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Abstract11

Statistical inference and mechanistic, process-based modelling represent two philosophically different streams12

of research whose primary goal is to make predictions. Here, we merge elements from both approaches to keep13

the theoretical power of process-based models while also considering their predictive uncertainty using Bayesian14

statistics. In environmental and biological sciences, the predictive uncertainty of process-based models is usually15

reduced to parametric uncertainty. Here, we propose a practical approach to tackle the added issue of structural16

sensitivity, the sensitivity of predictions to the choice between quantitatively close and biologically plausible17

models. In contrast to earlier studies that presented alternative predictions based on alternative models, we18

propose a probabilistic view of these predictions that include the uncertainty in model construction and the19

parametric uncertainty of each model. As a proof of concept, we apply this approach to a predator-prey system20

described by the classical Rosenzweig-MacArthur model, and we observe that parametric sensitivity is regularly21

overcome by structural sensitivity. In addition to tackling theoretical questions about model sensitivity, the22

proposed approach can also be extended to make probabilistic predictions based on more complex models in an23

operational context. Both perspectives represent important steps toward providing better model predictions in24

biology, and beyond.25

2



1 Introduction26

With the need for more accurate predictions in biology and environmental sciences [1–3], two philosophically dif-27

ferent streams of research have been growing, statistical inference and mechanistic modelling. While the former28

aims to make predictions based on uncovering statistical relationships in large data sets, mechanistic modelling29

aims to make predictions based on causal mechanisms that explain observed patterns. In practice, the pros of30

one approach are the cons of the other, so a promising way forward would be to combine them in a “symbiotic31

relationship” [4]. Here, we provide an example of such cross-fertilisation. Specifically, we use Bayesian statistics32

to present probabilistic predictions of a deterministic mechanistic model—built around empirical data—in way33

that takes into account uncertainty both in model construction and model parameterization. We therefore im-34

prove the model’s predictive capability by including prediction uncertainty while maintaining the explanatory35

power of a mechanistic model. As our focal model, we use the Rosenzweig and MacArthur [5] predator-prey36

model, which is known to be “structurally sensitive” [as defined by 6]; that is, apparently minor changes in37

model formulation can lead to a dramatic change in both quantitative (predicted biomasses over time) and38

qualitative predictions, such as prey-predator oscillations or the coexistence of alternative stable states [7–9].39

Structural sensitivity is a common phenomenon that emerges in mechanistic biological models, which usually40

aim to summarise multi-level processes into equations after adopting simple assumptions regarding the com-41

plexity of the biological system of interest. As the entire complexity can rarely, if ever, be taken into account,42

available empirical data may be insufficient to statistically discriminate between alternative models [6, 10].43

Alternative models are known to make different predictions when the uncertain process is the infection in a44

host-pathogen system [11], the colimited uptake of nutrient [12], or predation in predator-prey and food-web45

models [6–8, 13–20]. Some studies also indicate that major ocean-scale predictions, such as the dominance of46

phytoplankton groups, primary production and export to the deep ocean, can be deeply affected by this form47

of sensitivity [21–23]. In a way, structural sensitivity can be considered an extension of classical parameter48

sensitivity; moreover, Cordoleani et al. [6] and Adamson and Morozov [14] have provided examples where a49

change in model formulation has a higher effect on model predictions than an equivalent change in parameter50

values. However, as far as we know, such an analysis has never been statistically performed simultaneously51

across alternative models and all plausible parameter values.52

Here, we ask whether the predictions made by a biological model are more sensitive to the uncertainty in its53

parameterization or to its mathematical formulation. To answer this question, we present a probabilistic view54

of predictions made by a deterministic predator-prey model, the Rosenzweig and MacArthur [5] model (sec-55

tion 2). In particular, we explore the consequences of alternative predator functional responses in changing the56

behaviours predicted. We achieve the shift from determinism (section 3) to probabilism (section 4) by merging57

bifurcation theory for model analysis [24–26] and Bayesian statistics [27–29] by harnessing the latter’s ability58

to include uncertainty in a model and to propagate it forward into predictions. Intriguingly, our probabilistic59

approach –applied on three example data sets– indicates that parametric uncertainty is regularly overcome by60

model uncertainty (section 5), an observation that has broad implications across various other challenges faced61
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in biology.62

2 A simple predator-prey model63

We study the Rosenzweig-MacArthur model [5]:64



dN

dτ
= rN

1−
N

K

− f(N)Y

dY

dτ
= (ef(N)− µ)Y.

