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Abstract: In this paper, a hierarchical prior model based on the Haar transformation and an1

appropriate Bayesian computational method for X-ray CT reconstruction are presented. Given2

the piece-wise continuous property of the object, a multilevel Haar transformation is used to3

associate a sparse representation for the object. The sparse structure is enforced via a generalized4

Student-t distribution (S tg), expressed as the marginal of a Normal-Inverse Gamma distribution.5

The proposed model and corresponding algorithm are designed to adapt to specific 3D data sizes6

and to be used in both medical and industrial Non Destructive Testing (NDT) applications. In the7

proposed Bayesian method, a hierarchical structured prior model is proposed, and the parameters8

are iteratively estimated. The initialization of the iterative algorithm uses the parameters of the9

prior distributions. A novel strategy for the initialization is presented and proved experimentally.10

We compare the proposed method with two state-of-the-art approaches, showing that our method11

has better reconstruction performance when fewer projections are considered and when projections12

are acquired from limited angles.13

Keywords: X-ray Computed Tomography; inverse problem; sparsity; hierarchical structure;14

Generalized Student-t distribution; Haar transformation.15

1. Introduction16

Computed Tomography (CT) has been developed and widely used in medical diagnosis [1] and17

industrial Non Destructive Testing (NDT) [2] in recent decades. In CT, objects are observed using18

different techniques, for example X-rays [3], ultrasound [4], microwaves [5], infra-red [6]. X-ray CT19

employs the absorption of X-rays by the organs in a body or by the materials in industrial components20

to reconstruct the internal structure of the imaged object. When performing X-ray CT, a set of X-ray21

images of the measured parts are acquired. The intensity measured by the X-ray images corresponds22

to the intensity of the radiation passing through and attenuated by the object. CT reconstruction is23

typically treated as an inverse problem.24

The conventional analytical techniques for CT reconstruction are based on the Radon Transform25

[7]. Filtered Back-Projection (FBP) [8] is the most frequently used analytical method in practical26

applications. FBP performs well when reconstructing from sufficient data with a high signal-to-noise27

ratio (SNR), but it suffers from artifacts when reconstructing from insufficient data or with noise.28

Owing to considerations regarding patients’ health in medical CT, and in order to reduce
acquisition time in industrial applications, reconstruction with insufficient datasets is increasingly
attracting the attention of researchers. Reconstruction from fewer projections is an ill-posed inverse
problem [9,10]. In this case, conventional analytical reconstruction methods provide unsatisfactory
results and iterative methods can be used to improve the reconstruction performance. The Algebraic
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Reconstruction Technique (ART) [11,12], the Simultaneous algebraic reconstruction technique (SART)
[13] and the Simultaneous Iterative Reconstruction Technique (SIRT) [14,15] are some of the iterative
methods proposed initially. These methods consider the discretized forward system model: g = H f ,
where f ∈ RN×1 represents the object, g ∈ RM×1 represents the observed dataset and matrix
H ∈ RM×N is the linear projection operator, mainly based on the geometry of acquisition (e.g. parallel
beam, cone beam, etc) [16–18]. Typically, the system of equations is under-determined, i.e. N > M.
In this context, regularization methods are frequently used and the forward system is modeled as:

g = H f + ε, (1)

where ε ∈ RM×1 represents the additive noise applied to the projection system. The regularization
methods estimate the unknowns by minimizing a penalty criterion, which generally consists of two
terms:

J( f ) = Q(g, f ) + λR( f ). (2)

The loss function Q(g, f ) describes discrepancies in the observed data, such as the quadratic (L2)29

loss Q(g, f ) = ‖g − H f‖2
2 or Lq loss Q(g, f ) = ‖g − H f‖q

q with 1 ≤ q < 2. Other expressions30

such as the Huber function are also reported. The regularization term R( f ) is a penalty on the31

complement criterion of f , such as restriction for smoothness ‖Φ( f )‖2
2 or for sparsity ‖Φ( f )‖1, where32

Φ( f ) represents a linear function of f . The parameter λ is known as the regularization parameter,33

which controls the trade-off between the forward model discrepancy and the penalty term.34

By choosing different regularization functions R( f ), different regularization methods can be35

implemented. R( f ) = 0 refers to the Least-Squares (LS) method [19], with the drawback that the36

reconstruction is sensitive to the noise due to the ill-posedness of the problem and the ill-conditioning37

of the operator H. Quadratic Regularization (QR), also known as the Tikhonov method [20], is given38

by R( f ) = ‖Φ( f )‖2
2, where the linear operator Φ(·) is the derivation operator in most cases. The39

well-known Total Variation (TV) method [21–23] is defined by R( f ) = ‖DTV f‖TV where DTV is the40

gradient operator. DTV is equal to ‖Dx f‖1 +
∥∥Dy f

∥∥
1 + ‖Dz f‖1 for a 3D object in an anisotropic form,41

where Dx, Dy and Dz are respectively the gradient operators in the x, y and z directions. The L1 norm42

is used in TV for sparse estimations, which enforces the sparsity of DTV f . The appearance of the43

non-differentiable L1 term leads to difficulties for the implementation of optimization algorithms.44

Many optimization algorithms have been proposed to solve this L1 norm optimization problem,45

for example the primal-dual method [24], the Split Bregman method [22], etc. In regularization46

optimization, due to the large projection data size and the great number of voxels, the explicite47

expression of the solution can not be used directly because of the impossibility of inversing the large48

size matrix such as
(

HT H + λDT D
)−1

. Hence, optimization algorithms such as gradient descent or49

conjugate gradient are often used.50

More general regularization methods have been developed based on the constrained and
dual-variable regularization method:

J( f , z) = Q1(g, f ) + ηQ2( f , z) + λR(z), (3)

which corresponds to the maximum a posterior optimization of a hierarchical structured model where51

both f and z are unknown variables. In such a model, the penalty regularization term is set on z,52

which is associated with f via a linear transformation. The loss functions Q1(g, f ) and Q2( f , z) are53

for example quadratic (L2), i.e. Q1(g, f ) = ‖g − H f‖2
2 and Q2( f , z) = ‖ f − Dz‖2

2 where D is a linear54

transform operator such as a wavelet transformation.55

Among the methods treating this type of regularization problem, we mention here the56

Alternating Direction Method of Multipliers (ADMM) [25]. It minimizes Φ( f ) + Ψ(z) subject to57

