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SOLUTIONS BLOWING UP ON ANY GIVEN COMPACT SET

FOR THE ENERGY SUBCRITICAL WAVE EQUATION

THIERRY CAZENAVE1, YVAN MARTEL2, AND LIFENG ZHAO3

Abstract. We consider the focusing energy subcritical nonlinear wave equa-
tion ∂ttu−∆u = |u|p−1u in RN , N ≥ 1. Given any compact set E ⊂ RN , we

construct finite energy solutions which blow up at t = 0 exactly on E.

The construction is based on an appropriate ansatz. The initial ansatz is

simply U0(t, x) = κ(t+A(x))
− 2
p−1 , where A ≥ 0 vanishes exactly on E, which

is a solution of the ODE h′′ = hp. We refine this first ansatz inductively
using only ODE techniques and taking advantage of the fact that (for suitably

chosen A), space derivatives are negligible with respect to time derivatives.

We complete the proof by an energy argument and a compactness method.

1. Introduction

We consider the focusing nonlinear wave equation on RN

∂ttu−∆u = |u|p−1u, (t, x) ∈ R× RN , (1.1)

for any space dimension N ≥ 1, and energy subcritical nonlinearities, i.e.

1 < p <∞ if N = 1, 2 and 1 < p <
N + 2

N − 2
if N ≥ 3. (1.2)

It is well-known that under such condition on p the Cauchy problem for (1.1) is
locally well-posed in the energy space H1(RN )×L2(RN ) (see [8, 9, 25]). For H1×L2

solutions, the energy

E(u(t), ∂tu(t)) =

∫ {
1

2
|∂tu(t, x)|2 +

1

2
|∇u(t, x)|2 − 1

p+ 1
|u(t, x)|p+1

}
dx

is conserved through time. Moreover, it is known how to produce solutions blowing
up in finite time (see e.g. [10, 18]).

Our main result states that for any given compact set E of RN , there exists a
finite-energy solution of (1.1) which blows up in finite time exactly on E.

Theorem 1.1. Let p satisfy (1.2) and let E be any compact set of RN . There
exists δ0 > 0 and a solution (u, ∂tu) ∈ C((0, δ0];H1(RN )× L2(RN )) of (1.1) which
blows up at time 0 exactly on E in the following sense.

• If x0 ∈ E then for any r > 0,

lim
t↓0
‖u(t)‖L2(|x−x0|<r) =∞ and lim

t↓0
‖∂tu(t)‖L2(|x−x0|<r) =∞. (1.3)

• If x0 6∈ E then there exists r > 0 such that

sup
t∈(0,δ0]

{
‖u(t)‖L2(|x−x0|<r) + ‖∇u(t)‖L2(|x−x0|<r) + ‖∂tu(t)‖L2(|x|<r)

}
<∞. (1.4)
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Remark 1.2. For t > 0, the function

h(t) = κt−
2
p−1 where κ =

[
2(p+ 1)

(p− 1)2

] 1
p−1

(1.5)

is a solution of the ordinary differential equation h′′ = hp which blows up at time 0.
It is also a solution of (1.1), but of course it fails to be in the energy space. The
function h is the building block for our construction, it is thus relevant to compare
it with the blow-up rate of the solutions constructed in Theorem 1.1. It follows
from the proof that for any 0 < µ < 2

p−1 there exist solutions u as in the statement

of Theorem 1.1 satisfying in addition the following estimates: for any x0 ∈ E r > 0,
and all t ∈ (0, δ0],

t−µ . ‖u(t)‖L2(|x−x0|<r) . t
− 2
p−1 , (1.6)

t−µ−1 . ‖∂tu(t)‖L2(|x−x0|<r) . t
− 2
p−1−1. (1.7)

Moreover, if x0 ∈ E and E contains a neighborhood of x0 then it also holds, for
any r > 0, and all t ∈ (0, δ0],

‖u(t)‖L2(|x−x0|<r) & t
− 2
p−1 and ‖∂tu(t)‖L2(|x−x0|<r) & t

− 2
p−1−1. (1.8)

In contrast, if x0 is an isolated point of the compact set E, solutions u as in
Theorem 1.1 can be chosen so that, for a small r > 0,

lim
t↓0

{
t

2
p−1 ‖u(t)‖L2(|x−x0|<r) + t

2
p−1 +1‖∂tu(t)‖L2(|x−x0|<r)

}
= 0.

To prove Theorem 1.1, we follow the strategy developed in [4] to construct blow-
up solutions of ODE type for a class of semilinear Schrödinger equations. First, we
construct an approximate solution to the blow-up problem based on the explicit
blow-up solution h defined by (1.5). The main order term of the approximate

solution is U0(t, x) = κ(t+ A(x))−
2
p−1 , where A is a suitable nonnegative function

which vanishes exactly on E and whose behavior at ∞ ensures that U0 belongs
to the energy space. Typically, to obtain blowup at only one point x0, it suffices
to consider A(x) = |x − x0|k for k large enough. Compared to [4] where a simple
ansatz such as U0 is sufficient, at least for strong enough nonlinearities, the wave
equation requires to introduce iterated refinements UJ of this ansatz (the number
of iterations J ≥ 1 depends on p, see Remark 2.4). The basic idea is that for
such blow-up profiles, the space derivatives are of lower order compared to time
derivatives and to nonlinear terms. This allows to use only elementary arguments
of ordinary differential equations for the construction of the refined ansatz UJ(t, x),
at fixed x. See Section 2.

Second, we consider the sequence (un) of solutions of the wave equation (1.1) with
initial data un( 1

n ) = UJ( 1
n ). Using energy method in H1 × L2, we prove uniform

estimates on this sequence on intervals [ 1
n , δ0], where δ0 > 0 is uniform in n (see

Section 3). Passing to the limit n→∞ yields the solution u of Theorem 1.1.
We point out that this strategy by approximate solution and compactness is also

reminiscent to [19, 20, 24] where global or blow-up solutions with special asymptotic
behavior are constructed using the reversibility of the equation and suitable uniform
estimates on backwards solutions.

For stability results concerning the solution h (1.2), we refer to [7]. For ODE-
type blowup for quasilinear wave equations, see [26] and the references therein. We
also refer to [5] where an ODE blow-up profile similar to U0 is used to construct
blow-up solutions of the nonlinear heat equation with applications to the Burgers
equation.
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In this article, we restrict ourselves to energy subcritical power nonlinearities for
simplicity, since this framework allows us to use the energy method at the level
of regularity H1 × L2 only. However, the approximate solutions constructed in
Section 2 are relevant for any power nonlinearity, and we expect that a higher
order energy method (to estimate higher order Sobolev norms) should be sufficient
to extend the construction to energy critical or supercritical nonlinearities (at least
for integer powers to avoid regularity issues).

Remark 1.3. A more general question for nonlinear wave equations concerns the
blow-up surface. For a solution of (1.1) with initial data at t = 0, which is assumed
to blow up in finite time, there exists a 1-Lipschitz function x 7→ φ(x) > 0 such that
the solution is well-defined in a suitable sense in the maximal domain of influence
D = {(t, x) : 0 ≤ t < φ(x)}, see e.g. [1], Sections III.2 and III.3. The surface
{(φ(x), x) : x ∈ RN} is called the blow-up surface. The question of the regularity of
blow-up surface is adressed in [1, 2, 3, 21, 22]. The question of constructing solutions
of the nonlinear wave equation with prescribed blow-up surface (with sufficient
regularity and satisfying the space-like condition ‖∇φ‖L∞ < 1) is also a classical
question, adressed in several articles and books, notably [15, 16], [11, 12, 13], [17]
and [1]. The approach by Fuschian reduction is especially well-described in the
book [13]. First developed for analytic surfaces and exponential nonlinearity, this
method was later extended to surfaces with Sobolev regularity and to some power
nonlinearities. However, it is not clear to us whether the strategy described in [13]
for constructing solutions with given blow-up surface can be extended to power
nonlinearities |u|p−1u for any p > 1, or to more general nonlinearities.

Prescribing the blow-up set of a blow-up solution can be seen as a sub-product of
prescribing its blow-up surface. This issue is discussed in [13, 14, 17]. However, the
solutions constructed in [13, 14, 17] may only exist in a space-time region around
the blow-up surface, which does not guarantee that the solution is globally defined
in space at any one specific time.