(1)

Here, the prey population N follows logistic growth with per capita growth rate r and environmental carrying65

capacity K in the absence of predators. The predator population Y has a linear per capita mortality rate66

µ, conversion efficiency e, and functional response f(N). All parameters and variables are strictly positive to67

ensure their biological meaning.68

In line with the biology, a well-behaved functional response is expected to be strictly increasing, concave,69

saturating, and vanishes only at 0. Here, we consider three possible alternatives for f ∈ F = {f (H), f (I), f (t)},70

all of which only depend upon two parameters:71

f (H)(N) =
a(H)N

1 + a(H)h(H)N
, f (I)(N) =

1

h(I)

(
1− e−a

(I)h(I)N
)
, f (t)(N) =

1

h(t)
tanh

(
a(t)h(t)N

)
, (2)

which are the Holling Type II [30, 31, later denoted Holling], Ivlev [32], and the Hyperbolic Tangent [10],72

respectively. The parameters in each have the same mathematical meaning: 1/h(·) corresponds to the maximum73

uptake rate and a(·) corresponds to the function’s slope in the limit of no prey, but they originate from different74

perspectives. For Holling, a(H) and h(H) are predator attack rate and handling time. For Ivlev, 1/h(I) and75

a(I)h(I) are predator maximum digestion rate and satiation coefficient. The Hyperbolic Tangent is actually a76

phenomenological model without underlying biological assumptions, which nevertheless can at times provide a77

more accurate description of data than others [10].78

To drop one parameter and ease the analysis without loss of information, we re-scale model (1): y = Y/r,79

t = rτ , m = µ/e, ε = e/r, and write x = N . The re-scaled model reads:80



dx

dt
= x

1−
x

K

− f(x)y

dy

dt
= ε (f(x)−m) y.

(3)

Upon re-scaling, the remaining parameters are (i) the prey carrying capacity K, (ii) the scaled predator mortality81

m, (iii) the time-scale factor ε, and (iv) the two parameters a(·) and h(·) from the functional response that must82

be estimated from data. These first two are of biological interest as they might be affected by external factors83
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(e.g. environmental degradation, additional predator mortality due to harvesting).84

3 Probabilistic predictions85

3.1 Fitting functional responses on data86

Empirical data were not considered in previous structural sensitivity analyses in Rozensweig-MacArthur model87

[8, 9]. As our baseline, we therefore use three examples of functional-response data to provide an overview of88

our approach and its practical use. To introduce the approach, we first focus on one of these data sets (until89

section 5). Specifically, we use data from an experiment where two individuals of Gazella thomsoni were eating90

hand-assembled grass swards, and their grazing rate as a function of grass biomass (i.e. a functional response) was91

estimated [33, figure 1]. This consumer-resource system can be modeled with generic assumptions on population92

dynamics: (i) grass biomass follows a logistic growth limited for instance by space and nutrients availability;93

(ii) the growth rate of Gazella thomsoni population is proportional to its grass intake which is a strictly94

increasing, concave, saturating function of grass biomass that vanishes in absence of grass; (iii) Gazella thomsoni95

has a linear per capita mortality rate (e.g. ageing, harvesting). All these assumptions define Rozensweig-96

MacArthur model, which is often refered as a predator-prey model but is generic enough to also describe a97

variety of consumer-resource systems.98

Previous studies on structural sensitivity compared a deterministic analysis of model predictions based99

on best-fitted functions [8, 9, 11, 18, 20, among others]. Fitting a function to data implies uncertainty in100

the parameters being inferred, which means that there is additional insight to be gained by considering both101

parameter and model uncertainty. To perform a probabilistic analysis of model predictions, we first estimate102

the parametric uncertainty while fitting each functional response to data. This is achieved by a Hamiltonian103

Markov Chain Monte Carlo (HMCMC) algorithm computing the probability P (θf ) that the set of functional-104

response parameters θf = (a(f), h(f)) of function f predict observed data (figure 1a-c), assuming a Gaussian105

noise around f [29, details in Appendix]. The probability P (θf ) is proportional to the likelihood of θf , and106

the set of probabilities corresponding to the inferred parameter values is called the posterior distribution in107

Bayesian statistics. This posterior distribution of θf is estimated by the HMCMC algorithm by learning from108

available data (figure 1a-c). The maximum of this distribution occurs at parameters having the maximum109

likelihood and thus giving the best fit to data based on this criterion. Therefore, the HMCMC approach gives110

the same best-fitted functions as a maximum likelihood estimation, but it adds information about parametric111

uncertainty for each function by considering the whole posterior probability distribution (figure 1d-f).112

Based on the posterior distribution for each function, we use the Widely-Applicable-Information-Criterion113

(WAIC) to derive Akaike weights which correspond to the relative predictive accuracy of each function – i.e. the114

probability P (f) that function f ∈ F gives the best fit to new data, conditional to the alternative functions that115

we consider [29]. This relative accuracy can be estimated using any other suitable method than WAIC, without116

altering our generic framework. For the first data set, the Hyperbolic Tangent has the highest probability of117
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Figure 1. Results of the Markov Chain Monte Carlo estimate of parameters probability densities
(posterior distributions) for each function. (a-c) Bivariate posterior probability distributions (grey levels)
for each functional response parameters, i.e. the likelihood of these parameter values based on available data.
Points ’+’ correspond to parameter values sampled to perform the probabilistic model analysis. Black bullets
(one per panel) indicate the parameter values with the maximum likelihood, i.e. parameter values giving the
best fit to data. (d-f) Functional responses fit to experimental data (points ’+’). The parametric uncertainty
from the HMCMC estimation gives a confidence interval (95 %, shaded area) around the best-fitted functions
(curves). Model uncertainty is derived through the relative likelihood that one function fits new data better
than the others, knowing their respective parametric uncertainty.
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Table 1. Comparison of the three functional responses fit to data on Gazella thomsoni feeding
on grass swards, based on WAIC (Widely-Applicable-Information-Criterion). WAIC estimates are
given plus or minus standard error.