A f + Bz = C, and it covers a large number of estimation forms. One example is when Φ( f ) =58
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‖g − H f‖2, Ψ(z) = R(z), A = I, B = −D and C = 0, and refers to the above-mentioned bi-variable59

regularization method corresponding to Eq. (3).60

In the above-mentioned regularization methods, there is always a regularization parameter λ61

to be fixed. Sometimes the regularization term consists of more than one parts and each of them62

are weighted by a regularization parameter, for example the Elastic-net regularizer [26]. In these63

cases, two or even more regularization parameters are needed to be fixed. Cross Validation (CV) and64

the L-curve method [20,27,28] are conventional methods used to determine suitable values for these65

parameters. However, this work must be repeate for different simulated datasets and is therefore66

very costly. Statistical methods, therefore, have been developed and used to solve this problem.67

From the probabilistic point of view, a Gaussian model for the additive noise in the forward68

model, Eq. (1), leads to the quadratic expression ‖g − H f‖2 in the corresponding regularization69

criterion. But in some types of tomography, for example Positron Emission Tomography (PET)70

or X-ray tomography with very low number of phantoms, the noise is modeled by a Poisson71

distribution. In order to account for a more precise modeling of the noise and the other variables72

and parameters, statistical methods are used [29]. The Maximum Likelihood (ML) methods [30]73

and different estimation algorithms such as the Expectation Maximization (EM) algorithms [31],74

the stochastic EM (SEM) [32], the Ordered subsets-EM (OS-EM) [33] are commonly used in PET-CT75

reconstruction problems.76

Another widely used type of probabilistic method for PET or X-ray CT reconstruction is the
Bayesian inference [34–37]. The prior knowledge is translated by the prior probability model and is
used to obtain the expression of the posterior distribution. The basic Bayesian formula is:

p( f |g, θ) =
p(g| f , θ1)p( f |θ2)

p(g|θ) , with p(g|θ) =
∫

p(g| f , θ1)p( f |θ2)d f , (4)

where p(g| f , θ1) is the likelihood, p( f |θ2) is the prior distribution, p( f |g, θ) is the posterior
distribution, θ = (θ1, θ2) are the parameters of these different distributions and p (g|θ) is the
evidence of the parameters in the data g. By using Maximum A Posterior (MAP) estimator f̂ =

arg max f {p( f |g, θ)} = arg min f {− ln p( f |g, θ)}, links between the Bayesian method and almost
all the regularization methods can be illustrated. A Gaussian prior for p( f ) in Eq. (4) leads to the
Quadratic (L2) Regularization method, while a Laplacian prior in Eq. (4) leads to the L1 (LASSO or
TV) regularization method. The regularization parameter can be related to θ1 and θ2. One advantage
of the Bayesian method is having some explanation for the regularization parameter via its link with
θ1 and θ2. For example when p(g| f , θ1) and p( f |θ2) are Gaussian with θ1 and θ2 respectively the
variances of the noise and the variance of the prior, then the regularization parameter is λ = θ1/θ2.
Another advantage of the Bayesian method is that these parameters can also be estimated to achieve
unsupervised or semi-supervised methods. This is achieved by obtaining the expression of the joint
posterior probability law:

p( f , θ|g) = p(g| f , θ1)p( f |θ2)p(θ)
p(g)

, (5)

where p(θ) is an appropriate prior on θ. For a hierarchical structured model where a hidden variable
z appears in the prior model, we have:

p( f , z, θ|g) = p(g| f , θ1)p( f |z, θ2)p(z|θ3)p(θ)
p(g)

, (6)

where θ = [θ1, θ2, θ3].77

With the posterior distribution obtained from an unsupervised Bayesian inference as in Eq. (5),78

we distinguish three estimation methods. The first method consists of integrating out θ from p( f , θ|g)79

to obtain p( f |g) and then use p( f |g) to infer on f . The second approach is firstly to marginalize80

p( f , θ|g) with respect to f to obtain p(θ|g) =
∫

p( f , θ|g)d f and estimate θ̂ = arg maxθ {p(θ|g)},81
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then use θ̂ as it was known. Unfortunately, these approaches do not often give explicit expressions82

for p( f |g) or p(θ|g). The third and easiest algorithm to implement is the joint optimization, which83

estimates variable f and parameter θ iteratively and alternately. Bayesian point estimators such84

as joint maximum a posteriori (JMAP) [38] and Posterior Mean (PM) [39] via Variational Bayesian85

Approximation (VBA) methods [40–42] are often used.86

In order to distinguish the details of a reconstructed object, a high-resolution image is expected.87

In industrial applications, especially for the NDT of a large-size object, the size of the projection (100088

images of 10002 pixels) and the number of the voxels (10003 voxels) become critical, and so does the89

projection and back-projection operators in CT. It is necessary to account for some computational90

aspects, for example the GPU processor [43,44].91

In our previous work [45], we proposed to use the Bayesian method via a synthesis model, in92

which the multilevel Haar transformation coefficient z of the image is first estimated, and then the93

final image reconstruction result is obtained from post processing: f̂ = Dẑ. In this case, when using94

a Laplacian prior model and the MAP estimator, the problem becomes equivalent to the optimization95

of J(z) = ‖g − HDz‖2 + λ ‖z‖1 which is a typical L1 regularization method. The particularity of our96

work was to use a generalized Student-t (Stg) prior model [46] in place of the Laplacian model.97

In this paper, we present a Hierarchical Haar transform-based Bayesian method (HHBM), first98

proposed in [47], in which the object to be reconstructed, f , is related to the Haar transformation99

coefficient z by f = Dz + ξ where ξ represents the modelization uncertainties. f and z are100

estimated simultaneously. Wavelets provide an optimal representation for a piecewise continuous101

function consisting of homogeneous blocs separated by jump discontinuities (the contours), as the102

wavelet representation is sparse for such signals. Transformations used are, for example, the Haar103

transformation [48], the curvelet transformation (CVT) [49], the contourlet transformation (CT) [50],104

