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SOLUTIONS BLOWING UP ON ANY GIVEN COMPACT SET
FOR THE ENERGY SUBCRITICAL WAVE EQUATION

THIERRY CAZENAVE!, YVAN MARTEL?, AND LIFENG ZHAO3

ABSTRACT. We consider the focusing energy subcritical nonlinear wave equa-
tion Ayu — Au = |u|P~ 1w in RN, N > 1. Given any compact set E C RY, we
construct finite energy solutions which blow up at t = 0 exactly on E.

The construction is based on an appropriate ansatz. The initial ansatz is

simply Up (¢, z) = k(t+ A(x)) P—T, where A > 0 vanishes exactly on E, which
is a solution of the ODE h” = hP. We refine this first ansatz inductively
using only ODE techniques and taking advantage of the fact that (for suitably
chosen A), space derivatives are negligible with respect to time derivatives.
We complete the proof by an energy argument and a compactness method.

1. INTRODUCTION

We consider the focusing nonlinear wave equation on RV
O — Au = [ulP"tu, (t,z) € R x RY, (1.1)
for any space dimension N > 1, and energy subcritical nonlinearities, i.e.

2
2
It is well-known that under such condition on p the Cauchy problem for (1.1) is
locally well-posed in the energy space H(R™) x L2(R™) (see [8, 9, 25]). For H! x L?
solutions, the energy

N
1<p<ooifN:1,2&ndl<p<N+ if N > 3. (1.2)

E(u(t), du(t)) = / {;|6tu(t,m)|2 + %|Vu(t,a;)|2 - 1

1 |u(t, a:)|p+1} dx

is conserved through time. Moreover, it is known how to produce solutions blowing
up in finite time (see e.g. [10, 18]).

Our main result states that for any given compact set £ of RY, there exists a
finite-energy solution of (1.1) which blows up in finite time exactly on E.

Theorem 1.1. Let p satisfy (1.2) and let E be any compact set of RN. There
ezists 6o > 0 and a solution (u,dyu) € C((0,d0]; HY(RY) x LERY)) of (1.1) which
blows up at time 0 exactly on E in the following sense.

o Ifxyg € E then for any r > 0,
i [[u(t)l| 22 (a—zol<r) = 00 and  1im [Opu(t)] L2 (oo <r) = 00- (1.3)
o [fxg & E then there exists v > 0 such that

S {02 ea<r) + 1TUOlslen) + 10Dl 2i<n} < o0 (1.4
€(0,00
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Remark 1.2. For t > 0, the function

-1
h(t) = KtTPT where k= {W} ’ (1.5)
(p—1)?

is a solution of the ordinary differential equation h” = h? which blows up at time 0.
It is also a solution of (1.1), but of course it fails to be in the energy space. The
function A is the building block for our construction, it is thus relevant to compare
it with the blow-up rate of the solutions constructed in Theorem 1.1. It follows
from the proof that for any 0 < u < p%l there exist solutions w as in the statement
of Theorem 1.1 satisfying in addition the following estimates: for any o9 € E r > 0,
and all ¢ € (0, §g],

T S Hlu®) ez (a—aol<ry ST, (1.6)
__2__
7 S Ou®) | e (a—sol <) ST (L.7)

Moreover, if zyp € E and F contains a neighborhood of zy then it also holds, for
any r > 0, and all ¢ € (0, dg],

__2 2 _
la(®) |2 noter) 27T and  [0u(®)]l2e_soler 2T (L8)

In contrast, if zo is an isolated point of the compact set E, solutions u as in
Theorem 1.1 can be chosen so that, for a small r > 0,

. 2 2
tim {4757 u(®) | 2(o—zol<r) + 77 1000 120z01<r) } = 0.

To prove Theorem 1.1, we follow the strategy developed in [4] to construct blow-
up solutions of ODE type for a class of semilinear Schrodinger equations. First, we
construct an approximate solution to the blow-up problem based on the explicit
blow-up solution h defined by (1.5). The main order term of the approximate

solution is Uy(t,x) = k(t + A(z))_v%, where A is a suitable nonnegative function
which vanishes exactly on E and whose behavior at co ensures that Uy belongs
to the energy space. Typically, to obtain blowup at only one point xg, it suffices
to consider A(z) = |z — x¢|* for k large enough. Compared to [4] where a simple
ansatz such as Up is sufficient, at least for strong enough nonlinearities, the wave
equation requires to introduce iterated refinements U; of this ansatz (the number
of iterations J > 1 depends on p, see Remark 2.4). The basic idea is that for
such blow-up profiles, the space derivatives are of lower order compared to time
derivatives and to nonlinear terms. This allows to use only elementary arguments
of ordinary differential equations for the construction of the refined ansatz Uy (t, ),
at fixed x. See Section 2.

Second, we consider the sequence (u,,) of solutions of the wave equation (1.1) with
initial data un(%) = U_](%). Using energy method in H' x L%, we prove uniform
estimates on this sequence on intervals [%,(50], where dg > 0 is uniform in n (see
Section 3). Passing to the limit n — oo yields the solution u of Theorem 1.1.

We point out that this strategy by approximate solution and compactness is also
reminiscent to [19, 20, 24] where global or blow-up solutions with special asymptotic
behavior are constructed using the reversibility of the equation and suitable uniform
estimates on backwards solutions.

For stability results concerning the solution h (1.2), we refer to [7]. For ODE-
type blowup for quasilinear wave equations, see [26] and the references therein. We
also refer to [5] where an ODE blow-up profile similar to Up is used to construct
blow-up solutions of the nonlinear heat equation with applications to the Burgers
equation.
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In this article, we restrict ourselves to energy subcritical power nonlinearities for
simplicity, since this framework allows us to use the energy method at the level
of regularity H' x L? only. However, the approximate solutions constructed in
Section 2 are relevant for any power nonlinearity, and we expect that a higher
order energy method (to estimate higher order Sobolev norms) should be sufficient
to extend the construction to energy critical or supercritical nonlinearities (at least
for integer powers to avoid regularity issues).