functional response WAIC difference with best WAIC weights P (f) ranking
Holling −31.5± 9.2 4.0± 2.6 0.079 3
Ivlev −30.5± 9.1 1.0± 0.9 0.350 2
Hyp. Tangent −27.5± 9.1 0.0 0.572 1

0.572 compared to 0.350 for Ivlev and 0.079 for Holling (exact values may change due to algorithm stochasticity,118

table 1). Based on that, one could decide to focus only on the Hyperbolic Tangent as it seems to be the best119

function. However, doing this neglects the fact that the alternative functions can be a better description of new120

data with a significant probability (0.428). Our approach hence aims to keep all the alternative functions, and121

to merge their predictions based on their respective likelihood through the use of model averaging.122

3.2 Overview of model predictions123

Let use first present an overview of model predictions for a given functional response f and its plausible124

parameter values θf . We performed a bifurcation analysis based on analytical and numerical results (math-125

ematical details in Appendix) that reveals all the qualitative asymptotic dynamics predicted by the model126

for any environmental condition (K,m). We limited the range of these conditions to K ∈]0, xmax], where127

xmax ≈ 197 is the maximal prey abundance in functional response data, and m ∈]0,mmax], where mmax :=128 ∑
f∈F P (f)

∫
R2

+
P (θf , D)f(xmax)dθf ≈ 5.44 is the average mortality rate (among all functional responses) that129

allows predator survival for the considered range of prey abundance. The choice of mmax restrain our analysis to130

the range of parameter values that will give interesting results. Any m > mmax will lead to predator extinction131

in most cases, and this is a trivial result that presents no interest for our study since all models necessarily give132

identical predictions.133

Figure 2a-c presents model predictions based on each functional response and including parametric uncer-134

tainty. The effect of parametric uncertainty will be introduced in the subsection and is shown by the blurred135

colours in the figure. For the moment, the reader can have an overview of model predictions for given parameter136

values θf by looking at the areas with sharp colours. In this model, there is a trivial extinction equilibrium137

E(0) = (0, 0) without any species, which can be reached only if the prey is initially absent. If both species138

are initially present, different asymptotic dynamics are predicted depending on the parameters and form of139

the functional response. An extinction equilibrium E(1) = (K, 0) without the predator always exists, but it is140

only stable in the white area in the figure. In other areas, prey carrying capacity is high enough to sustain141

the predator population and a coexistence equilibrium E(2) = (x(2), y(2)) exists. It starts to exist for higher142

carrying capacity values when predator mortality (i.e. the loss that must be overcome to ensure predator sur-143

vival) is higher. This equilibrium is stable only in the blue and red areas. In the green area found at high144

carrying capacity, the paradox of enrichment [34] has destabilised the coexistence equilibrium and there are145

stable prey-predator oscillations. Stable oscillations and the stable coexistence equilibrium are both possible in146
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the red area, which is only predicted with the Hyperbolic Tangent at low predator mortality and high carrying147

capacity. In this bistability area, the model predicts that the system will converge to one of the two alterna-148

tives depending on its initial state. The presence of alternative stable states is of particular interest to study149

ecosystem resilience when facing external disturbances [18, 35]. This other form of the paradox of enrichment150

has been found in predator-prey models incorporating a more detailed description of organisms biology [19].151

All of the above qualitative predictions are independent of the time scale ε, except for the bistability area that152

we computed numerically for ε = 1; this area starts at lower (higher) K for higher (lower) ε, which does not153

affect our conclusions.154

As a general conclusion, using Holling and Ivlev functional responses lead to similar patterns of predictions155

and always one stable state whereas using the Hyperbolic Tangent allows us to predict bistability. Notably, the156

transitions between different qualitative predictions occur in different regions of parameter space for different157

models and correspond to the following biological phenomena: predator invasion (transcritical bifurcation:158

extinction – coexistence), onset of oscillations through enrichment paradox (supercritical Hopf bifurcation:159

coexistence – oscillations), and potential catastrophic shifts (i.e. tipping points) with a change in the number160

of alternative stable states (subcritical Hopf bifurcation: bistability – oscillations ; and limit point of cycles161

bifurcation: bistability – coexistence). Note that if the number of alternative stable states is affected by162

structural sensitivity, it becomes hard to estimate ecosystem resilience under disturbances [18].163

