U = 0.7.
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Figure 12: Varicose case V12. (a) Time evolution of rx, ry and rz. Vorticity budget for Ω′

x (b)
and Ω′

z (c).

the work of the Reynolds stress against the spanwise shear is dominant for times greater than
1. This is somewhat unexpected, since it is well accepted that varicose perturbations are driven
by the action of the wall-normal basic shear (see Cossu and Brandt [38] for instance). Such a
behaviour is also observed by Hoepffner et al. [19] using a local optimal mode analysis for a
streaky boundary layer flow and by Cherubini et al. [23] for a flow behind a roughness element
using a global optimal mode theory. In figure 11, we show cross-sections of Ty and Tz at t = 1.2
and t = 3, respectively, where production terms peak. The streamwise positions of extracted
planes are fixed to the barycenter position for these times. From figure 11, we may observe that
production terms (both Ty and Tz) are mainly localized on the flanks of the low-speed streak,
consistent with the spatial distribution of the optimal mode shown in figure 9.

To get a better understanding of the underlying mechanisms, we investigate the time evo-
lution of the enstrophy ratios, defined as:

ri =
Ω′

i
∑

j Ω
′

j

with Ω′

i =

∫

D

ω′

i
2
dD and for i = x, y, z, (8)
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where ω′ = ∇ × u′ is the perturbation vorticity vector. A similar analysis is conducted by
Schmidt et al. [39] to understand the physical mechanisms associated with optimal wavepack-
ets growing in a corner flow. At the initial time, the perturbation is mainly composed of
spanwise and streamwise vorticity components as shown in figure 12(a). For early times, we
observe an increase in the contribution of the wall normal vorticity component. In addition, the
spanwise vorticity contribution is almost keep constant during this stage which is associated
with the Orr-mechanism observed in figure 11. For t > 1, a strong increase of the spanwise
vorticity contribution is observed. While the increase of ry may be attributed to a lift-up
mechanism whereby vorticity is transferred from the streamwise to the wall-normal direction,
the understanding of rz increasing requires further analysis. To this end, we introduce the
streamwise, wall-normal and spanwise vorticity perturbation transport equations such as:

dω′

x

dt
≈

∂U

∂z

∂v′

∂x
−

∂U

∂y

∂w′

∂x
−

1

Re
∆ω′

x; (9)

dω′

y

dt
≈

∂U

∂z

∂v′

∂y
−

∂U

∂y

∂v′

∂z
−

1

Re
∆ω′

y; (10)

dω′

z

dt
≈

∂U

∂z

∂w′

∂y
−

∂U

∂y

∂w′

∂z
−

1

Re
∆ω′

z. (11)

where we neglect terms associated with gradients of wall-normal and spanwise components of
the secondary base flow. Multiplying both sides of equation (9) by ω′

x and integrating over the
whole domain yield to:

dΩ′

x

dt
≈

∫

D

∂U

∂z

∂v′

∂x
ω′

xdD

︸ ︷︷ ︸

Pxz

−

∫

D

∂U

∂y

∂w′

∂x
ω′

xdD

︸ ︷︷ ︸

Pxy

−
1

Re
∆Ω′

x
︸ ︷︷ ︸

Dx

, (12)

where Pxz is associated with the tilting of ∂v′/∂x by the spanwise shear and Pxy is a production
term due to the tilting of ∂w′/∂x by the wall-normal shear; Dx is a viscous dissipation term.
For the transport of Ω′

y, we have

dΩ′

y

dt
≈

∫

D

∂U

∂z

∂v′

∂y
ωydD

︸ ︷︷ ︸

Pyz

−

∫

D

∂U

∂y

∂v′

∂z
ω′

ydD

︸ ︷︷ ︸

Pyy

−
1

Re
∆Ω′

y
︸ ︷︷ ︸

Dy

, (13)

where Pyz is a vortex-stretching term due to the spanwise shear and Pxy is a production term
due to the tilting of ∂v′/∂y by the wall-normal shear; Dy is a viscous dissipation term. Similarly,
we obtain for Ω′

z:

dΩ′

z

dt
≈

∫

D

∂U

∂z

∂w′

∂y
ω′

zdD

︸ ︷︷ ︸

Pzz

−

∫

D

∂U

∂y

∂w′

∂z
ω′

zdD

︸ ︷︷ ︸

Pzy

−
1

Re
∆Ω′

z
︸ ︷︷ ︸

Dz

, (14)

where Pzz is a vortex-stretching term due to the spanwise shear and Pzy is a vortex-tilting
production term associated with by the wall-normal shear; Dz is a viscous dissipation term.