We also would like to point out a difference between the above mentioned articles
and our approach. Here, we resolutely work with finite energy solutions and the
initial value problem for (1.1). It is often argued that finite speed of propagation
and cut-off arguments allow to reduce to finite energy solutions. For example, the
function (1.5) is used to claim that ODE-type blowup is easy to reach for finite
energy solutions. However, the cut-off necessary to localize the initial data could
lead to blowup in an earlier time. Our method deals with these issues by construct-
ing directly a finite energy solution with initial data from a finite energy ansatz.
Moreover, we hope that our somehow elementary approach can be of interest for its
simplicity and its large range of applicability to other more complicated problems
where ODE blowup is relevant.

Notation. We fix a smooth, even function χ : R→ R satisfying:

χ ≡ 1 on [0, 1], χ ≡ 0 on [2,∞) and χ′ ≤ 0 ≤ χ ≤ 1 on [0,∞). (1.9)

For p > 1 satisfying (1.2), recall the well-known inequality, for any u ∈ H1,

‖u‖p+1
Lp+1 . ‖u‖

p+1−N2 (p−1)

L2 ‖∇u‖
N
2 (p−1)

L2 . (1.10)

Let f(u) = |u|p−1u and F (u) =
∫ u

0
f(v)dv. For future reference, we recall Taylor’s

formulas involving the functions F and f . Let p̄ = min(2, p). First, we claim that
for any u > 0 and v ∈ R,∣∣∣F (u+ v)− F (v)− F ′(u)v − 1

2
F ′′(u)v2

∣∣∣ . |v|p+1 + up−p̄|v|p̄+1. (1.11)
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Indeed, in the region |v| ≥ 1
2u, each term on the left-hand side is bounded by |v|p+1.

In the region |v| ≤ 1
2u, we use Taylor’s expansion to write∣∣∣F (u+ v)− F (u)− F ′(u)v − 1

2
F ′′(u)v2

∣∣∣ . up−2|v|3.

If p ≥ 2, then p̄ = 2 and (1.11) is proved. If 1 < p < 2, we finish by saying that in
this case up−2|v|3 . |v|p+1. The same argument shows that

|(f(u+ v)− f(u)− f ′(u)v)v| . |v|p+1 + up−p̄|v|p̄+1. (1.12)

Next, we claim that for any u > 0 and v ∈ R,∣∣∣f(u+ v)− f(u)− f ′(u)v − 1

2
f ′′(u)v2

∣∣∣ . u−1|v|p+1 + up−p̄−1|v|p̄+1. (1.13)

Indeed, in the region |v| ≥ 1
2u, each term on the left-hand side is bounded by

u−1|v|p+1, and (1.13) follows. In the region |v| ≤ 1
2u, we use Taylor’s expansion to

write ∣∣∣f(u+ v)− f(u)− f ′(u)v − 1

2
f ′′(u)v2

∣∣ . up−3|v|3.

If p ≥ 2, then p̄ = 2 and (1.13) is proved. If 1 < p < 2, we finish by saying that in
this case up−3|v|3 . u−1|v|p+1.

In this article, we will use multi-variate notation and results from [6]. For any
β = (β1, . . . , βN ) ∈ NN , x = (x1, . . . , xN ) ∈ RN , we set

|β| =
N∑
j=1

βj , β! =

N∏
j=1

(βj !), xβ =

N∏
j=1

x
βj
j ,

∂0
x = Id and ∂βx =

∂|β|

∂β1
x1 . . . ∂

βN
xN

for |β| > 0.

For β, β′ ∈ NN , we write β′ ≤ β if β′j ≤ βj for all j = 1, . . . , N . When β′ ≤ β, we
set (

β

β′

)
=

N∏
j=1

(
βj
β′j

)
=

β!

β′!(β − β′)!
.

With this notation, given two functions a, b : RN → R, Leibniz’s formula writes:

∂βx (ab) =
∑
β′≤β

(
β

β′

)(
∂β
′

x a
)(

∂β−β
′

x b
)
. (1.14)

We write β′ ≺ β if one of the following holds

• |β′| < |β|;
• |β′| = |β| and β′1 < β1;
• |β′| = |β|, β′1 = β1,. . . , β′` = β` and β′`+1 < β`+1 for some 1 ≤ ` < N .

Finally, we recall the Faa di Bruno formula (see Corollary 2.10 in [6]). Let n =
|β| ≥ 1. Then, for functions q : R→ R, a : RN → R,

∂βx (q ◦ a) =

n∑
ν=1

(
q(ν) ◦ a

) ∑
P (β,ν)

(β!)

n∏
`=1

(
∂β`x a

)ν`
(ν`!)(β`!)ν`

(1.15)

where

P (β, ν) =
{

(ν1, . . . , νn;β1, . . . , βn) : there exists 1 ≤ m ≤ n such that

ν` = 0 and β` = 0 for 1 ≤ ` ≤ n−m; ν` > 0 for n−m+ 1 ≤ ` ≤ n;

and 0 ≺ βn−m+1 ≺ · · · ≺ βn are such that

n∑
`=1

ν` = ν,

n∑
`=1

ν`β` = β
}
.
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2. The blow-up ansatz

2.1. Preliminary. Recall that h is the explicit solution (1.5) of the equation h′′ =
hp which blows up at 0. The linearization of this equation around the solution h
yields the linear equation

g′′ = php−1g =
2p(p+ 1)

(p− 1)2
t−2g

which admits the following two independent solutions

g1(t) = t−
p+1
p−1 , g2(t) = t

2p
p−1 , for t > 0.

Since p+1
p−1 >

2
p−1 , the function g1, related to time invariance, is more singular at 0

than the function h. Note also that for a functionG satisfying
∫ 1

0
s

2p
p−1 |G(s)|ds <∞,

a solution of the following linearized equation with source G

g′′ =
2p(p+ 1)

(p− 1)2
t−2g +G,

is given by

g(t) = − p− 1

3p+ 1

(
t−

p+1
p−1

∫ t

0

s
2p
p−1G(s)ds+ t

2p
p−1

∫ 1

t

s−
p+1
p−1G(s)ds

)
.

2.2. First blow-up ansatz. Set

J =

⌊
p+ 1

p− 1

⌋
and k ≥ 2J + 2 (2.1)

where x 7→ bxc is the floor function which maps x to the greatest integer less than
or equal to x. (See Remark 2.4 below for the explanation of the numbers J and k.)
We consider a function A : RN → R of class Ck−1 on RN and of class Ck piecewise
on RN such that, for any β ∈ NN , with |β| ≤ k − 1, the following hold{

A ≥ 0 and |∂βxA| . A1− |β|k on RN ,
A(x) = |x|k for x ∈ RN , |x| ≥ 2.

(2.2)

Remark 2.1. Typical examples of such functions are A(x) := |x|k, which vanishes
at 0 and

A(x) :=


0 if |x| ≤ 1

(|x| − χ(x))k if 1 < |x| ≤ 2

|x|k if |x| > 2

(where χ is given by (1.9)) which vanishes on the closed ball of center 0 and radius
1. Another example, important for the proof of Theorem 1.1 is given in Section 4:
for any compact set E of RN included in the open ball of center 0 and radius 1,
there exists a function A satisfying (2.2) which vanishes exactly on E.

For t > 0 and x ∈ RN , set

U0(t, x) = κ(t+A(x))−
2
p−1 = h(W (t, x)) where W (t, x) = t+A(x),

so that U0 satisfies ∂ttU0 = f(U0) on (0,∞)× RN . Let

E0 = −∂ttU0 + ∆U0 − f(U0) = ∆U0.

We gather in the next lemma some estimates for U0 and E0.

Lemma 2.2. The function U0 satisfies

∂tU0 = −
(

2

p+ 1
Up+1

0

) 1
2

, (∂tU0)2 =
2

p+ 1
Up+1

0 , ∂ttU0 = Up0 . (2.3)

Moreover, for any β ∈ NN , ρ ∈ R, 0 < t ≤ 1, x ∈ RN , the following hold.
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(i) If 0 ≤ |β| ≤ k − 1 and |x| ≤ 2,

|∂βx (Uρ0 )| . Uρ+
|β|
k
p−1

2
0 , |∂t∂βx (Uρ0 )| . Uρ+(1+

|β|
k ) p−1

2
0 . (2.4)

(ii) If 0 ≤ |β| ≤ k − 3 and |x| ≤ 2,

|∂βxE0| . U
1+

2+|β|
k

p−1
2

0 . (2.5)

(iii) If |x| > 2,

|∂βxU0| . |x|−
2k
p−1−|β|, |∂βxE0| . |x|

− 2k
p−1−|β|−2. (2.6)

Furthermore, for any x0 ∈ RN such that A(x0) = 0, for any r > 0, 0 < t ≤ 1,

t−
2
p−1 + N

2k . ‖U0(t)‖L2(|x−x0|<r) . t
− 2
p−1 , (2.7)

t−
2
p−1−1+ N

2k . ‖∂tU0(t)‖L2(|x−x0|<r) . t
− 2
p−1−1, (2.8)

where the implicit constants in (2.7) and (2.8) depend on r.