3.3 Introducing parametric uncertainty into predictions164

To introduce parametric uncertainty in our analysis, we now look at the probability that model (3) with function165

f predicts the different qualitative dynamics X, which can be any of “extinction”, “equilibrium”, “oscillations”,166

or “bistability”. For fixed values of the model parameters α = (K,m, ε) that do not relate to f , the probability167

that functional-response f leads to the prediction X is:168

P (X|f) =

∫
R2

+

M(X,α, f,θf )P (θf )dθf , (4)

where M(X,α, f,θf ) = 1 if the model based on function f and with parameter values (θf ,α) predicts dynamics169

X and 0 otherwise, and the integral is over the range of the posterior distributions of the two parameters in θf . In170

practice, this probability (4) is estimated by performing model analysis for a finite sample of θf values (here 1000171

parameter sets) drawn randomly from the posterior distribution P (θf ) [29]. Computing the probability (4) for172

different model parameters α therefore provides a probabilistic bifurcation analysis of model predictions based173

on one functional response. Translating the probabilities of each predictions into colour gradients gives the174

“fuzzy” transitions between qualitative dynamics (figure 2a-c), showing how parametric uncertainty propagates175

into predictions.176
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(d) Probabilistic prediction across
functional responses
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Figure 2. Probabilistic predictions of Rosenzweig-MacArthur model, made with each alternative
functional response (a-c) and averaged (d). Probabilistic predictions include both parametric uncer-
tainty for each function (a-c), and model uncertainty for the average prediction (d). Each panel presents a
probabilistic bifurcation diagram, where the colours indicate the qualitative system dynamics depending on the
predator mortality rate and the prey carrying capacity: predator extinction (white), prey-predator coexistence
at equilibrium (blue), prey-predator oscillations (green), and bistability with equilibrium coexistence or oscil-
lations depending on initial population sizes (red). Colour gradients indicate the probability (Red-Green-Blue
levels) of each model predictions. Thus, blurred areas (e.g. top left of panel (d)) indicate uncertain predictions.
Calculations at point “+” are detailed in table 2.
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Table 2. Example to detail probabilities related to uncertainty, for each functional response
(knowing f) and then averaged together (f-independent) based on WAIC weights from table 1.
This example corresponds to α = (K∗ = 42.6,m∗ = 1.08), the “+” point in figures 2-4.

description probability Holling Ivlev Hyp. Tangent average
function weight P (f) 0.258 0.326 0.416

predicting
qualitative
dynamics

P (“extinction”|f) 0.000 0.000 0.000 0.000
P (“equilibrium”|f) 0.004 0.502 1.000 0.748
P (“oscillations”|f) 0.996 0.498 0.000 0.252
P (“bistability”|f) 0.000 0.000 0.000 0.000

source of predictive uncertainty:
- parametric uncertainty Uparam(f) 0.001 0.175 0.000 0.061
- model uncertainty Umodel(f) 0.373 0.162 0.126 0.158
- total Utot(f) 0.373 0.337 0.126 0.219
sensitivity index S(f) 0.997 -0.038 1.000 0.637

3.4 Introducing model uncertainty into predictions177

To go further, model uncertainty can be introduced through a weighted mean over the alternative functions.178

This allows us to compute the probability P (X) that the model generally predicts the different qualitative179

dynamics X:180

P (X) =
∑
f∈F

P (f)P (X|f). (5)

The resulting probabilistic predictions are shown in figure 2d. Not surprisingly, the average prediction looks181

most similar to that made with the Hyperbolic Tangent since that model has a probability of 0.572. For182

low mortality values, the figure looks greener, with a red-green and a blue-green areas. In these areas, the183

Hyperbolic Tangent leads to bistability or a stable equilibrium, respectively, whereas the two other functions184

lead to oscillations and have a cumulative probability of 0.428. A representative example to illustrate the utility185

of these calculations occurs at m∗ = 1.08 and K∗ = 42.6 (point “+” in figure 2), where all functional responses186

predict completely different qualitative dynamics: (i) the Holling model predicts oscillations, (ii) the Hyperbolic187

Tangent predicts equilibrium coexistence, and (iii) the Ivlev predicts both of these dynamics with roughly equal188

probability (Table 2, upper half).189

4 Identifying the sources of uncertainty190

The probabilistic predictions presented in figure 2 present a form of predictive uncertainty, in the sense that191

predictions can change due to the uncertainty in the choice of a function and parametric uncertainty. As is192

commonly done in other studies, let us assume that we have chosen one function f among the possible ones. We193

will now explore the consequences of this choice, both in terms of parametric uncertainty and model uncertainty.194

For the parametric uncertainty, consider two parameter sets θf for function f drawn independently from195

their posterior distribution. We know from (4) the probability P (X|f) that one parameter set predicts the196

dynamics X. Moreover, predicting dynamics X or not is a binary outcome. Therefore, the joint probability197

that one set of parameters predicts the dynamics X and the other does not follows a Binomial distribution and is198

10



P (X|f) [1− P (X|f)]. This probability is maximal (0.25) if there is an equal probability that f predicts dynamics199