Dual-Tree Complex Wavelet Transform (DT-CWT) [51], etc. As long as the object under consideration,105

f , is piecewise continuous or constant, the Haar transform is appropriate, with the advantage that: 1)106

the transform coefficients are sparse, 2) the transformation operator is orthogonal so that the inverse107

operator and the transpose are identical, and 3) the computation of this transformation consists of108

only additions and subtractions and the cost of computation is only O(
√

N) where N is the size of the109

object f .110

The sparsity of the transformation coefficient is generally defined by three classes of111

distributions: the Generalized Gaussian distributions [52], the mixture distributions [53] and the112

heavy-tailed distributions [54]. In this paper, we use a generalization of Student-t distribution (Stg),113

which belongs to the heavy-tailed family and has many advantages when enforcing the sparsity of114

variables [46].115

In this paper, we extend extensively the previous work by: 1) adapting the forward model and116

prior models to the 3D case, which is more appropriate for real 3D large data size applications; 2)117

comparing the RMSE of the phantom reconstructed by HHBM method with those by conventional118

QR and TV methods, we show the advantages of the semi-supervised property of the HHBM method119

and that the HHBM method outperforms the TV method when infsufficient data is estimated; 3)120

proposing new ideas for fixing the hyper-parameters in the proposed model; and 4)evaluating the121

performance of the proposed method in the situations when the number or the angle distribution of122

the projections are limited.123

The rest of this paper is organized as follows: section 2 presents the proposed124

hierarchically-structured Bayesian method; section 3 gives the details of the implementations and125

the choice of hyperparameters, as well as the simulation results; some points on the initialization of126

hyper-parameters are discussed in section 4; conclusions are drawn and prospective future research127

is presented in section 5.128
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2. The Semi-supervised Hierarchical Model129

The Hierarchical Haar-based Bayesian Method (HHBM) is presented, in which the object f130

and its multilevel Haar transform coefficient z are considered jointly. A sparse enforcing prior131

is defined on z. The wavelet transformation has been used for the reconstruction of tomography132

images in some state-of-the-art works [55–58], using both regularization and Bayesian methods. In133

these state-of-the-art methods, the phantom f is obtained by a post-processing from reconstructed134

coefficient z. In this paper, the phantom f and the coefficient z are simultaneously estimated.135

2.1. Forward system model and likelihood136

In the proposed method, the forward model introduced in Eq. (1) is considered. Generally,
the noise in tomography is modeled by Poisson distribution [59], but, in X-ray CT, the Gaussian
approximation is often used. We adopt the Gaussian approximation and propose to use a zero mean
and non-stationary model where the variance is considered to be unknown, belonging to an Inverse
Gamma distribution given that this distribution provides a good adaptation of the positivity property
of the variances vεi :

p(ε|vε) = N (ε|0, V ε) , V ε = diag [vε] , where vε = [vε1 , · · · , vεM ]′ ∈ RM×1 (7)

p(vε|αε0 , βε0) =
M

∏
i=1
IG(vεi |αε0 , βε0) (8)

The vector vε is considered in order to account for the difference of sensitivity to noise for each137

detector in each projection direction.138

According to the forward model of the linear system, Eq. (1), and the prior model of the noise,
Eq. (7), the likelihood of this model system is:

p(g| f , vε) = N (g|H f , V ε). (9)

In Bayesian inference, the likelihood is combined with the prior distributions to determine the139

posterior distribution.140

2.2. Hierarchical prior model and prior distributions141

Typically the objects considered in medical and industrial X-ray CT are piecewise continuous.142

In this paper, a hierarchical prior model is used to define the piecewise continuous property. In143

this hierarchical prior model, a sparsity enforcing model is defined for the wavelet transformation144

coefficients of the image. A large number of methods accounting for sparse structure of the solution145

have been proposed in the literature. Among them, the L1 regularization method is most frequently146

used, which minimizes the criterion J( f ) = ‖g − H f‖2
2 + λ ‖Φ f‖1 where Φ is a linear operator,147

for example the gradient in the TV method. Another class of methods, known as "synthesis" [60],148

minimizes J(z) = ‖g − HDz‖2
2 + λ ‖z‖1 where f = Dz, and z = D−1 f is for example a wavelet149

transform.150

In this paper, we propose to use the multilevel Haar transformation as the sparse dictionary. The
transformation is modeled using a discretized forward model:

f = Dz + ξ, (10)

where D ∈ RN×N represents the inverse multilevel Haar transformation and ξ ∈ RN×1 represents the151

uncertainties of the transformation, which is introduced to relax the exact relation of the transform152

operator D. ξ is supposed to be sparse. Unlike the gradient operator used in the TV method,153

the multilevel Haar transformation is orthogonal, i.e. D−1 = DT . This property provides certain154
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advantages during optimization, especially for the big data size problems, as the inversion and155

transpose of the operator are identical and can be replaced by each other for different types of D.156

ξ is modeled by a Gaussian distribution, p(ξ) = N (ξ|0, V ξ), where V ξ = diag
[
vξ

]
and

vξ = [vξ1 , · · · , vξN ]
′. vξ is considered an unknown variance. It is modeled in order to realize a

semi-supervised system where the variance is estimated. Here vξ is modeled by an Inverse Gamma
distribution, with the same consideration as the model of vε. The Gaussian model with an Inverse
Gamma distributed variance, p(vξ |αξ0 , βξ0) = ∏N

j=1 IG(vξ j |αξ0 , βξ0), leads to a generalized Student-t
(S tg) distribution [46]. Consequently, a S tg distribution is derived for ξ, and the sparse property of ξ

can be guaranteed. From Eq. (10), the conditional distribution p( f |z, vξ) is derived:

p( f |z, vξ) = N ( f |Dz, V ξ), (11)

with

p(vξ |αξ0 , βξ0) =
N

∏
j
IG(vξ j |αξ0 , βξ0). (12)

For practical applications where these parameters are not known or difficult to obtain, we use a157

semi-supervised method in which the variances of noises, vε and vξ , are unknown. In HHBM, Inverse158

Gamma distribution is used to model vε and vξ , p(vε) = IG(vε|αε0 , βε0) and p(vξ) = IG(vξ |αξ0 , βξ0).159

Consequently, both ξ and ε are modeled by a S tg distribution.160

Vector z = [z1, · · · , zN ]
′ represents the multilevel Haar transformation coefficient of piece-wise

continuous f . As mentioned above, z is sparse. In this paper, the generalized Student-t distribution
(S tg) [46] is used to enforce the sparsity structure of z. The S tg distribution can be expressed as the
marginal of a bivariate Normal-Inverse Gamma distribution:

S tg(z|α, β) =
∫
N (z|0, v) IG(v|α, β) dv. (13)

Thanks to the fact that Normal and Inverse Gamma are conjugate distributions, the use of the S tg via161