Proof. The identities in (2.3) follow from the definition of U0 and direct calculations.
Proof of (2.4)-(2.5). For 0 < t ≤ 1 and |x| ≤ 2, one has 0 < t + A(x) . 1 and

thus U0 & 1. From U0 = h ◦W , setting n = |β| and using (1.15), one has

∂βxU0 =

n∑
ν=1

(
h(ν) ◦W

) ∑
P (β,ν)

(β!)

n∏
`=1

(
∂β`x W

)ν`
(ν`!)(β`!)ν`

.

For ν ≥ 1, we have |h(ν) ◦W | . W−
2
p−1−ν . Moreover, using the assumption (2.2),

we have, for 1 ≤ |β`| ≤ k − 1,

|∂β`x W | . |∂β`x A| . A1− |β`|k .

Since
∑n
`=1 ν` = ν,

∑n
`=1 ν`|β`| = |β| and |β| ≤ k − 1, we obtain

|∂βxU0| .
n∑
ν=1

W−
2
p−1−ν

∑
P (β,ν)

n∏
`=1

(
A1− |β`|k

)ν`
.

n∑
ν=1

W−
2
p−1−νAν−

|β|
k .W−

2
p−1−

|β|
k . U

1+
|β|
k
p−1

2
0 ,

which proves the first estimate of (2.4) for ρ = 1. For ρ ∈ R, using (1.15), we also
have, for 1 ≤ n = |β| ≤ k − 1,

∂βx (Uρ0 ) =

n∑
ν=1

[ρ · · · (ρ− ν + 1)]Uρ−ν0

∑
P (β,ν)

(β!)

n∏
`=1

(∂β`x U0)ν`

(ν`!)(β`!)ν`
.

Using the above estimate on |∂βxU0| and
∑n
`=1 ν` = ν,

∑n
`=1 ν`|β`| = |β|, we obtain

|∂βx (Uρ0 )| .
n∑
ν=1

Uρ−ν0

∑
P (β,ν)

n∏
`=1

U
ν`

[
1+
|β`|
k

p−1
2

]
0 .

n∑
ν=1

Uρ−ν0 U
ν+
|β|
k
p−1

2
0 . U

ρ+
|β|
k
p−1

2
0 .

Next, using the first identity in (2.3), we see that ∂tU
ρ
0 = −ρ( 2

p+1 )
1
2U

ρ+ p−1
2

0 ; and

so the second estimate in (2.4) follows from the first. Since E0 = ∆U0, (2.5) is an
immediate consequence of the first estimate in (2.4).

Estimate (2.6) is a direct consequence of the definitions of U0 and E0 and of the
fact that A(x) = |x|k for |x| > 2.

Proof of (2.7)-(2.8). For any x0 ∈ RN and r > 0, the upper bounds in (2.7)

and (2.8) are direct consequences of the estimates 0 ≤ U0 . t−
2
p−1 and |∂tU0| .

t−
2
p−1−1. Let x0 ∈ RN be such that A(x0) = 0 and r > 0. By (2.2) and the fact

that the function A is of class Ck piecewise, the Taylor formula implies that for any
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x such that |x − x0| < r, |A(x)| ≤ C(r)|x − x0|k. It follows that for such x, and

for any t ∈ (0, 1], U2
0 (t, x) = κ2(t + A(x))−

4
p−1 & (t + |x − x0|k)−

4
p−1 . The lower

estimate in (2.7) then follows from∫
|y|<r

(t+ |y|k)−
4
p−1 dy = t−

4
p−1 +N

k

∫
|z|<t−

1
k r

(1 + |z|k)−
4
p−1 dz

& t−
4
p−1 +N

k

∫
|z|<r

(1 + |z|k)−
4
p−1 dz & t−

4
p−1 +N

k .

(2.9)

Estimate (2.8) is proved similarly. �

2.3. Refined blow-up ansatz. Starting from U0, we define by induction a refined
ansatz to the nonlinear wave equation. Let t0 = 1 and for any j ∈ {1, . . . , J}, let
0 < aj ≤ 1 and 0 < tj ≤ 1 to be chosen later. Let

wj = −κ
p−1

2
p− 1

3p+ 1

(
U
p+1

2
0

∫ t

0

U−p0 Ej−1ds+ U−p0

∫ tj−1

t

U
p+1

2
0 Ej−1ds

)
,

Uj = U0 +

j∑
`=1

χ`w`, Ej = −∂ttUj + ∆Uj + f(Uj),

where χj(x) = χ(A(x)/aj) and χ satisfies (1.9).

Lemma 2.3. There exist 0 < aJ ≤ · · · ≤ a1 ≤ 1 and 0 < tJ ≤ · · · ≤ t1 ≤ 1 such
that for any 0 ≤ j ≤ J , for any β ∈ NN , 0 < t ≤ tj and x ∈ RN , the following
hold.

(i) If 1 ≤ j ≤ J , 0 ≤ |β| ≤ k − 1− 2j, |x| ≤ 2, then

|∂βxwj | . U
1−j(p−1)+

2j+|β|
k

p−1
2

0 , (2.10)

|∂t∂βxwj | . U
p+1

2 −j(p−1)+
2j+|β|
k

p−1
2

0 . (2.11)

(ii) If 1 ≤ j ≤ J , then

|Uj − U0| ≤
1

4
(1− 2−j)U0, |Uj − U0| ≤ (1− 2−j)(1 + U0)−

p−1
2 U0, (2.12)

|∂tUj − ∂tU0| . U0. (2.13)

(iii) If 0 ≤ |β| ≤ k − 3− 2j, |x| ≤ 2, then

|∂βxEj | . U
1−j(p−1)+

2j+2+|β|
k

p−1
2

0 . (2.14)

(iv) If |x| ≥ 2, then

|∂βxUj | . |x|
− 2k
p−1−|β|, |∂βxEj | . |x|

− 2k
p−1−2−|β|. (2.15)

Remark 2.4. We comment on the mechanism of the refined ansatz. For the energy
control which we establish in the next section, we need an estimate on the error

term ‖EJ‖L2 . t(
2
p−1 )+

. (See formulas (3.20) and (3.21).) By formula (2.14), this
is achieved if J > 2

p−1 , which is the first condition in (2.1), and then k sufficiently

large (once J is chosen), which is the second condition in (2.1). Note that for p > 3,
J = 1 is enough, but one can never choose J = 0, so a refined ansatz is always
needed. We see on formula (2.14) that at each step, the error estimate improves by

a factor U
−(p−1)(1− 1

k )
0 ∼ t2(1− 1

k ). It is clear then that the number of steps goes to
∞ as p→ 1.
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Proof of Lemma 2.3. Observe that (2.14) for j = 0 is exactly (2.5) in Lemma 2.2.
Now, we proceed by induction on j: for any 1 ≤ j ≤ J , we prove that estimate
(2.14) for Ej−1 implies estimates (2.10)–(2.14) for wj , Uj and Ej , for an appropriate
choice of aj and tj .

Proof of (2.10)-(2.11). First, assuming (2.14) for Ej−1, we show the following
estimates related to the two components of wj : for |β| ≤ k − 1 − 2j, 0 < t ≤ tj−1

and |x| ≤ 2, ∣∣∣∣∂βx (∫ t

0

U−p0 Ej−1ds

)∣∣∣∣ . U− p−1
2 −j(p−1)+

2j+|β|
k

p−1
2

0 , (2.16)∣∣∣∣∂βx (∫ tj−1

t

U
p+1

2
0 Ej−1ds

)∣∣∣∣ . Up+1−j(p−1)+
2j+|β|
k

p−1
2

0 . (2.17)

Indeed, we have by the Leibniz’s formula (1.14)

∂βx
(
U−p0 Ej−1

)
=
∑
β′≤β

(
β

β′

)(
∂β
′

x (U−p0 )
)(

∂β−β
′

x Ej−1

)
,

and thus, using (2.4) and (2.14),

|∂βx
(
U−p0 Ej−1

)
| .

∑
β′≤β

(
β

β′

)
U
−p+ |β

′|
k

p−1
2

0 U
1−(j−1)(p−1)+

2j+|β|−|β′|
k

p−1
2

0

. U
−j(p−1)+

2j+|β|
k

p−1
2

0 . (t+A)γ ,

where for j ≥ 1, |β| ≤ k,

γ := 2j − 2j + |β|
k

= 2j

(
1− 1

k

)
− |β|

k
≥ 0.