The figure 12(b) shows that the transient mechanism gives rise to a positive production
term for the streamwise vorticity for t > 1. The latter is mainly due to the wall normal shear,
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as also found by Brandt and de Lange [17] for the symmetric breakdown of the streak by
DNS for a flat plate boundary layer. In figure 12(c), we show Pzy and Pzz as a function of
time. As it can be seen, production terms reach an higher level than their streamwise vorticity
counterparts. One may also notice that for t < 2 the production term is slightly dominated by
Pzy before to be temporally damped. For larger times, the figure shows that production terms
are mainly driven by Pzz. While the behaviour of Pzy is due to a stretching of the perturbation
that rotates around the z−axis under the action of the Orr-mechanism, Pzz can be associated
with the lift-up mechanism due to the spanwise shear. The mean wall-normal vorticity is tilted
into the z−direction by the perturbation strain rate ∂w′/∂y, giving rise to the increase of
spanwise vorticity. It is classically admitted that for three-dimensional perturbations transient
mechanisms are associated with the combined effect of an Orr and lift-up mechanism as well
detailed in Butler and Farrell [40]. However, the latter authors consider only a base flow with
a wall normal shear. In this case, the combined effect of Orr and lift-up mechanisms is due to
both the wall-normal and spanwise shear of the base flow. Furthermore, the similarities between
figure 10 (a) and 12 (b) give strong indications that the kinetic energy is mainly driven by the
spanwise vorticity production term identified above. Finally, for times larger than 6 the flow
relaxes to an equilibrium state suggesting that the flow is driven by a modal mechanism for
these times (see figure 12(a)).

For V22, we report in figure 13 (a)-(d), the spanwise and streamwise vorticity components
for this mode at t = 0 and t = 2. It can be seen that the optimal mode takes the form of
a wavepacket that is localized downstream where local stability theory predicts the onset of
a varicose exponential growing mode (see figure 4 (c)). The figures show that while V12 is
mostly concentrated in the flanks of the low-speed streak, V22 is strongly localized on its head
as also identified through its streamwise component in figure 13 (c) and (d). In addition, V22

extends in the streamwise direction on a larger distance than V12. As for V12, V22 is initially
inclined against the mean shear and is reoriented along the streamwise direction while being
convected downstream. Finally, one may also observe from figures 13(c) and (d), that the
streamwise component increases significantly less with time in comparison with V12. To give
further insight about mechanisms that are responsible for the growth, we report in figure 14 (a),
the kinetic energy budget for V22. The figure shows that while both spanwise and wall normal
shear contribute to an increase in kinetic energy for V12, the production is only driven by Ty

for V22. In figure 14(b), we also report the time evolution of its barycenter. It shows that V22

travels with a group velocity ≈ 0.8 Uc which confirms that the mode is convected downstream
by the outer region of the boundary layer associated with the lower wall.

Figure 15 displays cross-sections of the dominant production term Ty for t = 3 and t = 5 at
xi = Xm (t = 3) and xi = Xm(t = 5), respectively. We also report the position of the inflection
point associated with the low speed streak and the velocity contour where U = dXm/dt. The
figure shows that the production term Ty is mainly localized around the inflection point. This
characteristics is observed for times t > 3.