X or not (P (X|f) = 1− P (X|f) = 0.5), which corresponds to the highest uncertainty on predicting dynamics200

X. Conversely, the probability is null if there is no uncertainty in predicting dynamics X, i.e. P (X|f) = 0 (f201

never predicts X) or P (X|f) = 1 (f always predicts X). Thus, the total probability that these two parameter202

sets ever predict different dynamics is:203

Pparam(f) =
∑
X∈Q

P (X|f) [1− P (X|f)] , (6)

where the sum is across possible qualitative dynamics. Similarly, we can define the probability that different204

dynamics are predicted by one parameter set θf of function f and one parameter set of any of the other205

alternative functions:206

Pmodel(f) =
∑

g∈F,g 6=f

P (g)

1− P (f)

∑
X∈Q

P (X|f) [1− P (X|g)] . (7)

The sum over alternative functions g is weighted in order to take into account the respective weight of each207

alternative to function f . The probabilities (6-7) quantify the probabilities of making different predictions208

knowing that we are looking at the parametric or the model uncertainty. This implies that we can define:209

Uparam(f) = P (f)Pparam(f), (8)

which equals the parametric uncertainty that is proportional to the probability that f is the best function to210

describe new data, and:211

Umodel(f) =
1− P (f)

|F | − 1
Pmodel(f), (9)

which equals the model uncertainty that is proportional to the probability that another function than f is the212

best function to describe new data. Note that this second probability is averaged over the |F |−1 functions other213

than f , to give an equal weight to parametric and model uncertainty if all the alternative functions are equally214

plausible, independent of their number. In other words, we are comparing f against one of its alternatives,215

not f against all its alternatives, because in the latter case the approach would always indicate a high model216

uncertainty if the number of alternative functions is sufficiently high. If one chooses the Holling function in217

our example, the parameter uncertainty as defined in (8) is small in comparison to model uncertainty defined218

by (9), as the Holling function is very unlikely to be the best function (probability of 0.079) in comparison to219

the two alternative functions (figure 3a-b). According to this analysis, the total uncertainty associated to the220

choice of function f is:221

Utot(f) = Uparam(f) + Umodel(f), (10)

with the example for the Holling function shown in figure 3c.222

To have a global overview, one can look at the average uncertainty across all the alternative functions that223
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Figure 3. Uncertainty in predictions made with Rosenzweig-MacArthur model. Details of the
calculations if one chooses to use Holling functional response: uncertainty due to functional response’s parameter
values (a), to the choice of the functional response (b), and their sum (c). (d) Total uncertainty (like in (c))
averaged over the three alternative functional responses, weighted by their respective likelihood. Calculations
at point “+” are detailed in table 2.
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are considered (figure 3d):224

Ūtot =
∑
f∈F

P (f)Utot(f). (11)

To go deeper, we propose to quantify the respective importance of parametric and model uncertainty in the225

predictions made with a function f with:226

S(f) = 2

Umodel(f)

Utot(f)
− 0.5

 . (12)

Note that this index can be computed only if there is uncertainty in predictions (Utot(f) > 0). It is positive227

if model uncertainty is greater than parametric uncertainty and negative otherwise. In addition, S(f) = 1 if228

the function is not a suitable candidate (P (f) = 0) or its parametric uncertainty does not affect the predicted229

dynamics, which are affected (in any amount) by model uncertainty. Conversely, S(f) = −1 if predictions are230

affected by parametric uncertainty, and there is no model uncertainty i.e. P (f) = 1. Finally, S(f) = 0 can231

occur if (i) all alternative functions have an equal likelihood and they all lead to the same uncertain predictions232

(i.e. P (X|f) = P (X|g) for all dynamics X and alternative functions g); or more generally (ii) the function f is233

more likely than others but others lead to predictions that are different enough to get Uparam(f) = Umodel(f).234

Based on the index (12) computed for each function, one can look at its average value across the alternative235

functions to get a global overview of the source of uncertainty in the model predictions:236

S̄ =
∑
f∈F

P (f)S(f). (13)

Figure 4a-c shows the index for the three alternative functional responses and our first data set. If Holling237

is chosen, model uncertainty is always higher than the parametric uncertainty, as alternative equations are238

more plausible and lead to different predictions. Conversely, if the Hyperbolic Tangent is chosen, parametric239

uncertainty is higher on average than model uncertainty (S(f (t)) < 0 over 66.6 % of the parameter space).240

This equation has the highest likelihood, which explains why its own parametric uncertainty appears to be241

more important. The Ivlev represents an intermediate case where model uncertainty is higher on average than242

parametric uncertainty (S(f (I)) > 0 over 69.0 % of the parameter space). On average, choosing one equation243

creates a higher predictive uncertainty due to model uncertainty than parametric uncertainty in 66.3 % of the244

parameter space. It is worth noting that parametric uncertainty is higher for high mortality rates, which are245

close to the predator maximum growth rate that itself is proportional to 1/h·. Thus, this parameter value has a246

strong impact on the predicted dynamics, explaining why parametric uncertainty is higher. As a representative247

example, we show detailed calculations of these probabilities for (m∗ = 1.08,K∗ = 42.6) in table 2.248