Integrating on (0, t) for t ∈ (0, tj−1], we obtain∣∣∣∣∂βx (∫ t

0

U−p0 Ej−1ds

)∣∣∣∣ . (t+A)γ+1 ≤ U−
p−1

2 −j(1− 1
k )(p−1)+

|β|
k
p−1

2

0 ,

which is (2.16). Similarly, using Leibniz’s formula, we check the following estimate

|∂βx (U
p+1

2
0 Ej−1)| . U

3p+1
2 −j(p−1)+

2j+|β|
k

p−1
2

0 . (t+A)−γ
′
,

where, using 0 < j ≤ J ≤ p+1
p−1 ,

γ′ :=
3p+ 1

p− 1
− 2j +

2j + |β|
k

> 1.

Thus, by time integration, for t ∈ (0, tj−1],∣∣∣∣∫ tj−1

t

∂βx (U
p+1

2
0 Ej−1)ds

∣∣∣∣ . (t+A)−γ
′+1 . U

p+1−j(p−1)+
2j+|β|
k

p−1
2

0 ,

which is (2.17).
Using Leibniz’s formula, (2.4), and (2.16)-(2.17), we deduce easily that, for any

β ∈ NN , |β| ≤ k − 1− 2j,∣∣∣∣∂βx (U p+1
2

0

∫ t

0

U−p0 Ej−1ds

)∣∣∣∣ . U1−j(p−1)+
2j+|β|
k

p−1
2

0 ,∣∣∣∣∂βx (U−p0

∫ tj−1

t

U
p+1

2
0 Ej−1ds

)∣∣∣∣ . U1−j(p−1)+
2j+|β|
k

p−1
2

0 .

Estimate (2.10) follows. Moreover, by the definition of wj and setting b = κ
p−1

2
p−1
3p+1 ,

∂twj = −b
(
∂t(U

p+1
2

0 )

∫ t

0

U−p0 Ej−1ds+ ∂t(U
−p
0 )

∫ tj−1

t

U
p+1

2
0 Ej−1ds

)
. (2.18)
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Similarly as above, Leibniz’s formula, (2.4), and (2.16)-(2.17) yield (2.11). Note
that we have proved estimates (2.10) and (2.11) for all 0 < t ≤ tj−1.

Proof of (2.12)-(2.13). For 0 < t ≤ tj−1 and |x| ≤ 2, by the estimate (2.4) on wj
for β = 0, the property U0 & 1 for |x| ≤ 2, and the definition of χj , we have

χj |wj | . χjU
1−j(1− 1

k )(p−1)
0 . χjU

1−(1− 1
k )(p−1)

0 . χj(t+A)2− 2
kU0 . (t+ aj)U0.

Choosing 0 < aj ≤ 1 and 0 < tj ≤ tj−1 sufficiently small, for all t ∈ (0, tj ],

χj |wj | ≤ 2−j−2U0 and χj |wj | ≤ 2−j(1 + U0)−
p−1

2 U0.

From now on, aj and tj are fixed to such values. In the case j = 1, this proves
(2.12) for |x| ≤ 2. For 2 ≤ j ≤ J , combining this estimate with (2.12) for j − 1, we
find, for all t ∈ (0, tj ] and |x| ≤ 2,

j∑
`=1

χ`|w`| ≤
1

4
(1− 2−j)U0 and

j∑
`=1

χ`|w`| ≤ (1− 2−j)(1 + U0)−
p−1

2 U0, (2.19)

which implies (2.12) for Uj and for |x| ≤ 2.
To prove (2.13) for |x| ≤ 2, we note that by (2.11) with β = 0 and U0 & 1,

j∑
`=1

χ`|∂tw`| .
j∑
`=1

χ`U
p+1

2 −`(1−
1
k )(p−1)

0 = U0

j∑
`=1

χ`U
p−1

2 (1−2`(1− 1
k ))

0 . U0.

For |x| ≥ 2, (2.2) implies that A(x) ≥ 2k ≥ 2a1 ≥ · · · ≥ 2aj and thus χj(x) = 0
and Uj(t, x) = U0(t, x). The same applies to ∂tUj .

Proof of (2.14). Differentiating (2.18) with respect to t, using the relations (2.3),

∂tt(U
p+1

2
0 ) = f ′(U0)U

p+1
2

0 and ∂tt(U
−p
0 ) = f ′(U0)U−p0 (these calculations are related

to observations made in Section 2.1), we check that wj satisfies

∂ttwj = f ′(U0)wj + Ej−1.

Using also Uj = Uj−1 + χjwj and the definition of Ej−1, we obtain

Ej = Ej−1 − χj∂ttwj + ∆(χjwj) + f(Uj)− f(Uj−1)

= (1− χj)Ej−1 + ∆(χjwj) + f(Uj)− f(Uj−1)− f ′(U0)χjwj .

We estimate ∂βx of each term on the right-hand side above for |β| ≤ k − 3 − 2j
and |x| ≤ 2. For the first term, recall that for x such that A(x) ≤ aj , it holds
1− χj(x) = 0 and for any β, ∂βxχj(x) = 0. Moreover, for 0 < t ≤ 1, for 0 ≤ x ≤ 2
such that A(x) ≥ aj , it holds A(x) ≈ 1 and so U0(t, x) ≈ 1. Thus, using the Leibniz
formula and (2.14) for Ej−1, we find

|∂βx [(1− χj)Ej−1]| . U1−(j−1)(p−1)+
2j+|β|
k

p−1
2

0 . U
1−j(p−1)+

2j+2+|β|
k

p−1
2

0 .

Next, by the Leibniz’s formula, the properties of χ and χj , the estimate (2.10) on
wj and then U0 & 1, we have, for 0 < t < tj and |x| ≤ 2,

|∂βx∆(χjwj)| .
∑

|β′|≤|β|+2

|∂β
′

x wj | . U
1−j(p−1)+

2j+2+|β|
k

p−1
2

0 .

Last, we estimate ∂βx [f(Uj) − f(Uj−1) − f ′(U0)χjwj ]. We begin with the case
β = 0. Recall that by (2.12), we have 0 < 3

4U0 ≤ Uj ≤ 5
4U0, so that by elementary

calculations
|f(Uj)− f(Uj−1)− f ′(Uj−1)χjwj | . χjUp−2

0 w2
j

and

|f ′(Uj−1)− f ′(U0)| . Up−2
0

j−1∑
`=1

χ`|w`|.
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These estimates imply

|f(Uj)− f(Uj−1)− f ′(U0)χjwj | . χjUp−2
0 |wj |

j∑
`=1

χ`|w`|.

For 1 ≤ ` ≤ j, using (2.10) and U0 & 1, we have

Up−2
0 |wj ||w`| . Up−2

0 U
1−j(1− 1

k )(p−1)
0 U

1−`(1− 1
k )(p−1)

0 . U
p−(j+`)(1− 1

k )(p−1)
0

. U
p−(j+1)(1− 1

k )(p−1)
0 . U

1−j(1− 1
k )(p−1)+ 1

k (p−1)
0 .

Thus, |f(Uj)− f(Uj−1)− f ′(U0)χjwj | . U
1−j(1− 1

k )(p−1)+ 1
k (p−1)

0 is proved.
Now, we deal with the case 1 ≤ |β| ≤ k − 3 − 2j. By the Taylor formula with

integral remainder, we have, for any U and w,

f(U + w)− f(U)− f ′(U)w = w2

∫ 1

0

(1− θ)f ′′(U + θw)dθ.

Thus, by the Leibniz’s formula (1.14)

∂βx [f(U + w)− f(U)− f ′(U)w]

=
∑
β′≤β

(
β

β′

)(
∂β−β

′

x (w2)
)∫ 1

0

(1− θ)∂β
′

x [f ′′(U + θw)]dθ.

Moreover, by the Faa di Bruno’s formula (1.15), for β′ 6= 0, denoting n′ = |β′|,

∂β
′

x [f ′′(U + θw)] =

n′∑
ν=1

f (ν+2)(U + θw)
∑

P (β′,ν)

(β′!)

n′∏
`=1

(∂β`x (U + θw))ν`

(ν`!)(β`!)ν`
.

To estimate the term ∂βx [f(Uj) − f(Uj−1) − f ′(U0)χjwj ], we apply these formulas
to U = Uj and w = χjwj . For β′ ≤ β, using (2.10) and the properties of χ, we
have ∣∣∣∂β−β′x

[
(χjwj)

2
]∣∣∣ . ∑

β′′≤β−β′

∣∣∣∂β′′x (χjwj)
∣∣∣ ∣∣∣∂β−β′−β′′x (χjwj)

∣∣∣
. U

2−2j(p−1)+
4j+|β|−|β′|

k
p−1

2
0 .