Remark 1.3. A more general question for nonlinear wave equations concerns the
blow-up surface. For a solution of (1.1) with initial data at ¢ = 0, which is assumed
to blow up in finite time, there exists a 1-Lipschitz function  — ¢(x) > 0 such that
the solution is well-defined in a suitable sense in the maximal domain of influence
D = {(t,x) : 0 <t < ¢(x)}, see e.g. [1], Sections III.2 and II1.3. The surface
{(¢(z),z) : € RN} is called the blow-up surface. The question of the regularity of
blow-up surface is adressed in [1, 2, 3, 21, 22]. The question of constructing solutions
of the nonlinear wave equation with prescribed blow-up surface (with sufficient
regularity and satisfying the space-like condition |[|[V¢||p~ < 1) is also a classical
question, adressed in several articles and books, notably [15, 16], [11, 12, 13], [17]
and [1]. The approach by Fuschian reduction is especially well-described in the
book [13]. First developed for analytic surfaces and exponential nonlinearity, this
method was later extended to surfaces with Sobolev regularity and to some power
nonlinearities. However, it is not clear to us whether the strategy described in [13]
for constructing solutions with given blow-up surface can be extended to power
nonlinearities |u[P~ u for any p > 1, or to more general nonlinearities.

Prescribing the blow-up set of a blow-up solution can be seen as a sub-product of
prescribing its blow-up surface. This issue is discussed in [13, 14, 17]. However, the
solutions constructed in [13, 14, 17] may only exist in a space-time region around
the blow-up surface, which does not guarantee that the solution is globally defined
in space at any one specific time.

We also would like to point out a difference between the above mentioned articles
and our approach. Here, we resolutely work with finite energy solutions and the
initial value problem for (1.1). It is often argued that finite speed of propagation
and cut-off arguments allow to reduce to finite energy solutions. For example, the
function (1.5) is used to claim that ODE-type blowup is easy to reach for finite
energy solutions. However, the cut-off necessary to localize the initial data could
lead to blowup in an earlier time. Our method deals with these issues by construct-
ing directly a finite energy solution with initial data from a finite energy ansatz.
Moreover, we hope that our somehow elementary approach can be of interest for its
simplicity and its large range of applicability to other more complicated problems
where ODE blowup is relevant.

Notation. We fix a smooth, even function x : R — R satisfying:
xX=1lonl0,1], x=0o0n [2,00) and ¥’ <0< x <1 on [0,00). (1.9)

For p > 1 satisfying (1.2), recall the well-known inequality, for any v € H*,

N

+1-Y(p-1 N(p—1
a2t S Jfull 22O v 207, (1.10)

Let f(u) = |u/P"'u and F(u) = [’ f(v)dv. For future reference, we recall Taylor’s
formulas involving the functions F' and f. Let p = min(2, p). First, we claim that
for any u > 0 and v € R,

1 o
Flu+v)— F(v) — F'(u)v — §F”(u)112 < |ufPtt 4 wP Py P (1.11)
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Indeed, in the region [v| > fu, each term on the left-hand side is bounded by [v[P*?.
In the region |v| < %u, we use Taylor’s expansion to write
! 1 /1 2 —21,,3

Flu+v) — F(u) — F'(u)v — §F (u)v?| S uP~?|]°.
If p > 2, then p = 2 and (1.11) is proved. If 1 < p < 2, we finish by saying that in
this case uP~2|v|3 < |v|PTL. The same argument shows that

|(f(u+v) = fu) = f(wv)o] [P+ uP"PlofPt, (1.12)
Next, we claim that for any u > 0 and v € R,

[t ) = ) = o — 5 7" (u)o?

Indeed, in the region |v| > %u, each term on the left-hand side is bounded by

u™t|v[P*!, and (1.13) follows. In the region |v| < Ju, we use Taylor’s expansion to
write

“Hy[PH 4P PP (1.13)

1
[P+ 0) = () = fwp = 3" @] S ur o
If p > 2, then p = 2 and (1.13) is proved. If 1 < p < 2, we finish by saying that in
this case uP~3|v|> < u~toPTL
In this article, we will use multi-variate notation and results from [6]. For any
B=(B1,....88) ENN &= (21,..., xN) € RV, we set

N
18] = Zﬁm Bl = H =_Hf,

j=1

918l
o5y ... OLN
For 3, € NV, we write B < pif p; < Bjforall j=1,...,N. When 3’ < 3, we

set N
D110 = s
(ﬁ’) - J[[l <ﬁ§- T BB

With this notation, given two functions a,b : RY — R, Leibniz’s formula writes:

/3 ! _ ’
9 (ab) = 3 (B’ (af a) (af s b). (1.14)
B'<B

We write 5’ < 8 if one of the following holds

o |8 <IBI;

e |8'| =8| and By < fu;

b |B/| = |6|a /Bi = /Bla"'v Bé = /85 and /824»1 < ﬂ@-‘rl for some 1 < £ <N.
Finally, we recall the Faa di Bruno formula (see Corollary 2.10 in [6]). Let n =
|3] > 1. Then, for functions ¢: R = R, a: RY — R,

X =1d and 9¢= for [3] > 0.

n n Béa vy
9(goa)=3" (q(”) oa) S]] (u(f')(ﬁz') (1.15)

v=1 P(B,v) =1
where
P(B,v) = {(yl, s VUn; B1, .-+, Br) ¢ there exists 1 < m < n such that
vp=0and By =0for1<l<n—m;v,>0forn—m+1<l<mn;

and 0 < Bp_m+y1 < -+ < By are such that Z v = v, Z vy = }
(=1 =
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2. THE BLOW-UP ANSATZ

2.1. Preliminary. Recall that h is the explicit solution (1.5) of the equation h” =
hP which blows up at 0. The linearization of this equation around the solution h
yields the linear equation

2p(p +1)
(p—1)?
which admits the following two independent solutions

g' =ph*"lg = t2g

Gi(t) =t 5T, go(t) =57, fort>0.

Since % > %, the function gi, related to time invariance, is more singular at 0
2
than the function h. Note also that for a function G satisfying fol s7-1|G(s)|ds < oo,

a solution of the following linearized equation with source G

"_ 25)(11‘*;)12)t—2g el
is given by
p—1 et [T 2 2 b
g(t) = T3 (t p—1 /0 sP-1G(s)ds + tr-T /t s 1 G(s)ds) .
2.2. First blow-up ansatz. Set
J = {i—i_u and k>2J+2 (2.1)

where z — |z] is the floor function which maps x to the greatest integer less than
or equal to . (See Remark 2.4 below for the explanation of the numbers J and k.)
We consider a function 4 : RY — R of class C¥~1 on RY and of class C* piecewise
on RY such that, for any 3 € NV, with |3| < k — 1, the following hold

A>0and |9°A] S A% on RV, 22)
A(z) = |z|* for x € RN |z| > 2. '
Remark 2.1. Typical examples of such functions are A(z) := |z|*, which vanishes
at 0 and
0 if |[z] <1
A(z) = ¢ (Jz] — x(2))* if1<|z] <2
|| if |z| > 2

(where x is given by (1.9)) which vanishes on the closed ball of center 0 and radius
1. Another example, important for the proof of Theorem 1.1 is given in Section 4:
for any compact set E of RV included in the open ball of center 0 and radius 1,
there exists a function A satisfying (2.2) which vanishes exactly on E.