13



(a) Source of uncertainty
with Holling

predator mortality (m)

pr
ey

 c
ar

ry
in

g 
ca

pa
ci

ty
 (

K
)

0 1.09 2.18 3.27 4.35 5.44
0

39

79

118

158

197

+

(b) Source of uncertainty
with Ivlev

predator mortality (m)

pr
ey

 c
ar

ry
in

g 
ca

pa
ci

ty
 (

K
)

0 1.09 2.18 3.27 4.35 5.44
0

39

79

118

158

197

+

(c) Source of uncertainty with
Hyperbolic Tangent

predator mortality (m)

pr
ey

 c
ar

ry
in

g 
ca

pa
ci

ty
 (

K
)

0 1.09 2.18 3.27 4.35 5.44
0

39

79

118

158

197

+

(d) Average source of uncertainty

predator mortality (m)

pr
ey

 c
ar

ry
in

g 
ca

pa
ci

ty
 (

K
)

0 1.09 2.18 3.27 4.35 5.44
0

39

79

118

158

197

+

(a) Source of uncertainty with
Holling−type II

pr
ey

 c
ar

ry
in

g 
ca

pa
ci

ty
 (

K
)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0 1.09 2.18 3.27 4.35 5.44
0

39

79

118

158

197

predator mortality (m)

−1.0 −0.5 0.0 0.5 1.0

+

higher parametric
uncertainty

higher model
uncertainty

(b) Source of uncertainty
with Ivlev

pr
ey

 c
ar

ry
in

g 
ca

pa
ci

ty
 (

K
)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0 1.09 2.18 3.27 4.35 5.44
0

39

79

118

158

197

predator mortality (m)

−1.0 −0.5 0.0 0.5 1.0

+

higher parametric
uncertainty

higher model
uncertainty

(c) Source of uncertainty with
Hyperbolic Tangent

pr
ey

 c
ar

ry
in

g 
ca

pa
ci

ty
 (

K
)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0 1.09 2.18 3.27 4.35 5.44
0

39

79

118

158

197

predator mortality (m)

−1.0 −0.5 0.0 0.5 1.0

+

higher parametric
uncertainty

higher model
uncertainty

(d) Average source of uncertainty

pr
ey

 c
ar

ry
in

g 
ca

pa
ci

ty
 (

K
)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0 1.09 2.18 3.27 4.35 5.44
0

39

79

118

158

197

predator mortality (m)

−1.0 −0.5 0.0 0.5 1.0

+

higher parametric
uncertainty

higher model
uncertainty

Figure 4. Source of uncertainty in predictions made with Rosenzweig-MacArthur model. Relative
importance of parametric (negative value, blue) and model (positive value, red) uncertainty in the resulting total
predictive uncertainty (grey area: total prediction uncertainty lower than 0.01). (a,b,c) Source of uncertainty if
one of the alternative functional responses is chosen. (d) Average over the three alternative functions, weighted
by their respective likelihood. Calculations at point “+” are detailed in table 2.
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Table 3. Comparison of the three functional responses fit to data on copepods (Calanus pacificus)
feeding on diatoms (centric sp. and Thalassiosira fluviatilis), based on WAIC (Widely-Applicable-
Information-Criterion). WAIC estimates are given plus or minus standard error.

prey functional response WAIC difference with best WAIC weights ranking

centric sp.
Holling −39.4± 7.7 12.4± 2.9 0.002 3
Ivlev −48.2± 7.7 3.5± 1.2 0.145 2
Hyp. Tangent −51.7± 8.2 0.0 0.853 1

Thalassiosira
fluviatilis

Holling −22.6± 4.8 0.4± 2.2 0.299 3
Ivlev −22.8± 4.5 2.0± 1.6 0.332 2
Hyp. Tangent −23.0± 3.5 0.0 0.370 1

5 Overview of the method’s possible outcomes and use249

The underlying idea behind our approach is that the cost of choosing one model to make a prediction increases250

if (i) there is a high probability that another model also fits available data well and (ii) the two models make251

different predictions. Thus, this approach extends earlier studies on structural sensitivity [8, 9, among others]252

by considering the fact that, even if alternative models predict different dynamics, one model may outperform253

others in fitting available data. Again with the Rosenzweig-MacArthur model, we illustrate this possibility in254

figure 5 by using data on the ingestion rate (i.e. a functional response) of copepods (Calanus pacificus) feeding255

on diatoms (centric sp.) to parameterize the alternative functional responses [36, figure 4]. One functional256

response –the Hyperbolic Tangent– fits the data better than others, with a high probability (0.853) to be the257

best description of new data (table 3, upper rows). Thus, the predictions made with the Hyperbolic Tangent258

functional response strongly drive the average predictions across alternative functional responses (figure 5b).259