For β′ = 0 and θ ∈ [0, 1], using also (2.19), we obtain∣∣(∂βx [(χjwj)
2]
)
f ′′(U0 + θχjwj)

∣∣ . U2−2j(p−1)+
4j+|β|
k

p−1
2

0 Up−2
0

. U
1−j(p−1)+

2j+2+|β|
k

p−1
2

0 .

For β′ 6= 0, β′ ≤ β and θ ∈ [0, 1], using (2.4), (2.10) and (2.19), we have (recall that

the definition of P (β′, ν) implies that
∑n′

`=1 ν` = ν and
∑n′

`=1 ν`|β`| = |β′|)

|∂β
′

x [f ′′(Uj−1 + θχjwj)]| .
n′∑
ν=1

Up−ν−2
0

∑
P (β′,ν)

n′∏
`=1

(
U

1+
|β`|
k

p−1
2

0

)ν`

.
n′∑
ν=1

Up−ν−2
0 U

ν+
|β′|
k

p−1
2

0 . U
p−2+

|β′|
k

p−1
2

0 .

Thus, similarly as before, it holds∣∣∣∂β−β′x

[
(χjwj)

2
]
∂β
′

x [f ′′(Uj−1 + θχjwj)]
∣∣∣ . U1−j(p−1)+

2j+2+|β|
k

p−1
2

0 .

Integrating these estimates in θ ∈ [0, 1], we obtain∣∣∂βx [f(Uj)− f(Uj−1)− f ′(Uj−1)χjwj ]
∣∣ . U1−j(p−1)+

2j+2+|β|
k

p−1
2

0 . (2.20)
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By similar arguments, for any U,W,w, we have

f ′(U)− f ′(W ) = (U −W )

∫ 1

0

f ′′(W + θ(U −W ))dθ,

and thus

∂βx [w(f ′(U)− f ′(W ))]

=
∑
β′≤β

(
β

β′

)(
∂β−β

′

x [w(U −W )]
)∫ 1

0

∂β
′

x [f ′′(W + θ(U −W ))]dθ.

Moreover, for β′ 6= 0,

∂β
′

x [f ′′(W + θ(U −W ))]

=

n′∑
ν=1

f (ν+2)(W + θ(U −W ))
∑

P (β′,ν)

(β′!)

n′∏
`=1

(
∂β`x (W + θ(U −W ))

)ν`
(ν`!)(β`!)ν`

.

To estimate the term ∂β [χjwj(f
′(Uj−1) − f ′(U0))], we apply these formulas to

U = Uj−1, W = U0 and w = χjwj .
For β′ ≤ β, using (2.10) and the properties of χ, we have, for 1 ≤ ` ≤ j − 1,∣∣∣∂β−β′x [χjwjχ`w`]

∣∣∣ . U2−(j+`)(p−1)+
2j+2`+|β|−|β′|

k
p−1

2
0 .

For β′ = 0 and θ ∈ [0, 1], from (2.19), we obtain∣∣∂βx [χjwj(Uj−1 − U0)] f ′′(U0 + θ(Uj−1 − U0))
∣∣ . U1−j(p−1)+

2j+2+|β|
k

p−1
2

0 .

For β′ 6= 0, β′ ≤ β and θ ∈ [0, 1], by the formula above, using (2.4), (2.10) and
(2.19), we have as before

|∂β
′

x [f ′′(U0 + θ(Uj−1 − U0))]| .
n′∑
ν=1

Up−ν−2
0

∑
P (β′,ν)

n′∏
`=1

(
U

1+
|β`|
k

p−1
2

0

)ν`

.
n′∑
ν=1

Up−ν−2
0 U

ν+
|β′|
k

p−1
2

0 . U
p−2+

|β′|
k

p−1
2

0 .

Thus, we obtain∣∣∣∂β−β′x [χjwj(Uj−1 − U0)] ∂β
′

x [f ′′(U0 + θ(Uj−1 − U0))]
∣∣∣ . U1−j(p−1)+

2j+2+|β|
k

p−1
2

0 .

Integrating in θ ∈ [0, 1] and summing in β′ ≤ β, we obtain∣∣∂β [χjwj(f
′(Uj−1)− f ′(U0))]

∣∣ . U1−j(p−1)+
2j+2+|β|

k
p−1

2
0 . (2.21)

Combining (2.20) and (2.21), we have proved for t ∈ (0, tj ], |x| ≤ 2,∣∣∂β [f(Uj)− f(Uj−1)− f ′(U0)χjwj ]
∣∣ . U1−j(p−1)+

2j+2+|β|
k

p−1
2

0 .

In conclusion, we have estimated all terms in the expression of ∂βxEj and (2.14)
is now proved.

Finally, for |x| ≥ 2, (2.2) implies that A(x) ≥ 2k ≥ 2a1 ≥ · · · ≥ 2aj and
thus χj(x) = 0, Uj(t, x) = U0(t, x) and Ej(t, x) = E0(t, x), so that (2.15) follows
from (2.6). �
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3. Uniform bounds on approximate solutions

Let the function χ be given by (1.9) and UJ be defined as in §2.3 with J and k
as in (2.1). Set

λ = min

(
J − 2

p− 1
,

1

2

)
∈
(

0,
1

2

]
, (3.1)

and impose the following additional condition on k

k ≥ 2(p+ 1)

λ(p− 1)
+ 2. (3.2)

For any n large, let Tn = 1
n < tJ and

Bn = sup
t∈[Tn,tJ ]

‖UJ(t)‖L∞ so that lim
n→∞

Bn =∞. (3.3)

We let n be sufficiently large so that Bn > 1, and we define the function fn : R→
[0,∞) by

fn(u) = f(u)χ

(
u

Bn

)
so that fn(u) =

{
f(u) for |u| < Bn

0 for u > 2Bn
. (3.4)

Let Fn(v) =
∫ v

0
fn(w)dw. It follows from elementary calculations that for every

α ∈ N, there exists a constant Cα > 0 independent of n, such that for all u > 0,

|f (α)
n (u)| ≤ Cαup−α. (3.5)

In particular, we observe that Taylor’s estimates such as (1.11)–(1.13) still hold for
Fn and fn with constants independent of n. We will refer to these inequalities for
Fn and fn with the same numbers (1.11), (1.12) and (1.13). In this proof, any
implicit constant related the symbol . is independent of n.

We define the sequence of solutions un of{
∂ttun −∆un = fn(un)

un(Tn) = UJ(Tn), ∂tun(Tn) = ∂tUJ(Tn).
(3.6)

The nonlinearity fn being globally Lipschitz, the existence of a global solution
(un, ∂tun) in the energy space is a consequence of standard arguments from semi-
group theory. Using energy estimates, we prove uniform bounds on un in the energy
space. For this we set, for all t ∈ [Tn, tJ ],

un(t) = UJ(t) + εn(t), (3.7)

so that (εn, ∂tεn) ∈ C([Tn, tJ ], H1(RN )× L2(RN )).

Proposition 3.1. There exist C > 0, n0 > 0 and 0 < δ0 < 1 such that

‖(εn(t), ∂tεn(t))‖H1×L2 ≤ C(t− Tn)
λ
2 . (3.8)

for all n ≥ n0 and t ∈ [Tn, Tn + δ0], where λ is given by (3.1).

Proof. The equation of εn on [Tn, tJ ]× RN is{
∂ttεn −∆εn = fn(UJ + εn)− fn(UJ) + EJ
εn(Tn) = 0, ∂tεn(Tn) = 0

(3.9)

where we have used from (3.3) and (3.4) that f(UJ) = fn(UJ) on [Tn, tJ ]× RN .
Define the auxiliary function z as follows

εn = Q
1
2 z where Q = (1− χ+ U0)p+1.
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We note that Q & 1, Q . t−
2(p+1)
p−1 . Moreover, it follows from (2.4) that |∇U0| .

Q
1
p+1 + p−1

2k(p+1) , from which we deduce easily that |∇Q| . t− 1
kQ. One proves similarly

that |∆Q| . t− 2
kQ. To write the equation of z, we compute

∂ttεn = ∂tt(Q
1
2 z) = (∂ttQ

1
2 )z + (p+ 1)(1− χ+ U0)

p−1
2 ∂tU0∂tz +Q

1
2 ∂ttz

= (∂ttQ
1
2 )z +Q−

1
2 ∂t(Q∂tz).