Eq. (13) simplifies the computations when using the Bayesian point estimators such as the Posterior162

Mean via the Variational Bayesian Approximation (VBA) method [42].163

From Eq. (13), the S tg prior distribution modeling z is expressed as the following model:164

p(z|vz) = N (z|0, V z), where V z = diag [vz] , vz = [vz1 , vz2 , · · · , vzN ] (14)

p(vz|αz0 , βz0) =
N

∏
j
IG(vzj |αz0 , βz0), (15)

where vzj , ∀ j = 1 : N are i.i.d. distributed. The difference between the standard S t distribution,165

St(z|ν) =
∫
N (z|0, v)IG(v| ν2 , ν

2 )dv, and the generalized S tg, given in Equation (13), is that St(z|ν)166

is governed by one parameter ν but Stg(z|α, β) is governed by two parameters (α, β). With these two167

parameters, the S tg does not only enforce the sparsity of the variable, but also control the sparsity168

rate [46]. By changing the values of the two hyper-parameters αz0 and βz0 , we can obtain either a169

heavy-tailed distribution with a narrow peak, or a distribution approaching a Gaussian distribution.170



Version December 3, 2018 submitted to Entropy 7 of 24

2.3. The HHBM method171

The prior models of the proposed Bayesian method based on the forward model of Eq. (1) and
the prior model of Eq. (10) are:

p(g| f , vε) ∝ |V ε|−
1
2 exp

[
−1

2
(g − H f )T V−1

ε (g − H f )
]

, (16)

p( f |z, vξ) ∝
∣∣V ξ

∣∣− 1
2 exp

[
−1

2
( f − Dz)T V−1

ξ ( f − Dz)
]

, (17)

p(z|vz) ∝ |V z|−
1
2 exp

[
−1

2
zTV−1

z z
]

, (18)

p(vz|αz0 , βz0 ) ∝
N

∏
j

v
−(αz0+1)
zj exp

[
−βz0 v−1

zj

]
, (19)

p(vε|αε0 , βε0 ) ∝
M

∏
i

v
−(αε0+1)
εi exp

[
−βε0 v−1

εi

]
, (20)

p(vξ |αξ0 , βξ0 ) ∝
N

∏
j

v
−(αξ0+1)
ξ j

exp
[
−βξ0 v−1

ξ j

]
. (21)

172

Fig.1 shows the generative graph of the proposed model in which the hyperparameters in the173

rectangles need to be initialized:174

αz0 , βz0

?
vz�
��p(vz) =

∏ IG(vzj |αz0 , βz0 )?
z�
��

p(z|vz) =
N (z|0, V z)

?
D

αε0 , βε0

?
vε�
��

p(vε) =

∏ IG(vεi |αε0 , βε0 )

�
�
�

�
�
�

��=p(g| f , vε) =
N (g|H f , V ε)

αξ0 , βξ0

?
vξ�
��

p(vξ ) =

∏ IG(vξ j |αξ0 , βξ0 )@
@
@Rp( f |z, vξ ) =

N ( f |Dz, V ξ )
f�
��
?

H

�
������
g

Figure 1. Generative graph of the proposed model illustrating all the unknowns (circles),
hyperparameters (boxes) and data (double circles).

175

Via the Bayes rule, Eq. (6), the joint posterior distribution of all the unknowns given in the data
is derived:

p( f , z, vε, vξ , vz|g) =
p(g, f , z, vε, vξ , vz)

p(g)

=
p(g| f , vε)p( f |z, vξ)p(z|vz)p(vz)p(vε)p(vξ)

p(g)

∝ p(g| f , vε)p( f |z, vξ)p(z|vz)p(vz)p(vε)p(vξ).

(22)

Bayesian point estimators are often used for estimation via the a posteriori distribution. In this176

paper, we focus on the JMAP estimation, given that in the case of the large data size of the 3D object,177

the computational costs for the VBA algorithm is too expensive.178
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2.4. Joint Maximum A Posteriori (JMAP) Estimation179

The negative logarithm of the posterior distribution is used as the criterion of optimization
in order to simplify the exponential terms. The maximization of posterior distribution becomes a
minimization of the criterion:

( f , z, vz, vε, vξ) = arg max
{

p( f , z, vε, vξ , vz|g)
}

= arg min
{
− ln p( f , z, vε, vξ , vz|g)

}
= arg min J( f , z, vz, vε, vξ).

(23)

We substitute the distribution formulas and obtain:

J( f , z, vz, vε, vξ) = − ln p( f , z, vε, vξ , vz|g)

=
1
2

M

∑
i

ln vεi +
1
2
(g − H f )TV−1

ε (g − H f )

+
1
2

N

∑
j

ln vξ j +
1
2
( f − Dz)TV−1

ξ ( f − Dz)

+
1
2

N

∑
j

ln vzj +
1
2

zTV−1
z z + (αz0 + 1)

N

∑
j

ln vzj

+ βz0

N

∑
j

v−1
zj

+ (αε0 + 1)
M

∑
i

ln vεi + βε0

M

∑
i

v−1
εi

+ (αξ0 + 1)
N

∑
j

ln vξ j + βξ0

N

∑
j

v−1
ξ j

.

(24)

The unknown variables are determined by obtaining the expressions of the alternate180

minimization in Eq. (24):181

f̂ =
(

HTV̂
−1
ε H + V̂

−1
ξ

)−1 (
HtV̂

−1
ε g + V̂

−1
ξ Dẑ

)
, (25)

ẑ =
(

DTV̂
−1
ξ D + V̂

−1
z

)−1
DTV̂

−1
ξ f̂ , (26)

v̂zj =

(
βz0 +

1
2

ẑ2
j

)
/ (αz0 + 3/2) , (27)

v̂ε i =

(
βε0 +

1
2

(
gi −

[
H f̂
]

i

)2
)

/ (αε0 + 3/2) , (28)

v̂ξ j =

(
βξ0 +

1
2

(
f̂ j − [Dẑ]j

)2
)

/
(
αξ0 + 3/2

)
, (29)

∀i ∈ [1, M] and ∀j ∈ [1, N].182

In 3D X-ray CT, the inversion of matrix
(

HTV̂
−1
ε H + V̂

−1
ξ

)−1
and

(
DTV̂

−1
ξ D + V̂

−1
z

)−1
in183

Eq.(25) and Eq.(26) are impossible due to the large data size. First-order optimization methods are184

generally used in this case. In this paper we use the gradient descent algorithm:185

for k = 1→ IG : f̂
(k+1)