Also, the areas of highest predictive uncertainty in figure 5c are due to the parametric uncertainty of the260

dominant function, as indicated in blue in figure 5d. Conversely, predictive uncertainty is low in areas where261

it is mostly due to model uncertainty (in red in figure 5d). This example illustrates the idea that, if a change262

in equations leads to different predictions, it mostly matters whether or not alternative equations are actually263

likely to be chosen.264

As a third and last example, we fit the functional responses to the data on the ingestion rate of starved265

copepods Calanus pacificus feeding on diatoms (Thalassiosira fluviatilis) [36, figure 2]. Here, in contrast to266

the earlier examples, all three alternative functional responses have roughly the same likelihood (table 3, lower267

rows). As a result, the predictive uncertainty of the population model is mostly due to the model uncertainty268

(figure 6). This last example shares similarities to the one we used to introduce our approach. There, two269

alternative equations had a high likelihood in comparison to the third. Thus, one may imagine removing the270

most unlikely function from the analysis, and to keep only the equations giving an almost equally good fit.271

Doing so will end up either in one of two cases. First, something like figure 6 where some functions remain272

equally likely; or second, something like figure 5 where one of the alternative functions has a high likelihood273

in comparison to all others, and we can imagine only considering this best-fit function. In this last case,274

one may remove all functions except the one giving the best fit. By doing so, our approach simplifies in a275

parameter sensitivity analysis, as the scientist decides that the uncertainty in model construction –defined for276
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Figure 5. Example where one equation is almost certainly the best one among candidates.
Overview of the analysis with data on copepods (Calanus pacificus) feeding on diatoms (centric sp.). All
panels are drawn similarly as in earlier figures: (a) functional responses are fitted to data by a HMCMC
algorithm; (b) average qualitative predictions (probabilistic bifurcation diagram); (c) average total uncertainty
in predictions; (d) source of uncertainty in predictions.
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Figure 6. Example where all alternative equations are equally likely. Overview of the analysis with
data on starved copepods (Calanus pacificus) feeding on diatoms (Thalassiosira fluviatilis). All panels are
drawn similarly as in earlier figures: (a) functional responses are fitted to data by a HMCMC algorithm; (b) av-
erage qualitative predictions (probabilistic bifurcation diagram); (c) average total uncertainty in predictions;
(d) source of uncertainty in predictions. Note that here we took Kmax as 5 times the maximum prey density
in data, in order to show all the possible qualitative dynamics predicted by the model, without altering our
conclusions.
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the set of alternative equations that we choose to consider– can be neglected. Of course, deciding to neglect277

the uncertainty in model construction and choosing the best function (according to available data) can only278

be done after considering alternative models to fit to data, and having determined that one seems better than279

others.280

6 Discussion281

Here we present probabilistic predictions of system dynamics in the classical Rosenzweig-MacArthur model282

that take into account both model and parametric uncertainty. Overall, we show that uncertainty in model283

formulation regularly leads to a larger predictive uncertainty than does usual parametric uncertainty. Moving284

forward, it is worth noting that uncertainty likely also involves other parameter values and processes. For given285

predator mortality and prey carrying capacity, the resulting prediction uncertainty can be estimated directly286

from figure 3. Conversely, a known uncertainty based on data on the time-scale parameter ε or the intrinsic287

dynamics of the prey (here specified as logistic growth) can be taken into account by also sampling their posterior288

distributions simultaneously with those of the functional response and its parameters. Knowing the respective289

contribution of different biological processes to the resulting predictive uncertainty would be a major step290

forward. To go this way, sampling a higher-dimensional parameter space is feasible with existing algorithms [29],291

but performing each model analysis might be computationally prohibitive. Nevertheless, the cost of conducting292

such an analysis may ultimately be lower than the cost of making the wrong biological/environmental decision293

due to an unreasonable faith in model predictions.294

Decreasing predictive uncertainty can be achieved by decreasing the uncertainty in either model construction,295

model parameterization, or both. To do this, the naive idea of improving the experimental data collection might296

help to greatly decrease the model uncertainty. In our three examples, we are studying a process that is assumed297

to be a saturating function of prey abundance. However, if this saturation is not present in the collected data298

(figure 6a), it necessarily becomes harder to identify the best model. Indeed, the model parameter defining the299

plateau is less constrained by data (in comparison to figures 1d-f,5a), increasing the parametric uncertainty of300

each alternative equations. Thus, alternative equations tend to have highly overlapping confidence intervals,301

subsequently increasing the uncertainty in model selection. Therefore, our study highlights the importance of302

designing experiments in a way that maximises the constraints on parameter values of alternative models to303

decrease the uncertainty in selecting the “best” model.304

Finding the “best” model in a given situation may imply arguments beyond the simple fit of models to305

data, such as the fact that one of the alternative equations is a well-established model in the literature that306

is based on valuable theoretical arguments (e.g. underlying mechanisms). Though we did not do so here, such307

non-quantitative arguments can be taken into account in our quantitative analysis thanks to the concept of prior308

probabilities. Prior probabilities are used in Bayesian statistics to give an a priori weight to some parameter309

values, or here alternative models, before estimating their likelihood from data [29]. With prior probabilities, one310

could thus give more weight to the well-established Holling functional response instead of the phenomenological311
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Hyperbolic Tangent. As a consequence, this function might become the best model in the example in the table 3312