For t >0 and z € RY, set
Up(t,x) = k(t+ A(m))fﬁ = h(W(t,z)) where Wi(t,x)=1t+ A(x),
so that Uy satisfies 9;;Uy = f(Up) on (0,00) x RY. Let
E = —0uUy + AUy — f(Up) = AUo.
We gather in the next lemma some estimates for Uy and &.
Lemma 2.2. The function Uy satisfies

2 3 2
O =~ (MUé”l) , (8U0)? = ngﬂv iU = Uy (2.3)

Moreover, for any B € NN, peR, 0<t <1, 2 € RN, the following hold.
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(i) If0< |8 <k—1 and |z| <2,

18l p—1 18lyp=1
PIUDISTLTFE el ) s UpTT (2.4)
(i) If0<|B] <k —3 and |z| <2,
2418] p—1
026l S U (2.5)
(iil) If |z] > 2,
e e e N 7 D P (2.6)
Furthermore, for any xo € RN such that A(zo) =0, for anyr >0, 0 <t <1,
2 N __2
7712 S Uo(0) |2 (jaaol<r) ST 77T, (2.7)
2 4N
77T | 0Uo(8) | L2 (omsolary ST 7T (2.8)

where the implicit constants in (2.7) and (2.8) depend on r.

Proof. The identities in (2.3) follow from the definition of Uy and direct calculations.
Proof of (2.4)-(2.5). For 0 < ¢ <1 and |z| <2, one has 0 <t + A(z) <1 and
thus Uy 2 1. From Uy = h o W, setting n = |3] and using (1.15), one has
n n aBZW)VE
U, = ) o W ! (fi.
x Y0 Z( o ) Z (ﬁ ) H (VZ!)(ﬂél)V[

v=1 P(B,v) (=1

For v > 1, we have |h(*) o W| < W1, Moreover, using the assumption (2.2),
we have, for 1 < |By| < k —1,

95 W| < |0Pr Al < AV
Since >~y ve = v, Y,  ve|lBe| = |B| and |B] < k — 1, we obtain

pion) £ YW 3 T ()

P(B,v) (=1
. 2 181 2__ 18] 14181 p—1
SO W ETTATE SWoET R SUTE T
v=1

which proves the first estimate of (2.4) for p = 1. For p € R, using (1.15), we also
have, for 1 <n =8| <k -1,

- n Be ve
W = o (p—v+ UL Y (8 [ AL

V=1 piy i W (B

Using the above estimate on [05Up| and >y, ve = v, "y, v¢|Be| = | 8], we obtain

n v 1+‘ ol p—1 1 n 18] p—1 18l p—1
\8BU”|52U6’”ZH D g gt
P(B,v) =1
p
Next, using the first identity in (2.3), we see that 6,U) = *P(p+1) Up+ ; and

so the second estimate in (2.4) follows from the first. Since & = AUy, (2.5) is an
immediate consequence of the first estimate in (2.4).

Estimate (2.6) is a direct consequence of the definitions of Uy and & and of the
fact that A(z) = |=|* for |z| > 2.

Proof of (2.7)-(2.8). For any zo € RY and r > 0, the upper bounds in (2.7)
and (2.8) are direct consequences of the estimates 0 < Uy < 57 and |0:Uo| S
t~7 11 Let zo € RY be such that A(zg) =0 and r > 0. By (2.2) and the fact
that the function A is of class C* piecewise, the Taylor formula implies that for any
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x such that |z — x| < 7, |A(z)| < C(r)|z — z0|*. Tt follows that for such z, and
for any t € (0,1], U2(t,z) = k2(t + A(z)) 77 > (t+ |o — x0/¥)"71. The lower
estimate in (2.7) then follows from

4 __4 N 4
[t =R [ s
Yy T z T (29)

4

> rtE / 1+ 2" 7 1de 2t 71t
|z|<r

=z

Estimate (2.8) is proved similarly. O

2.3. Refined blow-up ansatz. Starting from Uy, we define by induction a refined
ansatz to the nonlinear wave equation. Let ¢ = 1 and for any j € {1,...,J}, let
0<a; <1land 0 <t; <1 tobe chosen later. Let

p=1 D — 1 pTH t —p —p tj—1 %
w; = —K 2 311 U, | Uy Ei-1ds + U, t Uy? &—1ds |,

J
Uj =Up + Zng(, Ej = _8ttUj + AUj + f(Uj)a
(=1

where x;(z) = x(A(x)/a;) and x satisfies (1.9).
Lemma 2.3. There exist 0 <ay <---<a; <land0 <ty <--- <ty <1 such

that for any 0 < j < J, for any B € NV, 0 < t < t; and x € RN, the following
hold.

() F1<j<J,0<|8 <k—1-2j, |o| <2, then

. 25 —
1—](p—1)+ JJ}:W\ :D21

|0w;] < U ; (2.10)

p+1l_ 2j+18| p—1
P —j(p—1)+ 2= P
10007 w;| < Uy o

(ii) If 1 <j < J, then

(2.11)

1 , . o
Uj = Uol < 301 =279\, U, —Uo| < (1—=2N)(1+Tp) "7 Uy,  (2.12)

0,U; — 0,Us| < Us. (2.13)
(i) 170 < |B] < k—3—2j, 2] <2, then

2j+2+|B| p—1
S

02, < U, 0T (2.14)

(iv) If |z| > 2, then

0701 S lal 7571, j02y ] < Jaf mre 21, (2.15)
Remark 2.4. We comment on the mechanism of the refined ansatz. For the energy
control which we establish in the next section, we need an estimate on the error
term ||E|lr2 < A (See formulas (3.20) and (3.21).) By formula (2.14), this
is achieved if J > p%l, which is the first condition in (2.1), and then k sufficiently
large (once J is chosen), which is the second condition in (2.1). Note that for p > 3,
J = 1 is enough, but one can never choose J = 0, so a refined ansatz is always
needed. We see on formula (2.14) that at each step, the error estimate improves by

Uo_(p_l)(l_%) ~ t2(1—%)

a factor . It is clear then that the number of steps goes to

coasp— 1.
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Proof of Lemma 2.3. Observe that (2.14) for j = 0 is exactly (2.5) in Lemma 2.2.
Now, we proceed by induction on j: for any 1 < j < J, we prove that estimate
(2.14) for £;_1 implies estimates (2.10)—(2.14) for w;, U; and &;, for an appropriate
choice of a; and t;.