= f̂
(k) − γ̂

(k)
f ∇J f ( f̂

(k)
), (30)

for k = 1→ IG : ẑ(k+1) = ẑ(k) − γ̂
(k)
z ∇Jz(ẑ

(k)), (31)
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where IG is the number of iterations for the gradient descent estimation, ∇J f (·) and ∇Jz(·) are the186

derivatives of the criterion (24) regarding f and z respectively. γ̂ f (·) and γ̂z(·) are the corresponding187

descent step lengths which are obtained by using an optimized step length strategy [61]:188

∇J( f ) = −HTV−1
ε (g − H f ) + V−1

ξ ( f − Dz) , (32)

∇J(z) = −DTV−1
ξ ( f − Dz) + V−1

z z, (33)

γ̂
(k)
f =

∥∥∥∥∇J( f̂
(k)

)

∥∥∥∥2

∥∥∥∥ŶεH∇J( f̂
(k)

)

∥∥∥∥2
+

∥∥∥∥Ŷξ∇J( f̂
(k)

)

∥∥∥∥2 , (34)

γ̂
(k)
z =

∥∥∥∇J(ẑ(k))
∥∥∥2

∥∥∥Ŷξ D∇J(ẑ(k))
∥∥∥2

+
∥∥∥Ŷz∇J(ẑ(k))

∥∥∥2 , (35)

where Yε = V−
1
2

ε , Yξ = V−
1
2

ξ and Yz = V−
1
2

z .189

The algorithm concerning the optimization of all the unknowns is given in Algorithm 1.190

Algorithm 1 The JMAP algorithm for HHBM method

1: Fix parameters αz0 , βz0 , αε0 , βε0 , αξ0 , βξ0 , l

2: Input: H, D, g

3: Output: f̂ , ẑ, v̂z, v̂ε, v̂ξ

4: Initialization:

5: f̂ ← normalized FBP

6: ẑ← l−level Haar transformation of f̂

7: for k = 1 to Imax do

8: f̂
(0)

= f̂

9: for k = 1 to IG do

10: Calculate ∇J( f̂
(k−1)

) according to Eq. (32)

11: Update γ̂
(k)
f according to Eq. (34)

12: Update f̂
(k)

= f̂
(k−1) − γ̂

(k)
f ∇J( f̂

(k−1)
)

13: end for

14: f̂ = f̂
(IG)

15: ẑ(0) = ẑ

16: for k = 1 to IG do

17: Calculate ∇J(ẑ(k−1)) according to Eq. (33)

18: Update γ̂
(k)
z according to Eq. (35)

19: Update ẑ(k) = ẑ(k−1) − γ̂
(k)
z ∇J(ẑ(k−1))

20: end for

21: ẑ = ẑ(IG)

22: Optimize vz according to Eq. (27)

23: Optimize vε according to Eq. (28)

24: Optimize vξ according to Eq. (29)

25: end for
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3. Initialization and Experimental Results191

For the simulations, the 3D simulated "Shepp-Logan" phantom, shown in Fig. 2 on left, Fig.3 on192

top and the 3D real "Head" object, shown in Fig.2 on right, Fig.3 on bottom, both of size 2563, are used193

as the object of interest to compare the performance of the proposed method to the performance of194

the other state-of-the-art methods. Both Shepp-Logan and Head phantoms consist of several different195

homogeneous areas, so both are piecewise continuous. The voxel values of the original objects are196

normalized to [0, 1]. The projection directions are uniformly distributed, each projection consists of197

2562 detectors corresponding to a 2562 size image.198

Figure 2. The three figure on left show three middle slice views of the 3 dimentional SheppLogan
phantom, and the three figures on right show the 3 dementional Head phantom.

Figure 3. Top: four projections of the 3D SheppLogan phantom from 30, 60, 90, 120 degrees (left to
right, respectively); bottom: four projections of the 3D Head phantom from 30, 60, 90, 120 degrees (left
to right, respectively).

The proposed HHBM method is compared with the conventional Quadratic Regularization (QR)199

and Total Variation (TV) methods. For the QR method, the gradient descent algorithm is used for the200

3D large data size problem. For the TV method, the Split-Bregman method [22] is used to solve the201

L1 norm minimization problem.202

To evaluate the proposed method and compare it with the state-of-the-art methods, four different203

metrics are used:204
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• the Relative Mean Square Error (RMSE), RMSE=
∥∥∥ f − f̂

∥∥∥2
/ ‖ f‖2 which shows a relative error205

of results;206

• the Improvement of Signal-to-Noise Ratio (ISNR) which measures the improvement during207

iterations;208

• the Peak Signal-to-Noise-Ratio (PSNR) which presents the SNR relative to the peak data value;209

• the Structural Similarity of IMage (SSIM) [62] which evaluates the quality of result approaching210

human visualizing.211

In 3D X-ray CT, the projection matrix H is very large and is not accessible. For the simulations,212

only the projection operator H f and the back-projection operator HT g are used. Considering that the213

costly projection and back-projection operators are computed in every iteration, the GPU processor is214

used via the ASTRA toolbox [63] to accelerate the computation.215

3.1. Initializations216

The initialization for the variables f and z as well as the hyperparameters αε0 , βε0 , αξ0 , βξ0 , αz0217

and βz0 are discussed in this section.218

The reconstructed phantom obtained by using the Filtered Back Projection (FBP) method is219

considered to be initial value f̂ ini. The initialization of coefficient ẑini is the multilevel Haar220

transformation of f̂ ini: ẑini = D−1 f̂ ini. In this article, we choose the level of transformation such221

that z has a sparse structure. As shown in Fig.4, when the transform level is small, for example222

2−levels, the coefficient z is not sparse; when the transform level is sufficiently large, the coefficient223

is sparse. In this paper, we set z as a 5−level Haar transform coefficient.224

r=3

r=3

r=3

r=2 r=2

r=2r=1

HL3

LH3 HH3

HL2

LH2 HH2

LL1

l=2 l=2

l=4 l=5

Figure 4. Slice of 3D multilevel Haar transformation coefficient z of the 2563 Shepp-Logan phantom
with: 2 levels (top-left), 4 levels (bottom-left) and 5 levels (bottom-right). The figure on the top-right
shows the ranks of coefficients for a 2-level transformation.