Thus, setting G = Q
1
2 (f ′(U0)Q

1
2 − ∂ttQ

1
2 ), we obtain

∂t(Q∂tz) =Q
1
2 ∆(Q

1
2 z)

+Q
1
2

(
fn(UJ +Q

1
2 z)− fn(UJ)− f ′n(U0)Q

1
2 z
)

+Gz +Q
1
2 EJ .

(3.10)

Let σ = 3
4 . We define the following weighted norm and energy functional for z,

N =

(∫
(Q∂tz)

2 +Q2|∇z|2 + t−2σQ2z2

) 1
2

,

H =

∫ [
(Q∂tz)

2 +Q2|∇z|2 + t−2σQ2z2

−Q
(

2Fn(UJ +Q
1
2 z)− 2Fn(UJ)− 2F ′n(UJ)Q

1
2 z − F ′′n (U0)Qz2

) ]
.

We remark that the first two terms in H are the energy for the linear part of
equation (3.10). The third term yields the control of a weighted L2 norm, and the
last term is associated with the nonlinear terms in the equation.

Step 1. Coercivity of the energy. We claim that, for 0 < δ ≤ tJ and 0 < ω ≤ 1
sufficiently small, for n large, if N ≤ ω and Tn ≤ t ≤ δ then

N 2 ≤ 2H, (3.11)

and
‖(εn(t), ∂tεn(t))‖Ḣ1×L2 . N , ‖εn(t)‖L2 . tσN . (3.12)

Proof of (3.11). Let

A1 = |2Fn(UJ +Q
1
2 z)− 2Fn(UJ)− 2F ′n(UJ)Q

1
2 z − F ′′n (U0)Qz2|. (3.13)

The triangle inequality and the Taylor inequality (1.11) yield

A1 .|2Fn(UJ +Q
1
2 z)− 2Fn(UJ)− 2F ′n(UJ)Q

1
2 z − F ′′n (UJ)Qz2|

+ |F ′′n (U0)− F ′′n (UJ)|Qz2

.Λ1

(3.14)

where
Λ1 = Q

p+1
2 |z|p+1 + Up−p̄J Q

p̄+1
2 |z|p̄+1 + Up−2

0 |U0 − UJ |Qz2. (3.15)

Using UJ . U0 and U0 . Q
1
p+1 , we see that Up−p̄J . Q

p−p̄
p+1 . Moreover, since

|U0 − UJ | . (1 + U0)−
p−1

2 U0 . Q
− p−1

2(p+1)U0 (see (2.12)), we obtain

Up−2
0 |U0 − UJ | . Up−1

0 Q−
p−1

2(p+1) . Q
p−1

2(p+1) ,

and so

Λ1 . Q
p+1

2 |z|p+1 +Q
p̄+1

2 + p−p̄
p+1 |z|p̄+1 +Q

p−1
2(p+1)

+1z2. (3.16)

It follows that∫
QΛ1 .

∫
Q
p+3

2 |z|p+1 +

∫
Q
p̄+3

2 + p−p̄
p+1 |z|p̄+1 +

∫
Q

p−1
2(p+1)

+2z2.

For the first term on the right-hand side above, we use Q & 1, thus∫
Q
p+3

2 |z|p+1 =

∫
Q−

p−1
2 |Qz|p+1 .

∫
|Qz|p+1. (3.17)
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Applying now (1.10), |∇Q| . t− 1
kQ, and the definition of N ,

∫
|Qz|p+1 .

(∫
|∇(Qz)|2

)N
4 (p−1)(∫

Q2z2

) p+1
2 −

N
4 (p−1)

.

(∫
Q2|∇z|2 + t−

2
k

∫
Q2z2

)N
4 (p−1)(∫

Q2z2

) p+1
2 −

N
4 (p−1)

. N p+1.

(3.18)

In the case 1 < p ≤ 2, one has p̄ = p and the second term is identical to the first one.

In the case p > p̄ = 2, the second term Q
5
2 + p−2

p+1 |z|3 = Q
7p+1

2(p+1) |z|3 is estimated as

follows (using |z|3 . ap−2|z|p+1 + 1
az

2 with a = Q
p−1
p+1 , Q−1 . 1 and Q

p−1
2(p+1) . t−1)

Q
7p+1

2(p+1) |z|3 . Q−
3
2
p−1
p+1Qp+1|z|p+1 +Q

5p+3
2(p+1) z2

. Qp+1|z|p+1 +Q
p−1

2(p+1)Q2z2 . Qp+1|z|p+1 + t−1Q2z2,

and so ∫
Q
p̄+3

2 + p−p̄
p+1 |z|p̄+1 . N p+1 + t2σ−1N 2. (3.19)

Last, since Q
p−1

2(p+1) . t−1, we observe that∫
Q

p−1
2(p+1)Q2z2 . t−1

∫
Q2z2 . t2σ−1N 2.

In conclusion, we have obtained
∫
QA1 .

∫
QΛ1 . t2σ−1N 2 +N p+1, which implies

that for t and N small enough, H ≥ 1
2N

2.

Proof of (3.12). Since εn = Q
1
2 z, the inequality ‖εn‖L2 . t−1N follows readily

from the definition of N and Q & 1. Next, using |∇Q| . t− 1
kQ, we see that∫

|∇εn|2 =

∫ ∣∣∣Q 1
2∇z +

1

2
Q−

1
2 z∇Q

∣∣∣2 . ∫ Q|∇z|2 + t−
2
k

∫
Qz2 . N 2.

Last, using |∂tQ| . Q
p−1

2(p+1)Q . t−
1
2Q

5p+3
4(p+1) , we have

∫
|∂tεn|2 =

∫ ∣∣∣Q 1
2 ∂tz +

1

2
Q−

1
2 z∂tQ

∣∣∣2 . ∫ Q|∂tz|2 +

∫
|∂tQ|2Q−1z2

.
∫
Q2|∂tz|2 + t−1

∫
Q

3p+1
2(p+1) z2 . N 2.

This completes the proof of (3.12).

Step 2. Energy control. We claim that for 0 < δ ≤ tJ small enough and C > 0
large enough, for any n large and for all t ∈ [Tn, Tn + δ]

d

dt
H ≤ C

[
t−1+λN + t−

1
2N 2 +N p+1

]
. (3.20)
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Proof of (3.20). Taking the time-derivative of all the terms in H, we obtain

1

2

d

dt
H =

∫ (
Q∂tz∂t(Q∂tz) +Q2∇z · ∇∂tz + t−2σQ2z∂tz

)
−
∫
Q

3
2

(
fn(UJ +Q

1
2 z)− fn(UJ)− f ′n(U0)Q

1
2 z
)
∂tz

+

∫
Q∂tQ|∇z|2 + t−2σ

∫
Q∂tQz

2 − σt−2σ−1

∫
Q2z2

− 1

2

∫
∂tQ

(
2Fn(UJ +Q

1
2 z)− 2Fn(UJ)− 2F ′n(UJ)Q

1
2 z − F ′′n (U0)Qz2

)
− 1

2

∫
∂tQ

(
fn(UJ +Q

1
2 z)− fn(UJ)− f ′n(U0)Q

1
2 z
)
Q

1
2 z

− 1

2

∫
Q∂tU0

(
2fn(UJ +Q

1
2 z)− 2fn(UJ)− 2f ′n(UJ)Q

1
2 z − f ′′n (U0)Qz2

)
− 1

2

∫
Q∂t(UJ − U0)

(
2fn(UJ +Q

1
2 z)− 2fn(UJ)− 2f ′n(UJ)Q

1
2 z
)

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

First, we note that ∂tQ = (p+ 1)Q
p
p+1 ∂tU0 ≤ 0, so that

I3 ≤ −
√

2(p+ 1)

∫
U
p+1

2
0 Q

2p+1
p+1 |∇z|2 − σt−2σ−1

∫
Q2z2.

We now use equation (3.10) to replace the term ∂t(Q∂tz) in I1, and we obtain

I1 + I2 =

∫ (
Q

3
2 ∂tz∆(Q

1
2 z) +Q2∇z · ∇∂tz

)
+

∫ (
Gz +Q

1
2 EJ

)
Q∂tz + t−2σ

∫
Q2z∂tz = I8 + I9 + I10.

The term I10 is controlled using the Cauchy-Schwarz inequality,

|I10| ≤
1

10
|I3|+ Ct−2σ+1

∫
(Q∂tz)

2 ≤ 1

10
|I3|+ Ct−2σ+1N 2 ≤ 1

10
|I3|+ Ct−

1
2N 2.