(upper rows), where all functions are equally likely based solely on the data. Conversely, Holling functional313

response might remain the worst model in the example in table 3 (lower rows), where the Hyperbolic Tangent314

is about 400-fold more likely according to data.315

Our framework can also be easily extend to consider quantitative as well as qualitative differences in pre-316

dictions (e.g. equilibrium vs. oscillations). Quantitative differences are important for topics such as resource317

management, disease and pest control, or species invasions. Here, we combined Bayesian statistics with a quali-318

tative analysis of model predictions (bifurcation analysis). Depending on model complexity and the question at319

stake, one can combine Bayesian statistics with quantitative predictions (e.g. numerical simulations) or include320

quantitative aspects in the bifurcation analysis. Quantitative aspects of structural sensitivity have already been321

considered in earlier studies [6, 37]. However, including quantitative aspects in the bifurcation analysis might322

become computationally prohibitive. Thus, getting the quantitative predictions of the model of interest is the323

challenge in extending our framework, which is well-suited to consider uncertainty in both quantitative and324

qualitative predictions.325

The predictions made with the predator-prey model we used as examples could not be compared to data326

on the temporal dynamics of the studied system. Indeed, we extracted functional-response data from studies327

on grazing/ingestion rates of a few predator individuals –functional response sensu stricto– but these studies328

did not follow the temporal dynamics of a prey-predator system over many generations (i.e. the scale of the329

population model). Conversely, some experiments on population dynamics are not combined with functional330

response experiment, and functional-response parameters are optimised so that the predicted system dynamics331

fit the temporal data [e.g. 38, 39]. However, if one has access to both types of data, the additional information on332

temporal dynamics can be used to constrain the probabilistic analysis. One way to do so is to remove candidate333

models that never predict the observed qualitative dynamics. Another complementary way is to perform the334

parameter estimation with constraints coming from fitting both the functional-response data and data on the335

temporal dynamics. This approach might be the best way to solve the issue of structural sensitivity. However,336

it is worth noting that this is a truly idealistic case. Indeed, for organisms with a long lifetime (months, years),337

collecting temporal data on their population dynamics would require a long-term monitoring (at least many338

years). Therefore, making probabilistic predictions prior to such an experiment would still be of interest, given339

the time needed to acquire data.340

Though a similar idea has been used to improve parameter inference [40], as far as we know this is the first341

time the full approach proposed here has been used. An intriguing application of our probabilistic approach342

would be to conduct structural-sensitivity analysis for additional data sets corresponding to other prey-predator343

species. This might allow the classification of organisms with population dynamics that are inherently more344

or less predictable, either because of parameter values or the uncertainty around their functional-response345

data. This approach can also be extended to different models, for example to test the recent hypothesis that346

mass-balanced prey-predator models with maintenance are less structurally sensitive [19]. More generally, our347

proposed approach may benefit from further cross-fertilisation with the approach of partially-specified models348
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[14–16]. That approach provides generic results but cannot currently make probabilistic predictions of the sort349

we make here. Another way to include uncertainty would be to use Stochastic Differential Equations where the350

uncertain process is randomly drawn to include all data variability into model predictions.351

To conclude, we have conducted a proof-of-concept study outlining a novel approach that considers both352

parametric uncertainty and uncertainty in biological model construction while presenting model prediction. We353

achieved this by bringing elements of Bayesian statistics into the analysis of deterministic dynamical systems.354

Here, the prey-predator system considered is small enough to get analytical results on bifurcations, as this355

provides a comprehensive overview of qualitative model predictions. More complex models can also be studied356

by the proposed approach, by adapting the automatic model analysis to model complexity. For instance,357

a full overview of qualitative model predictions can be obtained if a numerical bifurcation analysis can be358

performed, or a sample of numerical simulations of different scenarios can be used for models as large as359

global ecosystem models. Some of these models are known to make different large scale predictions such as360

the global dominance of phytoplankton groups or the ocean primary production [21–23]. Those results were361

based on comparisons between alternative models, and the incorporation of our approach would allow to make362

probabilistic predictions based on different plausible biological models. Indeed, these small changes in model363

construction affect predictions at the ocean scale, but also the coexistence of alternative stable states and the364

predicted resilience at the scale of a few populations in interactions. Therefore, extending our approach to365

complex operational models, together with theoretical analyses to rank the processes and species according to366

the level of predictive uncertainty they produced at the ecosystem level, would be critical advances toward a367

better knowledge of the uncertainty and forecast horizon [as defined in 2] of model predictions in environmental368

sciences.369
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