The initialization for αz0 and βz0 is based on the sparse structure of the variable z. In Figure 4,225

we can see that the sparsity rate depends on the rank of transform coefficient r, where r ∈ [1, l + 1].226
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For example when l = 2, shown in Figure 4, the coefficient has 3 ranks, r ∈ [1, 2, 3]. The first rank227

r = 1 corresponds to the low frequency components in the transform coefficient.228

The variable z is modeled by a S tg distribution, with variance equal to Var[zj|αz0 , βz0 ] =229

βz0 /(αz0 − 1), ∀j ∈ [0, N]. In this article, we fix the value αz0 = 2.1 in order to have Var[zj|αz0 =230

2.1, βz0 ] ≈ βz0 , ∀j ∈ [0, N]. The sparsity rate of z is defined by initializing different values for βz0 ,231

with a sparser structure when βz0 is smaller. βz0 is initialized as βz0 = 10−r+1. When l = 5, we have232

r = [1, 2, 3, 4, 5, 6], and the hyperparameters βz0 = [100, 10−1, 10−2, 10−3, 10−4, 10−5] respectively.233

The initialization for the hyperparameters, αε0 , βε0 , αξ0 and βξ0 , is based on the prior models of234

the variances vε and vξ we have chosen. In the proposed method, we consider the background of235

the generalized Student-t distribution, in which both ε and ξ are modeled by a Gaussian distribution236

with Inverse Gamma distributed variance, i.e. the S tg distribution according to Eq. (13).237

The noise ε depends on the SNR of the dataset. In order to exploit this information in the
initialization, we express the biased dataset as the sum of uncontaminated dataset g0 and the additive
noise ε:

g = g0 + ε. (36)

As the noise ε and the uncontaminated data g0 are supposed to be independent, we have:

‖g‖2 = ‖g0‖
2 + ‖ε‖2 . (37)

And the SNR of the dataset is:

SNR = 10 log
‖g0‖

2

‖ε‖2 = 10 log
‖g‖2 − ‖ε‖2

‖ε‖2 . (38)

With E [ε] = 0, we have:

vε = E
[
ε2
]
≈ ‖ε‖

2

M
=
‖g‖2

M
× 1

1 + 10SNR/10 . (39)

The mean of variance vε of the noise ε is E [vεi |αε0 , βε0 ] = βε0 /(αε0 − 1), ∀i ∈ [0, M], so we obtain:

βε0 =
‖g‖2

M
× 1

1 + 10SNR/10 × (αε0 − 1) . (40)

The two hyperparameters αε0 and βε0 are combined according to Eq. (40); hence, initialization238

for one of them is sufficient. In real applications, the SNR of the dataset is unknown, but we can use239

the projection of an empty object, i.e. f = 0, to obtain a rough value of the variance of noise vε.240

Fig.5 shows the influence of the value of αε0 on the reconstruction. According to the results, a241

bigger value for αε0 results in a smaller value on RMSE for different numbers of projections and SNR242

of the dataset. This monotonous property facilitates the initialization of this hyperparameter, as a243

large value for αε0 satisfies all cases. When αε0 is greater than a threshold value, the RMSE does not244

change with different initialization values for αε0 .245

For ξ, both αξ0 and βξ0 are analyzed for the influence of the reconstruction results.246

Fig.6 shows the influence of the hyperparameter αξ0 . Different colors represent an initialization247

with a different value of βξ0 . As here we focus on the analysis of αξ0 for all cases of βξ0 values, we248

don’t show the corresponding βξ0 value for each different color. For different noise levels, different249

numbers of projections and different βξ0 values, the RMSE has an upward trend when the value of250

αξ0 becomes larger.251

Fig.7 shows the influence of the hyperparameter βξ0 . Different colors represent an initialization252

with a different hyperparameter αξ0 . For different noise levels, different numbers of projections and253

different values for αξ0 , when the value of βξ0 increases, the RMSE decreases; then, after a slight254

increase, levels out.255
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Figure 5. Influence of hyperparameter αε0 on RMSE of final reconstruction results for different
numbers of projections and noise.
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Figure 6. Influence of hyperparameter αξ0 , with different fixed values of βξ0 , on RMSE of
reconstruction results for different number of projections and noise. Each color corresponds to a
different initialization of βξ0 .
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Figure 7. Influence of hyperparameter βξ0 , with different fixed value of αξ0 , on RMSE of reconstruction
results for different number of projections and noise. Each color corresponds to a different
initialization of αξ0 .

In [46], it is pointed out that when α and β of the S tg distribution are both large, the S tg256

distribution approaches a Gaussian distribution, which is the case for the additive noise ε. If α and β257

are very small (approaching 0), the S tg distribution becomes an non-informative distribution (Jeffreys258

distribution); when α and β are both small, the S tg has the sparsity enforcing property, which is259

the case for the sparse ξ. Consequently, the initialization of the hyperparameters are theoretically260

supported, and they can be initialized with respect to these properties in other simulations.261

Table 1. Comparison of RMSE, ISNR, PSNR and SSIM of reconstructed phantom with 50 global
iterations (10 gradient descent iterations in each global iteration). The values of the regularization
parameters are respectively λQR = 10 and λTV = 50 for SNR=40dB, λQR = 600 and λTV = 100 for
SNR=20dB.

256× 256× 256 Shepp-Logan phantom
180 projections 90 projections

40dB 20dB 40dB 20dB
QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM

RMSE 0.0236 0.0114 0.0069 0.1309 0.0209 0.0755 0.0401 0.0212 0.0092 0.1558 0.0491 0.1117
ISNR 5.5584 8.7217 10.9346 7.2024 15.1775 10.2162 6.6136 9.3832 12.9973 8.4583 13.4765 9.9056
PSNR 30.0675 33.2308 35.4437 22.6318 30.6069 25.0209 27.7743 30.5439 34.1579 21.8754 26.8937 23.3227
SSIM 0.9999 0.9999 1.0000 0.9992 0.9999 0.9995 0.9997 0.9999 0.9999 0.9990 0.9997 0.9993