Proof of (2.10)-(2.11). First, assuming (2.14) for £;_1, we show the following
estimates related to the two components of w;: for [B| <k —1-25,0 <t <t;_;
and |z| < 2,

t Cp=1_ i 1y 20418l p—1
% (/ UOP“:j‘lds)‘SUo L A (2.16)
0

ti—1 pt1
ol (/ U,? 5j_1d5>
t

Indeed, we have by the Leibniz’s formula (1.14)
— 6 ’ _ _ ’
o (U7e-) = 3 () (2 i) (02 100).
B'<B
and thus, using (2.4) and (2.14),
Lo 1B ety (1) 2018118 p=1
07 (Us"€i-1) 1 £ <§’>Uo PR gy

B'<p

il 2j+[8] p—1
SU PV < ey Ay

i 2j+[8| p—1
< ypH IR A (2.17)

where for 7 > 1, |8] < k,

. 25+ 18 : 1 18]
= - = > 0.
V=2 k 27\1 k k 0

Integrating on (0,t) for ¢t € (0,t;_1], we obtain

t
ol ( / U0_p5j1d5>
0

which is (2.16). Similarly, using Leibniz’s formula, we check the following estimate

5 (t+A)fy+1 < Uopr_l*j(lfi)(pfl)‘F%pT_l’

3p+1 —j(p—1)+ 2j+[8| p—1

ptl ’
102 (Ug ™ &) S U TS+ AT,

p+1
p—1’

where, using 0 < j < J <
_ i Ht 8]
p—1 k
Thus, by time integration, for ¢ € (0,%;_4],
tj—1 Pl
/ 5 (Uy* Ej—1)ds
t

which is (2.17).
Using Leibniz’s formula, (2.4), and (2.16)-(2.17), we deduce easily that, for any
BeNN B <k—1-2j,

pr1 [t 1)y 20F18] p—1
o <U / Uapsj_lds>’sU3 e
0

ti-1 o,y i(p— 2j+[B8l p—1
o8 (UO‘P/ U, ? Sjlds>’ Suy T
t

> 1.

. 1 i(p—1)s 20418 p—1
5 (t+A) v +1 5 Ué"’r J(p—1)+=1% o)

)

Estimate (2.10) follows. Moreover, by the definition of w; and setting b = kP ?f)p;+11’

p+1 t tji—1 pt1
8twj =-b <(9t(U0 2 )/ Uoipgjflds + 8t(U(;p)/ UO 2 5j1d8> . (218)
0 t



BLOW-UP SET FOR THE NONLINEAR WAVE EQUATION 9

Similarly as above, Leibniz’s formula, (2.4), and (2.16)-(2.17) yield (2.11). Note
that we have proved estimates (2.10) and (2.11) for all 0 <t < ¢;_;.

Proof of (2.12)-(2.13). For 0 < ¢t < t;_; and |z| < 2, by the estimate (2.4) on w,
for § =0, the property Uy 2 1 for |z| < 2, and the definition of x;, we have

1—j(1-LY(p-1 1-(1—4)(p—1 _2
Xilwil S xiUs TP <y TR <k 427 R UG S (8 ay) Vs
Choosing 0 < a; <1 and 0 < t; < t;_; sufficiently small, for all ¢ € (0,1;],
Xj|wj‘ S 27j72U0 and Xj‘wj| § 27J(1 + U())ipz;lU().

From now on, a; and ¢; are fixed to such values. In the case j = 1, this proves
(2.12) for |x| < 2. For 2 < j < J, combining this estimate with (2.12) for j — 1, we
find, for all ¢ € (0,¢;] and |z| < 2,

J J
]. - . p—1
> xehwel < 2(1=27)0p and " xelwel < (1=279)(1+ Uo)~ "% Uy, (2.19)
_ =1

which implies (2.12) for U; and for |z| < 2.
To prove (2.13) for |z| < 2, we note that by (2.11) with f =0and Uy 2 1

771@ -z 1 20(1—+
ZXelatwe\ <ZXeU ey Uon U7 D <,
(=1 =1

For |z| > 2, (2.2) implies that A(x) > 2¥ > 2a; > --- > 2a; and thus x;(z) =0
and Uj(t,x) = Uy(t,z). The same applies to 0;U;

Proof of (2.14). Differentiating (2.18) with respect to t, using the relations (2.3),

i1 Pl
O (Ug? ) = f'(Un)Uy? and 0y (Uy ") = f'(Uo)Uy? (these calculations are related
to observatlons made in Section 2.1), we check that w; satisfies
8ttwj = f/(Uo)’wj + gjfl.
Using also U; = U;_1 + x;w; and the definition of £;_;, we obtain
& =&j—1 — x;0uw; + Alx;w;) + f(U;) = f(Uj-1)
= (1= x;)&-1+ Algwy) + f(U;) = f(Uj-1) — £ (Uo)x;w;-

We estimate 97 of each term on the right-hand side above for |3| < k — 3 — 25
and |z| < 2. For the first term, recall that for « such that A(z) < a;, it holds
1 — x;(z) = 0 and for any B, 02x;(z) = 0. Moreover, for 0 < ¢ < 1, for 0 < z < 2

such that A(x) > a;, it holds A(z) ~ 1 and so Up(t, z) =~ 1. Thus, using the Leibniz
formula and (2.14) for &£;_1, we find

1— 1 1 +2J+|ﬁ| p—1 1—i(p—1 +21+2+|5| p—1
92101 = x))Egall S Uy OTVETITEE gy
Next, by the Leibniz’s formula, the properties of x and y;, the estimate (2.10) on
w; and then Uy 2 1, we have, for 0 < ¢t < ¢; and |z| < 2,

, i(p_ 1) 2942+18] p—1
EACw) S D [y STy T

18’1<18]+2
Last, we estimate 02[f(U;) — f(U;—1) — f'(Uo)x;w;]. We begin with the case
B = 0. Recall that by (2.12), we have 0 < %Uo <U; < gUo, so that by elementary
calculations

|F(U)) — f(Uj-1) — F(Uj—1)xwy] S x;UE2 w?

and

j—1
1F/(Uj—1) = £ U ST xelwel.
=1
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These estimates imply

J
1£(U) = F(Uj=1) = £ (U0)xw;i| S xU8 2wl D xelwel.
(=1
For 1 < ¢ < j, using (2.10) and Uy 2 1, we have

—i(1—1 — — _1 — (4 _1 —
Ug_2‘w]||w8| 5U5_2U01 J(1 k)(;D 1)U01 £(1 k)(P 1) 5U§ G+o@ k)(P 1)

< U(z)v—(j-i-l)(l—%)(p—l) < Ué—j(l—%)(p—l)ﬂ-%(p—l)'

(1= 1Y (p—1) 4L (p—
Thus, |f(U;) — f(Uj-1) — f'(Uo)xjw;| S UD1 IA=R)P=DFrP=1) 4 proved.