In figure 16 (a), we report the temporal evolutions of the normalized perturbation enstro-
phy ratios for V22. In figures 16(b) and (c), production terms associated with streamwise and
spanwise vorticity components are displayed. The figure 16 (a) shows that the initial solution
predominantly consists of streamwise and spanwise vorticity. During the initial stage of tran-
sient amplification, a part of the vorticity is transferred from the streamwise to the wall normal
component. The underlying evolution is characteristic of the lift-up mechanism associated with
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Figure 13: Varicose case V22. The L2 norm of the perturbation is fixed equal to unity at t = 0.
Isosurfaces of spanwise and streamwise perturbation vorticity components are shown in panels
(a),(b) and (c),(d), respectively for times t = 0 ((a) and (c) )and t = 1 ((b) and (d)). Surface
levels correspond to ±500. Isosurfaces of the streamwise perturbation velocity component is
shown in panels (e) and (f) for t = 1 and t = 3. Surface levels correspond to ±100. The surface
level 0.8 for the streamwise component of the base flow is represented in gray for all panels.
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Figure 14: Optimal mode V22. (a) Time evolution of kinetic energy budget. (b) Time evolution
of barycenter position. dXm/dt ≈ 0.9 (in dashed-line).
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Figure 15: Varicose case V22. Production terms Ty at t = 3 (a) and t = 5 (b) for xi =
Xm (t = 3) = 16.8 and xi = Xm (t = 5) = 18.5, respectively. Full line represents the position
where U = dXm/dt. Dashed-lines represent positions of wall-normal inflection points.
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Figure 16: Varicose case V22. (a) Time evolution of rx, ry and rz. Vorticity budget for Ω′

x (b)
and Ω′

z (c).

the wall normal shear. We also observe in figure 16 (c) that a part of streamwise vorticity is
transferred to the spanwise component. During this preliminary stage the tilting term (i.e due
to the spanwise shear) is dominant. However, the contribution to the kinetic energy budget
of the production associated with the spanwise shear is negligible, in contrast to its important
role in the increase of kinetic energy for V12. Hence, the mechanism responsible for the growth
is seen to be associated with a combination of Orr/lift-up mechanism due to the wall-normal
shear for early times, the mechanism is rapidly overtaken by an exponential mode due to a
point of inflection along the wall-normal direction in the outer part of the boundary layer. In
particular, V22 for times greater than 3 exhibits close similarities with the outer mode described
by Vaughan and Zaki [15] for the flat plate boundary layer case. It confirms that V22 is governed
by an exponential mode for large times having close correspondence with results provided by
local stability theory. Finally, one may also observe that t > 5 an equilibrium state is reached
for enstrophy ratios (see figure 16 (a)) and the production of its streamwise components is
governed by both the wall-normal and spanwise shear.
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Figure 17: Sinuous case S. The L2 norm of the perturbation is fixed equal to unity at t = 0.
Isosurfaces of spanwise and streamwise perturbation vorticity components are shown in panels
(a),(b) and (c),(d), respectively for times t = 0 ((a) and (c) )and t = 2 ((b) and (d)). Surface
levels correspond to +/− 300. Isosurfaces of the streamwise perturbation velocity component
is shown in panels (e) and (f) for t = 1 and t = 4. Surface levels correspond to +/− 100. The
surface level 0.8 for the streamwise component of the base flow is represented in gray for all
panels.

The secondary instability of streaks with respect to S is illustrated in figure 17 where
streamwise, spanwise vorticity and streamwise velocity components are shown at various times.
The optimal mode takes the form of a wavepacket where its distribution at the initial time
exhibits both spanwise and streamwise vorticity. S is localized on both the flanks of the low
speed streak and outside in the boundary layer. It is inclined in the upstream direction at t = 0
and is reoriented downstream for larger time while its streamwise component is increasing.
Hence, it also suggests for short times, a combined effect of Orr/lift-up mechanism.

The kinetic energy budget is displayed in figure 18 (a). The figure shows that as it can
be expected for sinuous configuration the main contributor to the energy amplification is the
spanwise production term Tz, even for early times. In figure 18 (b), the space-time evolution
of the barycenter shows that the optimal mode travels with a velocity group ≈ 0.8 Uc which is
consistent with findings of Andersson et al. [11] found in a local framework.