Next, integrating by parts,

I8 = −
∫
∇(Q

1
2 z) · ∇(Q

3
2 ∂tz) +Q2∇z · ∇(∂tz)

= −
∫
z∇(Q

1
2 ) · ∇(Q

3
2 ∂tz)−

∫
Q

1
2 (∂tz)∇z · ∇(Q

3
2 )

= −
∫
Q∂tz∇z · ∇Q+

∫
∆(Q

1
2 )Q

3
2 z∂tz.

By |∇Q| . t− 1
kQ and the Cauchy-Schwarz inequality,∣∣∣∣∫ Q∂tz∇z · ∇Q

∣∣∣∣ . t− 1
kN 2.

Similarly, |∆(Q
1
2 )Q

3
2 | . |∇Q|2 + |∆Q|Q . t− 2

kQ2, and so∣∣∣∣∫ ∆(Q
1
2 )Q

3
2 z∂tz

∣∣∣∣ ≤ ∫ Q2|∂tz|2 + t−
4
k

∫
Q2z2 . N 2.

We note that by Cauchy-Schwarz,

|I9| . ‖G‖L∞N 2 + ‖Q 1
2 EJ‖L2N ,
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and so, we only have to bound the L∞ norm of G and the L2 norm of Q
1
2 EJ . We

begin with G = Q
1
2

(
pUp−1

0 Q
1
2 − ∂ttQ

1
2

)
. Using Q = (1 − χ + U0)p+1 and the

expressions of ∂ttU0 and (∂tU0)2, we observe that

∂ttQ
1
2 =

p+ 1

2
Up0Q

p−1
2(p+1) +

p− 1

2
Up+1

0 Q
p−3

2(p+1) .

Thus,

pUp−1
0 Q

1
2 − ∂ttQ

1
2

=
p+ 1

2
Up−1

0 Q
p−1

2(p+1)

(
Q

1
p+1 − U0

)
+
p− 1

2
Up−1

0 Q
p−3

2(p+1)

(
Q

2
p+1 − U2

0

)
=
p+ 1

2
Up−1

0 Q
p−1

2(p+1) (1− χ) +
p− 1

2
Up−1

0 Q
p−3

2(p+1) (1− χ) (1− χ+ 2U0) .

Since for |x| > 1, we have U0 . 1 and Q . 1, we obtain ‖G‖L∞ . 1.

Now, we estimate ‖Q 1
2 EJ‖L2 from Lemma 2.3. For |x| ≥ 2, it follows from (2.15)

that

Q
1
2 |EJ | . |EJ | . |x|−

2k
p−1−2.

Note that for N ≥ 3, p − 1 ≤ 4
N−2 and so 2k

p−1 + 2 ≥ N−2
2 k + 2 ≥ N . Thus, the

following bound holds ‖Q 1
2 EJ‖L2(|x|>2) . 1.

Next, using (2.14), we have for |x| . 2

Q
1
2 |EJ | . Q

1
2U

1−J(p−1)+
(J+1)(p−1)

k
0 . U

p+3
2 −J(p−1)+

(J+1)(p−1)
k

0

. U
p+3

2 −J(1− 1
k )(p−1)+ p−1

k
0 .

Note that by (3.1), J ≥ λ + 2
p−1 , so that −J(1 − 1

k ) + p−1
k ≤ −2(1 − 1

k ) + p−1
k −

λ(p− 1)(1− 1
k ); and so

Q
1
2 |EJ | . U

p+3
2 −2(1− 1

k )+ p−1
k −λ(p−1)(1− 1

k )
0 . U

p−1
2 + p+1

k −λ(p−1)(1− 1
k )

0 .

Moreover, the additional condition (3.2) is equivalent to p+1
k − λ(p − 1)(1 − 1

k ) ≤
−λ(p−1)

2 . Thus, for |x| . 2,

Q
1
2 |EJ | . U

(1−λ) p−1
2

0 . (t+A(x))−1+λ . t−1+λ. (3.21)

Therefore, one obtains ‖Q 1
2 EJ‖L2 . t−1+λ.

To complete the proof of (3.20), we estimate I4, I5, I6 and I7. First, using (3.13)–

(3.16), and |∂tQ| . |∂tU0|Q
p
p+1 . U

p+1
2

0 Q
p
p+1 . Q

3p+1
2(p+1) , we obtain

|∂tQ|A1 . Q
3p+1

2(p+1) Λ1

. Qp+1− p(p−1)
2(p+1) |z|p+1 +Q

3p+1
2(p+1)

+ p̄+1
2 + p−p̄

p+1 |z|p̄+1 +Q2+ p−1
p+1 z2.

Using U0 & 1 and the estimate (3.18), we treat the first term above as follows∫
Qp+1− p(p−1)

2(p+1) |z|p+1 .
∫
|Qz|p+1 . N p+1.

In the case 1 < p ≤ 2, one has p̄ = p and the second term is identical to the first

one. In the case p > p̄ = 2, the second term Q
4p
p+1 |z|3 is estimated as follows (using

|z|3 . ap−2|z|p+1 + 1
az

2 with a = Q
p−1
p+1 , Q−1 . 1 and Q

p−1
p+1 . t−2)

Q
4p
p+1 |z|3 . Q−n

p−1
p+1Qp+1|z|p+1 +Q

p−1
p+1Q2z2 . Qp+1|z|p+1 + t−2Q2z2.

Therefore ∫
Q

4p
p+1 |z|3 . N p+1 + t−2(1−σ)N 2 . N p+1 + t−

1
2N 2.
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Since Q2+ p−1
p+1 z2 . t−2Q2z2, we have proved

|I4| .
∫
|∂tQ|Λ1 .

∫
Q

3p+1
2(p+1) Λ1 . N p+1 + t−

1
2N 2. (3.22)

We proceed similarly for I5. Indeed, setting

A2 =
∣∣∣fn(UJ +Q

1
2 z)− fn(UJ)− f ′n(U0)Q

1
2 z
∣∣∣Q 1

2 |z|

≤
∣∣∣fn(UJ +Q

1
2 z)− fn(UJ)− f ′n(UJ)Q

1
2 z
∣∣∣Q 1

2 |z|+ |f ′n(U0)− f ′n(UJ)|Qz2

we deduce from (1.12) and Taylor’s inequality that, with the notation (3.15),

A2 . Q
p+1

2 |z|p+1 + Up−p̄J Q
p̄+1

2 |z|p̄+1 + Up−2
0 |U0 − UJ |Q|z|2 . Λ1.

Using the last two inequalities in (3.22), we conclude that |I5| . N p+1 + t−
1
2N 2.

Now, we estimate I6, and we set

A3 = |2fn(UJ +Q
1
2 z)− 2fn(UJ)− 2f ′n(UJ)Q

1
2 z − f ′′n (UJ)Qz2|.

By the triangle inequality, Taylor’s inequality (1.13), and U−1
J . U−1

0 (see (2.12)),

A3 .|2fn(UJ +Q
1
2 z)− 2fn(UJ)− 2f ′n(UJ)Q

1
2 z − f ′′n (U0)Qz2|

+ |f ′′n (U0)− f ′′n (UJ)|Qz2

.U−1
J Q

p+1
2 |z|p+1 + Up−p̄−1

J Q
p̄+1

2 |z|p̄+1 + Up−3
0 |U0 − UJ |Qz2

.U−1
0 [Q

p+1
2 |z|p+1 + Up−p̄J Q

p̄+1
2 |z|p̄+1 + Up−2

0 |U0 − UJ |Qz2]

.U−1
0 Λ1

with the notation (3.15). Using |∂tU0| . U
p+1

2
0 and U0 . Q

1
p+1 , we see that

Q|∂tU0| . QU
p+1

2
0 . QU

p−1
2

0 U0 . Q
3p+1

2(p+1)U0, hence Q|∂tU0|A3 . Q
3p+1

2(p+1) Λ1. The

last inequality in (3.22) yields |I6| . N p+1 + t−
1
2N 2.

Finally, we estimate I7 and we set

A4 = |fn(UJ +Q
1
2 z)− fn(UJ)− f ′n(UJ)Q

1
2 z|.

By the triangle inequality Taylor’s expansion (1.13),

A4 .
∣∣∣fn(UJ +Q

1
2 z)− fn(UJ)− f ′n(UJ)Q

1
2 z − 1

2
f ′′(UJ)Qz2

∣∣∣
+

1

2
|f ′′(UJ)|Qz2

.U−1
J Q

p+1
2 |z|p+1 + Up−p̄−1

J Q
p̄+1

2 |z|p̄+1 + Up−2
J Qz2

Using Q|∂t(UJ − U0)| . QU0 (see (2.13)), U−1
J . U−1

0 , and UJ . U0, we obtain

Q|∂t(UJ − U0)|A4 . Q
p+3

2 |z|p+1 + Up−p̄0 Q
p̄+3

2 |z|p̄+1 + Up−1
0 Q2z2.