Now, we deal with the case 1 < || < k — 3 — 2j. By the Taylor formula with
integral remainder, we have, for any U and w,

1
fU+w)— fU) - f(U)w= wQ/O (1=0)f"(U + w)do.
Thus, by the Leibniz’s formula (1.14)
07 [f(U +w) = f(U) = f'(U)u]

=2 <B> (0777 w?) /01(1 —0)32'[f"(U + fw)db.

/
B'<B p
Moreover, by the Faa di Bruno’s formula (1.15), for 8’ # 0, denoting n’ = |5’|,

/
n

’ n’ Be w) )V
07U + )] = 3 e+ ow) Y0 (o [ e O
v=1 P(B' V) =1 (VZ')(ﬁZ')

To estimate the term 02[f(U;) — f(U;—1) — f'(Uo)x;w;], we apply these formulas
to U = U; and w = x,w;. For g/ < j, using (2.10) and the properties of x, we
have

%" (xywy)| [027F =P (xjw;)

ol [(ijj)Q]‘ Y

B"<B=p’

. ’
272j(p71)+41+\/3k\*\/3 | P;l
S Us

For 8/ =0 and 6 € [0,1], using also (2.19), we obtain

272j(p71)+4j2‘m P;l p—2

’(af[(ijj)Q]) f"Uo + Ox;w;)| S U, Uy

il 2j+2+|8] p—1
§Ug J(P 1)+ % 2

For 5/ # 0, 5/ < g and 6 € [0,1], using (2.4), (2.10) and (2.19), we have (recall that
the definition of P(f’,v) implies that Y, , v, = v and >_,_, v¢|B¢| = |8'])

’
n

, e " 18] p=1\ V¢
08 (U + b)) £ 082 Y H(U&” )
v=1 P(B'v) (=1

’
n

< p—v—2 v+ ilest < p—2+151 221
U U, sSU, .
1

~

v=

Thus, similarly as before, it holds

085" [(xjw))?] 05 [ (Uj—1 + 9ijj)]’ /S

2j+2+|8] p—1
k 2

Integrating these estimates in 6 € [0, 1], we obtain

021F(U;) = f(U;—1) = f'(Us—)xswi]| S U

2j42+|8] p—1
(p—)+ 5= 5=

(2.20)
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By similar arguments, for any U, W, w, we have
) = FV) = (U = W) /O L o — W),
and thus
O lf'(U) — /(W)
=5 (5) (o ww - w) [ ozt ov 0w - wyjas

/
B'<B b

Moreover, for 5’ # 0,
oL (W +6(U —W))]

’

z (98 W + H(U w)))"
= fUPW 40U - W) -
,;1 p(ﬂz,l,) e:]:[1 D(Bet)e

To estimate the term 9°[x;w;(f (U;—1) — f'(Up))], we apply these formulas to
U= Ujfl, W = UO and w = XjWs.
For 8’ < B, using (2.10) and the properties of x, we have, for 1 < /¢ < j—1,

’ 2—(j+4 1 +2J+2F+|B| |B\P 1
[ w;xewe]| < Ug (G+6)(p—1) '

For 8/ =0 and € € [0,1], from (2.19), we obtain

2j+2+|8] p—1
% =

108 [xjw; (U1 — Ug)] £ (Uo + 0(U;—1 — Ug))| < Ug 7Y

For g/ # 0, 5/ < B and 6 € [0,1], by the formula above, using (2.4), (2.10) and
(2.19), we have as before

' \ﬁlp1 Ve
|aﬁ[//(U+9(J1_UO |§ZUPVQZH< 1+z )

n’
18] p—1

16l p=1
p—v—2p v+ P2+ 3
< E Uy U, S Uy .

~

Thus, we obtain

2j+2+|8| p—1
=% =

07 gy (Uyor = U0 O [ (Uo + 0(U;— — U))| £ Uy /"

Integrating in 0 € [0, 1] and summing in 8’ < /3, we obtain
(1) 2042418] p—1
07Dy (F (Us—0) = F @) ST 77050 o
Combining (2.20) and (2.21), we have proved for ¢t € (0,¢,], |z| < 2,

2j+248] p—1
—j(p—1)+2 A oL

0711 (U3) = F(U—1) = ' (Wo)xswi]| £ Uy
In conclusion, we have estimated all terms in the expression of 95&; and (2.14)

is now proved.
Finally, for |z| > 2, (2.2) implies that A(z) > 2¥ > 2a; > --- > 2a; and
thus x;(z) = 0, U;(t,z) = Up(t,x) and &;(t,xz) = &(t,x), so that (2.15) follows
from (2.6). O
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3. UNIFORM BOUNDS ON APPROXIMATE SOLUTIONS

Let the function x be given by (1.9) and U; be defined as in §2.3 with J and &
as in (2.1). Set

2 1 1
A=min|J - ——, = 0, = 3.1
win (7 - 225 ) € (0.5] (31)
and impose the following additional condition on k
2(p+1)
k> —=+2. 3.2
Alp—1) (32
For any n large, let T,, = % <ty and
B, = sup ||Us(t)||L~ sothat lim B, = co. (3.3)
tE[Tn,ty oo

We let n be sufficiently large so that B, > 1, and we define the function f, : R —
[0,00) by
f(u) for |u| < By,

. (3.4)
0 for u > 2B,

n

o) = F () so that Mu){

Let F,(v) = fov fn(w)dw. Tt follows from elementary calculations that for every
a € N, there exists a constant C, > 0 independent of n, such that for all u > 0,

/3 (w)] < CauP™e. (3.5)

In particular, we observe that Taylor’s estimates such as (1.11)—(1.13) still hold for
F,, and f, with constants independent of n. We will refer to these inequalities for
F, and f, with the same numbers (1.11), (1.12) and (1.13). In this proof, any
implicit constant related the symbol < is independent of n.