The production term Tz is shown in the cross-stream plane at t = 3 and t = 5 for xi =
Xm(t = 3) and xi = Xm(t = 5), respectively. The figure shows that for t greater than 3, the
optimal mode is dominated by an inviscid mechanism associated with points of inflection along
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Figure 18: Optimal mode S. (a) Time evolution of the kinetic energy budget. (b) Time
evolution of the barycenter position. dXm/dt ≈ 0.79 (in dashed-line).

(a) (b)

Figure 19: Optimal mode S. Production term Tz at t = 3 (a) and t = 5 (b) for xi =
Xm (t = 3) = 8.3 and xi = Xm (t = 5) = 9.8, respectively. Full line represents the position
where U = dXm/dt. Dashed-lines represents positions of spanwise inflection points.
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Figure 20: Optimal mode S. (a) Time evolution of rx, ry and rz. Vorticity budget for Ω′

x (b)
and Ω′

y (c).

the spanwise direction as classically found for the exponentially growing sinuous mode [11]. It
also supports that for large times the S is governed by an exponential growth similarly as the
one predicted by a local stability theory.

Figure 20 (a) displays the ratio of enstrophy components as a function of time. It is inter-
esting to notice that vorticity transfers exhibit the same behaviour than V22 when we replace
ry into rz. In particular, at t = 0, the vorticity is mainly composed of Ω′

x and Ω′

y. For t < 3, we
observe a transfer from the streamwise vorticity to the wall-normal vorticity characteristic of a
lift-up mechanism associated with the wall-normal shear. This mechanism is associated with
the tilting term due to the wall-normal basic shear as shown in figure 20 (c). In addition, the
figure 20(a) also shows an almost constant value of the spanwise vorticity contribution for short
times. The latter mechanism can be attributed to a Orr-mechanism that results for the wall-
normal shear. Finally, for t ≥ 3, where the mode is dominated by a mechanism associated with
a point of inflection, the time evolution of enstrophy ratio reaches an equilibrium stage that is
accompanied by a production of streamwise vorticity mainly governed by the wall-normal shear
as t is increased.

4 Optimal modes: nonlinear evolution

We will now analyze the nonlinear effects induced by the mechanisms described above. For
that purpose, the optimal modes are superimposed to the streaky base flow with a given initial
amplitude and the full Navier-Stokes equations are integrated forward in time (see table 1 for
flow cases). Being interested in describing the different stages leading to a turbulent flow,
we consider hereafter four spanwise wavelength (≈ 4.6 h). When considering a fully developed
turbulent channel flow, large-scale motions have a characteristic spanwise size of the order of 2 h
[41]. The latter remark may give us some confidence that the spanwise extension considered in
our case is sufficient. The time evolution of the kinetic energy associated with flow disturbances
are extracted from DNS by subtracting the instantaneous state of the velocity field from the
secondary base flow. In figure 21 (a) and (b), we report time evolutions of kinetic energy
disturbances associated with V11 and V12 (i.e. topt = 2) for A0 = 0.015 and A0 = 0.025,
respectively. One may recall that for A0 = 0.015 the secondary base flow is asymptotically
stable with respect to varicose perturbations in a local framework and for A0 = 0.025 two types
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Figure 21: Nonlinear simulations. Integrated kinetic energy for the perturbation versus time.
(a) V11; (b) V12; (c) V22 and (d) S. E0 = 10−8 ( ), E0 = 2.5 × 10−7 ( ) and E0 = 10−6

( ). The linear evolution is represented in ( ).

of optimal wavepackets (i.e. V12 and V22) coexist. We first focus on the flow case A0 = 0.015
depicted in figure 21 (a). For E0 below 2.5×10−7, the kinetic energy for disturbances is damped
for long times. When the initial amplitude of the mode is increased above the former value, we
observe a strong increase in kinetic energy around t = 5 where the curve departs from linear
regime. The figure 21 (b) shows result for the flow case A0 = 0.025. For the smallest amplitude
E0 = 10−8, the kinetic energy evolution exhibits a similar behaviour to the one obtained in a
linear framework. When the initial amplitude of the optimal mode is fixed to E0 = 2.5× 10−7,
the kinetic energy undergoes a different path. For t > 5, while disturbances are temporally
damped in the linear regime, a growth of the kinetic energy is observed due to nonlinearity. As
can be expected, the critical initial energy for disturbances to trigger a subcritical secondary
instability is increased when the streak amplitude decreases. Furthermore, for V11 and V12,
nonlinear trajectories are seen to be separated by an edge state for given values of A0 and E0

(see Duguet et al. [42] for instance).
Hereafter, we restrict our analysis to A0 = 0.025. We plot in figures 21 (c) and (d), the

time evolution of kinetic energy associated with disturbances for modes V22 and S. For both
modes, nonlinearities have a stabilizing effect characteristic of a supercritical behaviour.