60 projections 45 projections
40dB 20dB 40dB 20dB

QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM
RMSE 0.0636 0.0321 0.0107 0.1656 0.0753 0.1293 0.0904 0.0474 0.0132 0.1854 0.0901 0.1414
ISNR 9.3826 12.3480 17.1346 9.1492 12.5701 10.2226 10.3301 13.1308 18.6839 10.0137 13.1476 11.1916
PSNR 25.7693 28.7347 33.5214 21.6116 25.0325 22.6849 24.2404 27.0412 32.5942 21.1195 24.2535 22.2974
SSIM 0.9996 0.9995 0.9999 0.9990 0.9995 0.9992 0.9994 0.9997 0.9999 0.9988 0.9994 0.9991

36 projections 18 projections
40dB 20dB 40dB 20dB

QR TV HHBM QR TV HHBM QR TV HHBM QR TV HHBM
RMSE 0.1177 0.0680 0.0169 0.1957 0.1116 0.1500 0.2581 0.2104 0.0574 0.2907 0.2313 0.2014
ISNR 10.6591 13.0424 19.0933 10.8633 13.3032 12.0187 10.7122 11.5992 17.2373 10.8088 11.8022 12.4036
PSNR 23.0949 25.4783 31.5292 20.8865 23.3264 22.0420 19.6263 20.5133 26.1514 19.1085 20.1020 20.7033
SSIM 0.9993 0.9996 0.9999 0.9988 0.9993 0.9990 0.9983 0.9987 0.9996 0.9981 0.9985 0.9987
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3.2. Simulation results with limited number of projections262

We apply 180, 90, 60, 45, 36 and 18 projections evenly distributed in [0, 180] degrees for the263

reconstruction of the 3D Shepp-Logan phantom of size 2563; each projection contains 2562 detectors.264

The number of projections are chosen such that there is respectively one projection every 1, 2, 3, 4, 5265

and 10 degrees.266

In Table 1, different evaluation metrics of the reconstructed 2563 Shepp-Logan phantom are267

compared. It is shown that the HHBM method does not always perform better than the TV method,268

especially when there are sufficient numbers of projections. But when there is insufficient projection269

data, the HHBM method is more robust than the TV method. On the other hand, as it is known270

that the choice of regularization parameter plays an important role in the regularization methods271

like QR or TV, and the value for the regularization parameter should be selected for each different272

system settings, the HHBM method is much more robust on the initialization of hyper-parameters.273

As we can see from Fig.5, Fig.6 and Fig.7, once we have chosen the hyperparameters in a certain274

interval, which is not difficult to fix according to the properties of the prior model, we can obtain the275

appropriate reconstruction results. More importantly, in the Bayesian approach, the prior model can276

be chosen from a variety of other suitable distributions, which gives more possibilities for the models277

than the conventional regularization methods. We may also choose different point estimators from278

the posterior distribution, for example the Posterior Mean, etc.279

Figure 8 and Figure 9 show the reconstructed middle slice of the "Shepp-Logan" phantom280

and "Head" object by using the TV and HHBM methods from 36 projections with SNR=40dB and281

SNR=20dB. The red curve illustrates the profile of the blue line position. In the reconstructed282

Shepp-Logan phantom obtained using the TV method, the three small circles on the top of the slice are283

not evident. By using the HHBM method, we can distinguish these three small circles. By comparing284

the profiles of the slice of reconstructed Shepp Logan phantom, we can see that by using the HHBM285

method, the contour positions on the profile are closer to the original profile than those obtained286

using the TV method. In the reconstructed Head object, there are more details than the simulated287

Shepp-Logan phantom, especially in the zoom area in the second line in Figure 8. By comparing288

the results, we can see that for the type of object which contains some small details, the TV method289

derives a result with smoother homogeneous areas but with fewer details in the contour areas than290

the HHBM method. Some of the white material, which is dispersed into discontinuous small blocks291

in the Head object, is connected in the results of the TV method. From these images we conclude that292

with an insufficient number of projections the proposed method gives results with clearer contours293

and details.

Original TV HHBM Original TV HHBM

Figure 8. Reconstructed "Shepp-Logan" phantom and "Head" object of size 2563, with a dataset of 36
projections and SNR=40dB, by using the TV and HHBM methods. Bottom figures are zones of the
corresponding top figures. The red curves are the profiles at the position of the corresponding blue
lines.

294
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Original TV HHBM Original TV HHBM

Figure 9. Reconstructed "Shepp-Logan" phantom and "Head" object of size 2563, with a dataset of 36
projections and SNR=20 dB, by using the TV and HHBM methods. Bottom figures are zones of the
corresponding top figures. The red curves are the profiles at the position of the corresponding blue
lines.

Fig.10 shows the reconstructed Shepp-Logan phantom from 18 projections of SNR=40dB and295

20dB. In this very underdetermined case, the HHBM method can still obtain a result which is clear296

enough to distinguish the primary zones and contours of the object.

Original TV (40dB) HHBM (40dB) TV (20dB) HHBM (20dB)

Figure 10. Reconstructed Shepp-Logan phantom of size 2563, with a dataset of 18 projections of
SNR=40dB and 20dB, by using the TV and HHBM methods. The red curves are the profiles at the
position of the corresponding blue lines.

297

Fig.11 and Fig.12 show the comparison between the QR, TV and HHBM methods with a high298

SNR=40dB and a low SNR=20dB dataset respectively. The abscissa corresponds to the number of299

projections evenly distributed from 0◦ to 180◦, and the ordinate is the RMSE after 50 iterations. In the300

simulations we used a SNR=40dB to represent a weak noise case and SNR=20dB for a strong noise301

case. When SNR=40dB, the HHBM method outperforms both quadratic regularization and the TV302

method. When SNR=20dB, the TV method with the optimal regularization parameter outperforms303

the HHBM method. However, in Fig.12, we show another curve in light green (TV2) showing the304

TV reconstruction with some random regularization parameters, which are chosen as a value not far305

from the optimal regularization parameters. From these results we can see that the HHBM method306

is more robust than the TV reconstruction method with respect to the regularization parameter, the307

optimal value of which is, on the other hand, difficult to determine in the real applications where we308

cannot evaluate the estimation quality.309
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Figure 11. The performances of different methods for reconstructing Shepp-Logan phantom in terms
of RMSE with different numbers of projections evenly distributed in [0◦, 180◦] and a high SNR=40dB.
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Figure 12. The performances of different methods for reconstructing Shepp-Logan phantom in terms
of RMSE with different numbers of projections evenly distributed in [0◦, 180◦] and a low SNR=20dB.
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3.3. Simulation results with limited angle of projections310

In both medical and industrial X-ray CT, another common challenge is the limit of projection311

angles. In this part of the simulation, we use evenly distributed projections in a limited range of312

angles for the simulated 3D "Shepp-Logan" phantom and the 3D "Head" object, both of which have a313

size of 2563.314

Figure 13 and Figure 14 show the middle slice of the reconstructed Shepp-Logan phantom and315

the Head object, from 90 projections distributed between 0◦ and 90◦, with projection SNR of 40dB and316

20dB. By using the TV method, the reconstructed object is blurry along the the diagonal direction for317

which there is no projection data, and there is a square corner where the object should have a rounded318

edge. By using the HHBM method, we get results that are more consistent with the true shape and319

clearer contours.