Since U0 . Q
1
p+1 and Up−1

0 . t−2, we deduce that

Q|∂t(UJ − U0)|A4 . Q
p+3

2 |z|p+1 +Q
p−p̄
p+1 + p̄+3

2 |z|p̄+1 + t−2Q2z2.

Applying (3.17)-(3.18) for the first term and (3.19) for the second term, we see that

|I7| . N p+1 + t−
1
2N 2. Collecting the above estimates, we have proved (3.20).

Step 3. Conclusion. The values of δ ∈ (0, tJ ] and 0 < ω ≤ 1 are now fixed so
that (3.11), (3.12) and (3.20) hold. Since N (Tn) = 0, the following is well-defined

T ?n = sup{t ∈ [Tn, δ] : for all s ∈ [Tn, t], N (s) ≤ ω}
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and by continuity, T ?n ∈ (Tn, δ]. For all t ∈ [Tn, T
?
n ], using (3.20), we find (recall

that λ ∈ (0, 1
2 ])

d

dt
H ≤ C

[
t−1+λ + t−

1
2 + 1

]
≤ Ct−1+λ.

Let t ∈ [Tn, T
?
n ]. Since H(Tn) = 0, we obtain by integration on [Tn, t]

H(t) ≤ C(tλ − Tλn ) ≤ C(t− Tn)λ.

Therefore, using the definition of T ?n and (3.11), for all t ∈ [Tn, T
?
n ],

N (t) ≤ C(t− Tn)
λ
2 .

In particular, there exists δ0 > 0 independent of n such that, for n large, it holds
T ?n ≥ Tn + δ0. Moreover, using (3.12), for all t ∈ [Tn, Tn + δ0],

‖(εn(t), ∂tεn(t))‖H1×L2 . N (t) . (t− Tn)
λ
2 ,

which completes the proof of Proposition 3.1. �

4. End of the proof of Theorem 1.1

Let E be any compact set of RN included in the ball of center 0 and radius 1
(by the scaling invariance of equation (1.1), this assumption does not restrict the
generality). It is well-known that there exists a smooth function Z : RN → [0,∞)
which vanishes exactly on E (see e.g. Lemma 1.4, page 20 of [23]). For p as in (1.2),
choose J and k satisfying (2.1) and (3.2). Define the function A : RN → [0,∞) by

A(x) = (Z(x)χ(x) + (1− χ(x))|x|)k ,

where χ is given by (1.9). It follows that the function A satisfies (2.2) and vanishes
exactly on E.

We consider the global solutions un of equation (3.6), εn defined by (3.7) and
we set for 0 ≤ t ≤ tJ − Tn,

Vn(t) = UJ(Tn + t), ηn(t) = εn(Tn + t), Fn(t) = EJ(Tn + t).

It follows from Proposition 3.1 that there exist 0 < δ0 < tJ , 0 < λ ≤ 1
2 , and C > 0

such that, for n large and for all t ∈ [0, δ0],

‖(ηn(t), ∂tηn(t))‖H1×L2 ≤ Ctλ2 . (4.1)

Moreover, it follows from (3.9) that

∂ttηn −∆ηn = fn(Vn + ηn)− fn(Vn) + Fn. (4.2)

Using the estimate |fn(u + v) − fn(u)| . (|u|p−1 + |v|p−1)|v| and the embeddings

H1(RN ) ↪→ Lp+1(RN ), L
p+1
p (RN ) ↪→ H−1(RN ), we deduce that

‖∂ttηn‖H−1 . ‖ηn‖H1 + ‖Vn‖p−1
H1 ‖ηn‖H1 + ‖ηn‖pH1 + ‖Fn‖L2

so that by the estimates of Lemmas 2.2 and 2.3, there exist C, c > 0 such that, for
all t ∈ (0, δ0],

‖∂ttηn‖H−1 ≤ Ct−c. (4.3)

Given τ ∈ (0, δ0), it follows from (4.1) and (4.3) that the sequence (ηn)n≥1 is
bounded in L∞((τ, δ0), H1(RN ))∩W 1,∞((τ, δ0), L2(RN ))∩W 2,∞((τ, δ0), H−1(RN )).
Therefore, after possibly extracting a subsequence (still denoted by ηn), there exists
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η ∈ L∞((τ, δ0), H1(RN )) ∩W 1,∞((τ, δ0), L2(RN )) ∩W 2,∞((τ, δ0), H−1(RN )) such
that

ηn −→
n→∞

η in L∞((τ, δ0), H1(RN )) weak∗ (4.4)

∂tηn −→
n→∞

∂tη in L∞((τ, δ0), L2(RN )) weak∗ (4.5)

∂ttηn −→
n→∞

∂ttη in L∞((τ, δ0), H−1(RN )) weak∗ (4.6)

ηn −→
n→∞

η weakly in H1(RN ), for all t ∈ [τ, δ0] (4.7)

∂tηn −→
n→∞

∂tη weakly in L2(RN ), for all t ∈ [τ, δ0]. (4.8)

Since τ ∈ (0, δ0) is arbitrary, a standard argument of diagonal extraction shows

that there exists a function η ∈ L∞loc((0, δ0), H1(RN )) ∩ W 1,∞
loc ((0, δ0), L2(RN )) ∩

W 2,∞
loc ((0, δ0), H−1(RN )) such that (after extraction of a subsequence) (4.4)–(4.8)

hold for all 0 < τ < δ0. Moreover, (4.1) and (4.7)–(4.8) imply that

‖(η(t), ∂tη(t))‖H1×L2 ≤ Ctλ2 , t ∈ (0, δ0), (4.9)

and (4.3) and (4.6) imply that

‖∂ttη‖L∞((τ,δ0),H−1) ≤ Cτ−c, τ ∈ (0, δ0). (4.10)

In addition, it follows easily from (4.2), (3.3), (3.4) and the convergence properties
(4.4)–(4.8) that

∂ttη −∆η = f(UJ + η)− f(UJ) + EJ (4.11)

in L∞loc((0, δ0), H−1(RN )). Therefore, setting

u(t) = UJ(t) + η(t), t ∈ (0, δ0),

we observe that the function u ∈ L∞loc((0, δ0), H1(RN )) ∩W 1,∞
loc ((0, δ0), L2(RN )) ∩

W 2,∞
loc ((0, δ0), H−1(RN )) and satisfies ∂ttu−∆u = f(u) in L∞loc((0, δ0), H−1(RN )).

It is a well-known property of the energy subcritical wave equation (corresponding
to assumption (1.2)) that then it holds the stronger property

u ∈ C((0, δ0), H1(RN )) ∩ C1((0, δ0), L2(RN )) ∩ C2((0, δ0), H−1(RN )). (4.12)

We refer for example to Proposition 3.1 and Lemma 2.1 in [8].
Finally, we prove estimates (1.3) and (1.4). For x0 6∈ E, there exist r > 0 and

C > 0 such that A(x) ≥ C for all x ∈ RN such that |x− x0| < r. In particular, for
such x, by (2.12) and (2.13), |UJ(x)| + |∂tUJ(x)| ≤ C ′ for some constant C ′ > 0.
Estimate (1.4) then follows from (4.9). For x0 ∈ E, (2.7), (2.8), (2.12) and (2.13)
imply, for t ∈ (0, δ0),

t−µ . ‖UJ(t)‖L2(|x−x0|<r) . t
− 2
p−1 ,

t−µ−1 . ‖∂tUJ(t)‖L2(|x−x0|<r) . t
− 2
p−1−1,

where µ = 2
p−1 −

N
2k . Estimate (1.3), and more precisely estimates (1.6) and (1.7)

then follow from (4.9).
Now, we justify the last part of Remark 1.2. If x0 ∈ E and E contains a

neighborhood of x0 then A(x) = 0 on this neighborhood and the lower estimate
easily follows. In the case where x0 ∈ E is isolated, the function A can be chosen so
that A(x) = |x|k in a neighbourhood of x0 (see Remark 2.1). In particular, by (2.9)
and a similar estimate for ∂tU0, we obtain for small r > 0, ‖u(t)‖L2(|x−x0|<r) .

t−
2
p−1 + N

2k and ‖∂tu(t)‖L2(|x−x0|<r) . t
−1− 2

p−1 + N
2k .
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