Figure 22 (a), (b) shows vortical structures at t = 3.5 and t = 5.75 associated with the
nonlinear development of V12 for topt = 2 and E0 = 10−6. For short times, the effect of Orr/lift-
up mechanism on the low-speed streak produces slightly inclined streamwise vortex pair (see
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Figure 22: Varicose case V12. Nonlinear simulation for E0 = 10−6. Visualization is restricted to
one low-speed streak. The coherent structures are identified with isosurfaces of λ2 criterion in
(a) and (b) for t = 3.5 and t = 5.75, respectively, coloured by the distance from the lower wall.
The vector field (w, v) in the cross section (z, y) is shown for t = 3.5 and t = 5.75 at xi = 4
and xi = 5.8 in panels (c) and (d), respectively where w = W −W and v = V − V .
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Figure 23: Varicose case V12. Nonlinear simulation for E0 = 10−6. Vector plots of perturbation
velocity (u = U − U and v = V − V ) on (x, y) plane at extracted at the center of a low-speed
streak.

figure 22(a)). As time evolves, between the two legs of the vortex pair, fluid is pumped up
and backwards. It induces the formation of an hairpin head that is lifted-up from the wall and
shaped into a ring vortex as shown in figures 22 and 23. This event (u < 0, v > 0; Q2 event in
the quadrant analysis) is accompanied by an abrupt increase in the kinetic energy associated
with disturbances as reported in figure 21 (b). Further downstream (see figure 24), we observe
that the vortex legs collide due to self-induction and generate a secondary hairpin vortex. This
mechanism has already been observed in a fully turbulent regime by Zhou et al. [43]. This
whole process takes place in a region where linear analysis of secondary base flow concludes of
asymptotic stability in a local framework. This hairpin regeneration is still accompanied with
an increase in kinetic energy for disturbances.

Regarding V22, a different behaviour is observed. For short times the varicose mode V22

grows rapidly under the action of a quasi-exponential instability. When nonlinearities play
a significant role, the mode exhibits a train of arch-like structures as shown in figure 25 (a).
By contrast with V12, vortical structures for V22 are not attached to the wall and arches are
not self-generated from one flow pattern but rather result from nonlinear saturation effects of
the instability mode. The figure 25 also shows that characteristic structures of V22 are quasi-
streamwise vortices joining in the middle of the low-speed streak and also vortices pointing
downstream taking a V shape. These vortices are very similar with those observed in the
simulations of varicose streak breakdown for a flat plate boundary layer by Brandt [12]. Due
to nonlinearities both V22 and V12 exhibit a bridge-like structure connecting quasi-streamwise
vortices identified on both sides of the low-speed streak in the linear regime.

The initial stage of the nonlinear evolution of S is shown in figure 25(b). The underlying
vortical structures take the form of quasi-streamwise streamwise vortices located on both sides
of the low-speed streak. In particular, vortices alternating in the streamwise direction are
localized the center of the low-speed streak. The latter nonlinear sinuous scenario exhibits
close similarities with the sinuous streak breakdown described by Brandt and Schlatter [44] for
the case of a flat plate boundary layer.