We define the sequence of solutions u,, of

{6ttun - Au, = fn(un)

wun(T) = Uy (T, Orun(Ta) = 0,05 (Ty). (36)

The nonlinearity f, being globally Lipschitz, the existence of a global solution
(un, Oruy,) in the energy space is a consequence of standard arguments from semi-
group theory. Using energy estimates, we prove uniform bounds on u,, in the energy
space. For this we set, for all ¢t € [T}, /],

un(t) = Us(t) +enlt), (3.7)
so that (g,,,0¢e,) € C([Th,ts], HY(RY) x L2(RN)).
Proposition 3.1. There exist C > 0, ng > 0 and 0 < §g < 1 such that
(e (t), Deen (@)l arxz2 < C(t —Tn)?. (3.8)
for alln > ng and t € [T, T, + do], where X is given by (3.1).
Proof. The equation of ,, on [T},,t;] x RY is

{attgn - Agn - fn(UJ + gn) - fn(UJ) + 5J

where we have used from (3.3) and (3.4) that f(Uy) = fn(Us) on [T}, t;] x RV,
Define the auxiliary function z as follows

en=Q%z where Q= (1—x+ Up)Ptt.
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+1)
We note that Q@ > 1, Q <t~ »1 . Moreover, it follows from (2.4) that |VUp| S
-1
Q#+ WD) , from which we deduce easily that |[VQ| < t=%Q. One proves similarly
that |AQ| < t=%Q. To write the equation of z, we compute

Onen = 01 (Q22) = (04Q?)z+ (p+ 1)(1 — x + Up) "™ 8,Updyz + Q* Oz
= (5'“62%)2 + Qféat(QatZ)-
Thus, setting G = Q%(f'(UO)Q% — 8“Q%), we obtain
2(Qdiz) =Q2 A(Q%2)
+QF (falUs + Q12) = fulUs) = FLU0)QF2) + Gz + Q€.

Let 0 = %. We define the following weighted norm and energy functional for z,

(3.10)

N = (/(QatZ)Q +Q2|V22+t_20Q222)27
H= / [(Q@tz)2 + Q% Vz|? + 727 Q%22

—Q (2Fn(UJ L Q%) — 2F,(Uy) — 2F (U))Q% 2 — F,';(UO)QZ?) ] .

We remark that the first two terms in H are the energy for the linear part of
equation (3.10). The third term yields the control of a weighted L? norm, and the
last term is associated with the nonlinear terms in the equation.

Step 1. Coercivity of the energy. We claim that, for 0 < d <tjand 0 < w <1
sufficiently small, for n large, if N < w and T}, <t < § then

N2 <23, (3.11)
and
[(en(t), Oeen ()l grrsre SN, llen(®)ll2 SN (3.12)
Proof of (3.11). Let
Ay = 2F,(Uy + Q7 2) — 2F,(Uy) — 2F.(U)Q? z — F"(Up)Q22|. (3.13)

The triangle inequality and the Taylor inequality (1.11) yield
Ay S12F,(Us + Q22) — 2F,(Uy) — 2F,(U)Q% 2 — 1l (Uy) Q=]

+ |F) (Us) — F)(U)|1Q7* (3.14)
SA
where . o
A= Q™ [P+ ULPQ™ 2P + UL 2 |Us — Us|Q22. (3.15)

Using Uy < Up and Uy < Qﬁ, we see that Uf;_’7 < Qg% Moreover, since
— —1
Uo—Uy| < (14 Up)~ " Uy < QT 0 U, (see (2.12)), we obtain
US|V — Uyl S UF~' Q360 5 @t

and so
p+ +p

A < Q ) |z|p'*'1 +Q 2 therr \z|p+1 + Q2(p+1)+1 2, (3.16)

It follows that

Jans [@Fprs [t s [ o,

For the first term on the right-hand side above, we use Q 2> 1, thus

/ QU |2t = / QT IQ S / Q2. (3.17)
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Applying now (1.10), |VQ| < ¢~ *Q, and the definition of A,

T(p-1) 2N (p-1)

/ IQzI”“§</ IV(QZ)2> ’ (/ Q2z2) ’
Ty EE-S-1) (3.8
<(fomtertfod) " (o)

<Np+1.
In the case 1 < p < 2, one has p = p and the second term is identical to the first one.
5 -2 Tp+1 . .
In the case p > p = 2, the second term Q37571 |z|3 = Q26+1 |23 is estimated as
: —1 _p=1_
follows (using |z[* < aP~2[z[PT + 122 with a = Q5 1, Q' <1and Q%0 <t 1)
QI | S QTR QUL |zt 4 Q6 22
S QPP Pt 4+ QA Q222 < QTP 4 171Q%2,
and so

[ s s v e, (3.19)
—1
Last, since Q2<pp+1> <t~ 1, we observe that
/Q%Q%z < t—l/Q2Z2 < 201N,

In conclusion, we have obtained [ QA; < [ QA1 < 27 N2+ NPF! which implies
that for ¢t and A small enough, H > SN2

Proof of (3.12). Since g, = Q2 z, the inequality lenllze < t7IN follows readily
from the definition of AV and @ 2 1. Next, using |[VQ| < t=%Q, we see that

1 ]_ 1 2 2
/\vsnﬁz/]@avwﬁ’fw@‘ §/Q|v,z|2+m/Qz2§N2.

D

—1 5p+3
Last, using |0,Q| S Q0 Q < t_%Q4(z+l), we have

1 1 1 2
/\8t6n|2:/‘Qéatz+§Q_528tQ‘ §/Q|8¢Z|2+/|8tQ|2Q_122
< /Q2|8tz|2+t_1/6272?5ﬁ> 2 < N2
This completes the proof of (3.12).

Step 2. Energy control. We claim that for 0 < § < ¢; small enough and C' > 0
large enough, for any n large and for all ¢ € [T,,, T}, + 9]

%H <C [t_l“f\/—i— tTEN? 4 NP (3.20)
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Proof of (3.20). Taking the time-derivative of all the terms in H, we obtain

% %H = / (Q0:20,(Q0i2) + Q*Vz - V2 + t77Q%20,2)
— /Q% <fn(UJ +Q22) — fu(Uy) — fé(UO)Q%Z) Oz
+/Q6tQ|Vz|2 —|—t‘2"/Q8th2 — at‘2”_1/Q222
~ 5 [ 00 (2RUs + @F2) — 2R (U)) ~ 2 (U)Q} 2 - FI(T0)Q2?)
~ 5 [0Q (5aUs+ Q40— £uU) - FuUR)Q12) Q1
~ 5 [ QO (26U + Q1) — 21,(U) - 2£,UNQE = - £iUn)Q?)

~ 5 [ Qs — Vo) (20,01 + @F2) — 2£,(U) - 260G 2)
=h+L+Is+ 14+ 15+ I+ I7.