Original TV HHBM Original TV HHBM

Figure 13. Slice of reconstructed 3D Shepp-Logan phantom and 3D Head object, with 90 projections
evenly distributed in [0◦, 90◦], SNR=40dB. Bottom figures are parts of the corresponding top figures.
The red curves are the profiles at the position of the corresponding blue lines.

320

Original TV HHBM Original TV HHBM

Figure 14. Slice of reconstructed 3D Shepp-Logan phantom and 3D Head object, with 90 projections
evenly distributed in [0◦, 90◦], SNR=20dB. Bottom figures are parts of the corresponding top figures.
The red curves are the profiles at the position of the corresponding blue lines.

Figure 15 and Figure 16 show the comparison of the performance in terms of RMSE of different321

methods with a high SNR=40dB and a low SNR=20dB. In this comparison, four cases of limited322

projection angles are considered and they are: 45, 90, 135 and 180 projections evenly distributed in323

[0◦, 45◦], [0◦, 90◦], [0◦, 135◦] and [0◦, 180◦] respectively. There is one projection every 1◦. From these324

two figures, we conclude that the proposed HHBM method remains more robust than the other two325

conventional methods when there are limited projection angles.326
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Figure 15. The performance of different methods for reconstructing Shepp-Logan phantom in terms
of RMSE with different limited projection angles and a high SNR=40dB.
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Figure 16. The performance of different methods for reconstructing Shepp-Logan phantom in terms
of RMSE with different limited projection angles and a low SNR=20dB.



Version December 3, 2018 submitted to Entropy 20 of 24

3.4. Simulation with a different forward model327

In order to avoid the inverse crime, we apply a slightly different forward model. During the328

projection, the projector is applied on the Shepp-Logan phantom of size 10243, with the detector size329

of 2562 for each projection direction.330

In Figure 17, we show the results of the two projection data obtained as well as their difference331

which can be considered as the forward modelling error. We then use the data obtained from 10243
332

phantom to reconstruct an object of size 2563.333

Proj from 2563 phantom Proj from 10243 phantom difference

Figure 17. The projection image in angle 90 degree by using two different forward model: projection
from 2563 phantom (left) and projection from 10243 phantom (middle). The difference between them
is on the right.

In Figure 18, the middle slice of the reconstructed Shepp-Logan phantom by using QR, TV and334

HHBM methods are presented, by using 180 and 36 projections respectively. From the figures, we335

can see that when there are 180 projections, all three methods performs well, and the TV method336

detects better the contours while HHBM method has more noise at the contour areas. When there are337

insufficient projection numbers (36 projections in this simulation), the HHBM method outperforms338

the QR and TV methods for reconstructing the details in the phantom, for example the three small339

circles in the top of the phantom.

QR (180proj) TV (180proj) HHBM (180proj) QR (36proj) TV (36proj) HHBM (36proj)

Figure 18. Reconstructed phantom with different forward model and 180 projections and 36
projections by using QR (left), TV (middle) and HHBM (right) methods.

340

In Table 2, the RMSE of the reconstructed phantom by using the different methods are compared.341

We can conclude that, when the projector model is different than the reconstruction one, all these342

three methods (QR, TV and HHBM) have good performance when there is 180 projections. When343

the projection number decreases, TV and HHBM methods outperforms QR method. Comparing with344
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the TV method, HHBM method is more robust to the number of projections. When the projection345

number is smaller than 60, HHBM method outperforms TV method.

Table 2. The RMSE of reconstructed 2563 Shepp-Logan phantom by using projection obtained from a
10243 Shepp-Logan phantom.

RMSE QR TV HHBM
180 proj 0.0581 0.0540 0.0558
90 proj 0.0655 0.0573 0.0610
60 proj 0.0846 0.0675 0.0690
45 proj 0.1079 0.0830 0.0783
36 proj 0.1326 0.1027 0.0882

346

All the MATLAB codes for the simulations in this paper can be found on github [64].347

4. Discussion348

One advantage of the Bayesian approach is the estimation of the parameters along with349

the estimation of unknown variables of the forward model at each iteration. However, like in350

regularization methods, the hyper-parameters need to be initialized.351

While the parameters in the regularization methods play an important role in the final results and352

they are costly to fix, the hyper-parameters in HHBM can be initialized based on the prior information353

(the sparse structure of z) and the prior model (the Student-t distribution). In this article, we have354

shown that once the hyper-parameters are fixed in a certain appropriate interval, which is not difficult355

to obtain, the corresponding algorithm is robust. In this work, the hyper-parameters are not fixed356

via the classical approach using non-informative prior laws (i.e. considering the Inverse Gamma357

corresponding parameters such that it approaches Jeffreys), [65].358

5. Conclusions359

In this paper, we propose a Bayesian method with a hierarchical structured prior model based on360

multilevel Haar transformation (HHBM) for 3D X-ray CT reconstruction. Simulation results indicate361

that for a limited number of projections or limited projection angles, the proposed method is more362

robust to noise and to regularization parameters than the classical QR and TV methods.363

Indeed, we observe a relatively weak influence of the hyper-parameters in the behavior of the364

corresponding iterative algorithm. The interest of this weak dependency is that it offers a practical365

way to ensure the initialization of the algorithm which typically is not-trivial.366

In this context, as future work, we are investigating the causes of the relative weak influence of367

the hyper-parameters and the theoretical foundation of the corresponding robust interval, extending368

the discussion to the same approach using sparsity enforcing priors expressed as Normal variance369

mixtures, but for other mixing distributions (Gamma, generalized inverse Gaussian), [66].370

Another extension of this work is to consider the Posterior Mean as an estimator. This can be371

done via the Variational Bayesian Approach (VBA) but a practical implementation requires a method372

of accessing the diagonal elements of the large matrix HT H, which is being studied by our group.373
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