5 Paths to turbulence

While in the previous section we observe initial stages of the nonlinear regime, it is not straight-
forward that it should effectively provoke transition. Therefore, the investigation of the nonlin-
ear evolution for final stages of transition for such optimal wavepackets is worthwhile. Hereafter,
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Figure 24: Varicose case V12. Nonlinear simulation for E0 = 10−6. Visualization is restricted
to one low-speed streak. The coherent structures are identified with isosurfaces of λ2 criterion
in (a), (b), (c) and (d) for t = 7.5, 8, 8.5 and 9, respectively, coloured by the distance from the
lower wall.
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Figure 25: Nonlinear simulation for E0 = 10−6. Visualization is restricted to one low-speed
streak. The coherent structures are identified with isosurfaces of λ2 criterion for t = 5 coloured
by the distance from the lower wall. (a) Varicose mode V22; (b) Sinuous mode S.

only the case A0 = 0.025 is considered.
Let us first examine the evolution of instantaneous flow structures as the wavepacket evolves

along the streamwise direction. We show in figure 26 instantaneous snapshots of vortical struc-
tures developing inside the boundary layers for V12, V22 and S at times t = 20, 40 and 60 where
the λ2 criterion coloured by the distance from the lower wall is considered. For V12, figure
shows that for t = 20, the subcritical mechanism described in the previous section has led to
the formation of a hairpin train similar as the mechanism described by Zhou et al. [43]. For
time t = 40, the wavepacket spreads streamwise, and we observe a turbulent puff in the center
of the latter surrounded by more quiet phases upstream and downstream. Furthermore, while
the leading edge of the wavepacket is dominated by ring-like structure (or Ω vortices) extending
near the wall, the downstream part is characterized by arch-like structures (i.e. not attached
to the wall) developing in the outer part of the boundary layer. For time t = 60, we observe
that the puff has spreat in the streamwise direction and that arch-like structures predominate.
This laminar/turbulent transition process is similar to the one described by G. Eitel-Amor and
Schlatter [45] where the authors investigate the flat plate boundary layer case.

When considering transition induced by V22, figure 26 shows that for t = 20 the flow is
populated by trains of arch-like structures. Their tips are deformed into vortex ring types
and tilted upward from the wall in the outer part of the boundary layer. In the center of the
wavepacket, ring like structures split generating harmonics which is not observed for V12 at
the same time. At t = 40, arch-like structures predominate in the flow and we observe the
breakdown of the spanwise symmetry. For t = 60, the wavepacket extends on a larger distance
than the one associated with V12.

For the nonlinear evolution of the sinuous mode S, figure 26 shows that for t = 20 higher
harmonics are generated than for the case V22 at the same time. In addition, flow already breaks
symmetry in the spanwise direction at this time. We also observe that while the leading edge
of the wavepacket is characterized by a sinuous motion, the center of the latter is dominated
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Figure 26: E0 = 10−6. Isosurfaces of the λ2 criterion are shown coloured by the distance from
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Figure 27: E0 = 10−6. Skin friction coefficient versus the streamwise position for t = 48, 64
and 72 (in dotted, full and dashed lines, respectively). The lowest and highest dashed lines
represent the distribution of Cf for the laminar and turbulent cases, respectively. (a) V12, (b)
V22 and (c) S.

by similar coherent motions as the one observed for V12 and V22 such as arch-like structures.
Hence, figure 26 gives some arguments that for both scenario, V12, V22 and S evolve into a
unique turbulent state as also observed by G. Eitel-Amor and Schlatter [45] and T. Sayadi and
Moin [46] in the case of a turbulent flat plate boundary layer.

In figure 27, we show the skin friction Cf as a function of xi for the different modes. For
comparison purposes, we also report Cf values found in literature for a turbulent boundary layer
and the laminar case. The spanwise average instantaneous streamwise velocity is considered
to evaluate the skin friction coefficient. Considering that Cf provides an indication of the
transition location, the figure 27 shows that for t = 48, transition occurs for both S and V22.
For V12, transition is established for t > 50. The latter remark is consistent with the discussion
above related to the observation of coherent structures. It is also interesting to note that the
subcritical transition provided by V12 yields similar Cf than for S and V22 cases. For both
cases, while for the lower wall, transition is observed for t = 64 and later, the transition is not
yet triggered for the boundary layer developing along the upper wall.