First, we note that 9;Q = (p + I)Qﬁ@Uo <0, so that
2L 2pdl 2 201 2.2
Is < —\/2(p+1) [ Uy? Q7+ |Vz|* — ot Q2.
We now use equation (3.10) to replace the term 0;(Q0;2) in I;, and we obtain
L+1= / (Q%atzA(Q%z) +Q¥Vz- vatz)

+ / (GZ + Q%E/‘]) QatZ —|—t’2"/Q2zatz . Ig + Ig + IlO'

The term I is controlled using the Cauchy-Schwarz inequality,
|T10| < %|Ig| 4 O30+l /(Qatz)2 < %|I3| + Ot27 TN < lio\[3| +Ct IN2,
Next, integrating by parts,
Iy = —/V(Q%z) V(Q302) + Q°Vz - V(5;2)
—- [+¥(@}) V@) - [@HEn)vs viQh
- —/Qatzv,z-VQ+/A(Q%)Q%zatz.
By |VQ| < t~+Q and the Cauchy-Schwarz inequality,
‘/Qatzv,z . VQ‘ < TN,
Similarly, |A(Q#)Q?| < |VQP* +|AQ|Q £ t7#Q?, and so
’/A(Q%)Q%zatz < /Q2|atz|2+t—%/Q222 < N2
We note that by Cauchy-Schwarz,

o] S NGl LN + Q2 E| 12N,
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and so, we only have to bound the L> norm of G and the L? norm of Q%EJ. We
begin with G = Q2 (pUé’_lQ% — 8,5,5@%). Using Q@ = (1 — x + Up)P*! and the
expressions of ;U and (9,Up)?, we observe that

8ttQ%:p+1 p;l

p—3
UPQ2< +1) + Ué’+1Qm,

Thus,
p—1 1 1
pUy Q2 — Q>
p—|— 1Up 1Q2< +1> (Qp+1 — Uo) + 7U” 1Q2<p+1> (Qp+1 _UO)
1 _
p; U5 QAT (1 - x) + LR QAR (1 - x) (1 x o+ 207)
Since for |z| > 1, we have Up <1 and Q <1, we obtain |G|~ < 1.
Now, we estimate [|Q2&;| > from Lemma 2.3. For |z| > 2, it follows from (2.15)
that
Q1Es] S 1€ S Jaf 77T
Note that for N >3, p— 1 < %5 and so %4—2 > N2k +2 > N. Thus, the
following bound holds ||Q%EJ||L2(‘3:|>2) <1
Next, using (2.14), we have for |z| < 2

1— J(p 1)+ (7+1)(P 1) %ﬁ—k}(p—l)-'r(]*»l)k(pil)

Q2|€,] S QU SU

< B0
Note that by (3.1), J > A+ 521, so that —J(1 — 1) + L2015+t -
AMp—1)(1 - 1); and so
o0l _ _ mHL_ 1
Q |g]‘ < U 2 2(1 )+ )\(P 1)(1 ) < U + A(P 1)(1
Moreover, the additional condition (3.2) is equivalent to p—“ “Ap-1)(1—-7) <
w. Thus, for |z| <
1 Nkt
Q*és £ Uél VE S A@) T S (3.21)
Therefore, one obtains [|Q2&||2 < t~1T2.
To complete the proof of (3.20), we estimate Iy, Iy, Is and I7. First, using (3.13)—
ptl P
(3.16), and [9,Q| < [0,Us|Q77 < Uy Q71 < Q76+, we obtain
3p+1
0:Q| A1 S Q2P FD Ay

p+1
)Jr

QPJFI 5 |Z‘P+1 + Qz(p+1 +228 |Z|1_’+1 + QQ‘*‘%}Z?,

Using Uy 2 1 and the estimate (3.18), we treat the first term above as follows
/QP-&-l—%'le-&-l < /|Qzlp+1 <Np+1.
In the case 1 < p < 2, one has p = p and the second term is identical to the first
4
one. In the case p > p = 2, the second term QPTpl |2|3 is estimated as follows (using
1 -1
122 < aP 2|zt 4 122 with o = Q7r, Q71 <1 and Qi S t72)
Q7T | S QT QU P 4+ QFT Q%52 < QU [Pt 4 472Q%2,
Therefore

/Q%LZP 5NP+1 _|_t—2(1—a)N2 S,NP—H +t_%./\/’2.
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. p=1 _
Since Q*T 7122 < t72Q2%22, we have proved

nls [10an s [ QB A sy (3.22)
We proceed similarly for I5. Indeed, setting
Ay = Uy + Q% 2) — foUs) — fL(U0)Q% 2| Q7]
< FalUs +Q%2) — fulUs) = FLUNQ2 2| Q% |2| + 1 £1,(Us) — £, (U1)|Q2>

we deduce from (1.12) and Taylor’s inequality that, with the notation (3.15),
Az SQF [P + UFPQ™H 2P + U *Us — UslQIl? S Av.

Using the last two inequalities in (3.22), we conclude that [I5| < NP 4+ 72 N2,
Now, we estimate I, and we set

As = 2£a(Us +Q22) = 2fu(Us) = 2£,(UNQ%= — f1(UNQZ].
By the triangle inequality, Taylor’s inequality (1.13), and U;* < Uy ! (see (2.12)),

A3 SI2£0(Ug + Q22) — 2£,(Uy) — 2£4(UN)Q% 2 — f1(U) Q77|
+ |1 (Uo) — f1(U)|Q2*
SUSLQ™E 2P 4 URPIQT 2P+ + UL 3 |U, — U] Q22

~

<SUTHQ™ [P + URPQ™S |2+ + UR2|U, — U, |Q2]

~

<U;'Ay

~

+1

with the notation (3.15). Using |0;Ug| S Uy? and Uy S Q7+, we see that
ptl p—1
QloUs| < QU,> < QUY? Uy < Q360 Uy, hence Q|dUp|As < Q350 Ay. The
last inequality in (3.22) yields |Ig] < NPT +t-2 N2,
Finally, we estimate I7 and we set

Ay = (U5 +Q22) = fu(Us) = £1,(U)Q%z|.
By the triangle inequality Taylor’s expansion (1.13),

Au S| falUs + QF2) = fulU)) = FoUn)QE2 = 1 /(U)Q2?

lrwnies?
SUTIQ™ [Pt + URPIQ™ 2P+ 4 UB2Q22
Using Q|0,(Uy — Up)| < QUy (see (2.13)), U;' S U, and Uy < Uy, we obtain
QIonUy — Uo)|As S Q™% |2+ + UFPQ™ |7+ 4+ UF 1 Q%22
Since Uy < Q71 and UP™' <72, we deduce that
QIONUy — Up)|As S Q5 [oPH! 4 QFFF 177 2P+ 4 472Q222,

Applying (3.17)-(3.18) for the first term and (3.19) for the second term, we see that
\I;] S NPT+ t73 N2, Collecting the above estimates, we have proved (3.20).