Statistics are now investigated. We consider a temporal window where Cf reaches a value
close to its turbulent case. For all cases, the streamwise position where statistics are collected
is set to xi = 66. Assuming a spanwise periodicity, a spanwise average is also performed. 100
velocity fields are collected every 10 time steps which gives a data sample size of 9600. The
friction Reynolds number (i.e. based on the friction velocity, the half-channel heigth and the
kinematic viscosity) at the lower wall is found for all flow cases equal to Reτ = 166. Hereafter,
the superscript + will denote quantities scaled in inner units. Figure 28 shows the mean
streamwise velocity profile in the wall normal direction. For the lower wall, it exhibits a flatter
profile in comparison with its upper wall counterpart. It gives some evidence that the flow
evolves to a turbulent regime on the lower wall. To further investigate the latter remark, we
report in figure 29, the streamwise average velocity together with the rms velocities as a function
of the distance from the lower wall in inner units. For comparison purposes, results provided
by Moser et al. [47] and Schlatter and Orlu [48] for a turbulent channel flow at Reτ = 180
and a turbulent flat plate boundary layer at Reτ = 252 are also shown. Despite the lack of
convergence of statistics due to the small data samples that are collected, a good agreement
for the mean velocity profile is observed in figures 29 (a),(c) and (e). Regarding the variance of
the mean velocity components, the figures 29 (b),(d) and (f) show that profiles are also in good
agreement with literature. In particular, the streamwise velocity dominates in the r.m.s values
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Figure 28: E0 = 10−6 and xi = 66. Mean streamwise velocity dimensionless by uτ estimated
at y = −1. In full line, the distributions of U+ for a fully developed turbulent channel flow at
Reτ = 180 and for the laminar entrance channel flow are reported. (a) V12, (b) V22 and (c) S.
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Figure 29: E0 = 10−6 and xi = 66. In dashed lines: (a),(c) and (e) mean streamwise velocity
profiles versus the distance from the wall in inner units; (b),(d) and (f) rms profiles versus the
distance from the wall in inner units. Profiles for a fully developed turbulent channel flow at
Reτ = 180 and a turbulent flat plate boundary layer at Reτ = 252 are also reported in full and
dotted lines, respectively. (a,b) V12, (c,d) V22 and (e,f) S.
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and it peaks at a distance from the lower wall in inner units y+ ≈ 13. It thus provides insight
that streaks associated with a self-sutained process in the buffer region are present which is
an universal characteristic of wall-turbulence [49]. Hence, it shows that statitistics converge
to the same turbulent values in each cases that are considered. Finally, for all flow cases, we
note that turbulent coherent structures populating the outer part of the boundary layer have
not triggered yet turbulent transition of the boundary layer developping on the upper wall. It
gives some insight on the fact that the turbulent transition of boundary layers developing along
upper and lower wall in the entrance channel flow can remain uncoupled on a long distance.

6 Conclusions

This work aims at describing different paths leading to turbulence for the entrance channel flow
case under subcritial conditions. The present study focuses on the case where upstream con-
ditions are associated with an uniform flow. The flow cases that are investigated are such that
perturbations are injected quite near the channel entrance and the subsequent turbulent transi-
tion occurs in the developing boundary layers. In this context, a specific attention has been paid
to understand both linear and nonlinear mechanisms bringing the system to transition. Due to
the favorable pressure gradient, the turbulent/transition path excludes an exponentially grow-
ing Tollmien-Schlichting mode, and is based on secondary instability of streaks. To generate
the streaks, a pair of optimal streamwise vortices (i.e. having the highest potential for transient
energy growth in a local framework) is superimposed to the boundary layer developing along
one of the two walls, at the inflow plane. Three different streaks amplitudes are considered.
Under a locally flow assumption, all of them are seen to be unstable with respect to a sinuous
temporal linear instability. While the lowest streak amplitude case is stable for varicose modes
at all streamwise positions, the high amplitude flow cases exhibit a varicose instability.