Step 3. Conclusion. The values of § € (0,¢;] and 0 < w < 1 are now fixed so
that (3.11), (3.12) and (3.20) hold. Since N(T;,) = 0, the following is well-defined

T = sup{t € [Ty, d] : for all s € [T},,t], N(s) < w}
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and by continuity, T)¥ € (Ty,9]. For all ¢t € [T,,,T}], using (3.20), we find (recall
that A € (0, 1])

%H <C [t’”’\ FETE 1} < Ot~
Let t € [T, T}]. Since H(T},) = 0, we obtain by integration on [T}, t]
H(t) <C(t* = T7) < Ot = T)™
Therefore, using the definition of 7 and (3.11), for all ¢ € [T}, T2],
N <C(t—T,)>.

In particular, there exists dg > 0 independent of n such that, for n large, it holds
Tx > T, + . Moreover, using (3.12), for all t € [T),, T}, + Jo|,

I(en(®), drenEllar <2 SN S (¢ =Tn)?,

which completes the proof of Proposition 3.1. O

4. END OF THE PROOF OF THEOREM 1.1

Let E be any compact set of RV included in the ball of center 0 and radius 1
(by the scaling invariance of equation (1.1), this assumption does not restrict the
generality). It is well-known that there exists a smooth function Z : RY — [0, 00)
which vanishes exactly on F (see e.g. Lemma 1.4, page 20 of [23]). For p as in (1.2),
choose J and k satisfying (2.1) and (3.2). Define the function A : RY — [0, 00) by

Alw) = (Z(@)x(@) + (1 = x(@))[2])",

where x is given by (1.9). It follows that the function A satisfies (2.2) and vanishes
exactly on E.

We consider the global solutions w, of equation (3.6), &, defined by (3.7) and
we set for 0 <t <t;—1T,,

Volt) =Us(Th+1t), mu(t) =en(Tn+1), Fult)=E;(T,+1).

It follows from Proposition 3.1 that there exist 0 < §p < ty, 0 < A < %7 and C' >0
such that, for n large and for all ¢ € [0, dg],

1010 (), D (D111 12 < 2. (4.1)
Moreover, it follows from (3.9) that
gt — Any = fn(vn + 77n) - fn(Vn) + Fa- (42)

Using the estimate |f,(u + v) — fn(u)] < (JulP~ + [v[P~1)|v| and the embeddings
HY(RYN) < LPHYRY), L% (RV) — H-(RV), we deduce that

-1
1Ol =+ S Ml + Vol Il + ol + (170l 22

so that by the estimates of Lemmas 2.2 and 2.3, there exist C, ¢ > 0 such that, for
all ¢t € (0, dp],

[0t |l g-1 < CT° (4.3)
Given 7 € (0,d), it follows from (4.1) and (4.3) that the sequence (1,),>1 is
bounded in L>((7, 80), HX (RN ) )NWL>°((7,8¢), L2(RN)NW?2°((7,6), H L (RN)).
Therefore, after possibly extracting a subsequence (still denoted by 7,,), there exists
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n € L=((1,60), H*(RN)) n WL ((1,d0), L2(RN)) N W2((7,80), H 1 (RY)) such
that
T =2 1] in L>=((7,60), H*(RY)) weak* (4.4)
Oy, _ Om in L=((1,00), L2(RY)) weak* (4.5)
OuMn, = Oun in L=((T,80), H Y(RY)) weak* (4.6)
. —> 1 weakly in HY(RYN), for all t € [1, ] (4.7)
Ot v O weakly in L2(R™N), for all t € [r,50]. (4.8)

Since 7 € (0,dp) is arbitrary, a standard argument of diagonal extraction shows
that there exists a function 1 € L ((0,80), H'(RN)) N W.22°((0, &), L2(RN)) N

loc

Wlicoo((O, 80), H~Y(RY)) such that (after extraction of a subsequence) (4.4)-(4.8)
hold for all 0 < 7 < dg. Moreover, (4.1) and (4.7)—(4.8) imply that

1(n(t), 0m(D) £ <22 < Ct2, t € (0,00), (4.9)
and (4.3) and (4.6) imply that
10wenl| Lo ((r.60),51-1) < CT7% 7 € (0,00). (4.10)
In addition, it follows easily from (4.2), (3.3), (3.4) and the convergence properties
(4.4)—(4.8) that
Oun—An=f(Us+n)— f(Us)+&s (4.11)
in L2, ((0,80), H 1 (RY)). Therefore, setting

u(t) = U;(t) +n(t), te(0,d),
we observe that the function u € L2.((0,d0), H'(RN)) N WL2°((0,80), L2(RN)) N

loc
Wlicoo((O,tSo), L(RYN)) and satisfies Oyu — Au = f(u) in L ((0,d0), H H(RN)).
It is a well-known property of the energy subcritical wave equation (corresponding

to assumption (1.2)) that then it holds the stronger property
u € C((0,00), HY(RN)) N C*((0,8), LA(RY)) N C%((0,80), H(RY)).  (4.12)

We refer for example to Proposition 3.1 and Lemma 2.1 in [8].

Finally, we prove estimates (1.3) and (1.4). For z¢ ¢ E, there exist r > 0 and
C > 0 such that A(z) > C for all z € RY such that |z — 0| < r. In particular, for
such x, by (2.12) and (2.13), |Us(z)| + |0:Us(z)| < C’ for some constant C’ > 0.
Estimate (1.4) then follows from (4.9). For zg € E, (2.7), (2.8), (2.12) and (2.13)
imply, for ¢ € (0, do),

2

SN Ol L2 (a-aol<r) ST
1 SO )12 (oo <r) ST
where p = %1 — 5. Estimate (1.3), and more precisely estimates (1.6) and (1.7)

then follow from (4 9)

Now, we justify the last part of Remark 1.2. If xg € E and E contains a
neighborhood of zy then A(z) = 0 on this neighborhood and the lower estimate
easily follows. In the case where xg € F is isolated, the function A can be chosen so
that A(x) = |z|* in a neighbourhood of zg (see Remark 2.1). In particular, by (2.9)
and a similar estimate for 0;Up, we obtain for small r > 0, |[u(t)|r2(jo—wo|<r) S

73 and ([ Opu(t)] L2 (e—ag|<r) S BT
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