A linear global optimization has been performed consisting in searching for initial pertur-
bations having the largest energy growth for given times. Specifically, we consider varicose and
sinuous symmetry separately and only the fundamental case (i.e. streaks and perturbations
have same spanwise periodicity). Optimal perturbations at the initial time take the form of
localized wavepackets for all cases. Sinuous wavepackets are dominant for the lowest streak am-
plitude whereas the varicose secondary perturbation is the most amplified for the largest streak
amplitude. However, for short optimization times, varicose and sinuous optimal wavepackets
attain comparable gain in energy. Interestingly, while the sinuous optimal wavepacket is not
too affected by time optimization, varicose ones exhibit two different behaviors. For short op-
timization times, varicose perturbation at initial time is localized in the flanks of the low-speed
streak near the inlet and for larger target times, the initial wavepacket is concentrated down-
stream where streaks are subjected to exponential instability. For the sinuous wavepacket, the
mechanism responsible for energy growth is mainly associated with the spanwise shear and
especially the presence of inflection points along spanwise direction, as usually found for the
streaks instability. For the varicose symmetry, the optimal perturbation corresponding to short
target times extracts energy from the base flow by combining Orr and lift-up mechanisms. By
inspecting the vorticity budget, it is shown that the lift-up mechanism is governed by a vortex
tilting term associated with the spanwise shear. This mechanism exhibits similarities with the
one described by Cherubini et al. [23] for a streaky flow behind a bump in a flat plate bound-
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ary layer. For larger optimization times, the energy growth is associated with the presence of
inflection point in the wall normal direction as revealed by the kinetic energy production terms
distribution in the cross-sections.

By means of direct numerical simulations, the nonlinear space-time dynamics of optimal
wavepackets is investigated. We observe the existence of a path to turbulence which is sub-
critical with respect to secondary modal instability for the varicose wavepacket associated with
short optimization time. This nonlinear path leads to hairpin trains that breakdown to tur-
bulence downstream. For larger optimization times, where perturbations are dominated by
modal instability, nonlinearities first have a damping effect on the energy growth of perturba-
tion, typical of a supercritical behaviour. As the perturbation moves downstream, the varicose
optimal wavepacket leads to arch-likes structures in the outer part of the boundary layer, and
spanwise oscillating streaks are observed for the sinuous one. Further downstream, we observe
the convergence to characteristic wall-bounded turbulent flow profiles (mean flow and r.m.s) for
all cases. In this stage, the outer part of the boundary layer is dominated by arch-like patterns
independently of the symmetry of the initial wavepacket.

These result lead us to bring some conclusions: (a) the entrance channel flow may ex-
hibit laminar/turbulent transition well before the merging of the developing boundary layers
(b) the fully developed turbulent region exhibits similar statistics as those associated with
wall-bounded turbulent flows; as a consequence it seems difficult to distinguish either or not
laminar/turbulent transition observed in channel flow experiments is due to entrance effects
(c) varicose wavepackets associated with short optimization times are localized near the inlet
and have comparable gains with their sinuous counterparts. It further indicates that under
certain conditions of external perturbations, the varicose scenario leading to streak breakdown
and turbulence can be viable even if streaks are stable with respect to modal instability under
the parallel flow assumption; (d) for the values of Re and x0 (i.e. streamwise abscissa of the
intial vortex pair generating streaks) that are considered, the upper and lower boundary layers
are weakly mutually dependent. The present study brings some light on the transient varicose
instability observed by Buffat et al. [5] using DNS. In this respect, the use of global optimiza-
tion gives an accurate description of the transient/convective instability mechanism in a region
where nonparallelism effects can not be neglected. Nevertheless questions remain unanswered.
Among some of them, it is questionable how the subcritical scenario observed for the varicose
mode is affected by the streak amplitude. In particular, does the subcritical varicose scenario
lead to a turbulent flow for streak amplitudes that are lower than critical values giving rise to
sinuous exponential mode ? Furthermore, the present work only focuses onto a specific choice
of inflow condition. Sadri and Floryan [4] shows that for upstream conditions associated with
a sharp-edge channel, the flow exhibits separation zones on both walls that extend far down-
stream when increasing the Reynolds number. Hence, it may be suggested a different scenario
leading to turbulence for such entrance channel flow solution, strongly connected to separated
flow unsteadiness similar as those reported by Passaggia et al. [50].
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