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The article presents a novel variational calculus to analyze the stability and the propagation of chaos properties of nonlinear and interacting diffusions. This differential methodology combines gradient flow estimates with backward stochastic interpolations, Lyapunov linearization techniques as well as spectral theory. This framework applies to a large class of stochastic models including non homogeneous diffusions, as well as stochastic processes evolving on differentiable manifolds, such as constraint-type embedded manifolds on Euclidian spaces and manifolds equipped with some Riemannian metric. We derive uniform as well as almost sure exponential contraction inequalities at the level of the nonlinear diffusion flow, yielding what seems to be the first result of this type for this class of models. Uniform propagation of chaos properties w.r.t. the time parameter are also provided. Illustrations are provided in the context of a class of gradient flow diffusions arising in fluid mechanics and granular media literature. The extended versions of these nonlinear Langevin-type diffusions on Riemannian manifolds are also discussed.

Introduction

Description of the models

We denote by }A} 2 :" λ max pAA 1 q 1{2 , resp. }A} F " TrpAA 1 q 1{2 and ρpAq " λ max ppA `A1 q{2q the spectral norm, the Frobenius norm, and the logarithmic norm of some matrix A, where A 1 stands for the transpose of A, and λ max p.q the maximal eigenvalue. With a slight abuse of notation, we denote by I the identity pd ˆdq-matrix, for any d ě 1.

Let b t be some time varying differentiable vector field with Jacobian matrix ∇b t on R d , for some parameter d ě 1. Consider the deterministic flow t P rs, 8rÞ Ñ X s,t pxq starting at X s,s pxq " x associated with the evolution equation B t X s,t pxq " b t pX s,t pxqq ùñ B t ∇X s,t pxq " ∇X s,t pxq ∇b t pX s,t pxqq with ∇X s,s pxq " I

(1.1)

The r.h.s. equation is often called the first order variational equation associated with the flow X s,t pxq along the trajectory X s,t pxq. This equation plays a central role in the sensitivity analysis of nonlinear dynamical systems w.r.t. their initial conditions. For instance, the spectral norm of ∇X s,t pxq can be estimated in terms of the logarithmic norm using the inequalities ´ż t s ρ p´∇b u pX s,u pxqqq du ď log }∇X s,t pxq} 2 ď ż t s ρ p∇b u pX s,u pxqqq du (1.2)

A proof of this assertion can be found in [START_REF] Coppel | Stability and asymptotic behavior of differential equations[END_REF], see also [START_REF] Martin | Bounds for solutions of a class of nonlinear differential equations[END_REF] for extensions to Lipschitz functions on Banach spaces. Whenever ρ p∇b u pxqq ď ´λ for some λ ą 0, the r.h.s. estimate in (1.2) readily implies the exponential stability estimate X s,t pxq ´Xs,t pyq "

ż 1 0
x∇X s,t pǫx `p1 ´ǫqyq, px ´yqy dǫ ùñ }X s,t pxq ´Xs,t pyq} ď e ´λpt´sq }x ´y}

(1.
3)

The linearization technique discussed above is often referred as the Lyapunov first or indirect method to analyze the stability of nonlinear dynamical systems. For a more thorough discussion on this subject we refer to the pioneering work by Lyapunov [START_REF] Lyapunov | The general problem of the stability of motion[END_REF], as well as to chapter 4 in the more recent monograph by Khalil [START_REF] Khalil | Nonlinear Systems[END_REF].

The main objective of this article is to extend these results to nonlinear diffusions and their mean field particle interpretations on Euclidian as well as on differentiable manifolds. The differential analysis of conventional diffusions w.r.t. initial conditions is also one of the stepping stones of Bismut and Malliavin calculus. This framework is mainly designed to study the existence and the properties of smooth probability densities in terms of the differential properties of the diffusion semigroup. For a more thorough discussion on this subject we refer to [START_REF] Carverhill | Flows of Stochastic Dynamical Systems: The Functional Analytic Approach[END_REF][START_REF] Norris | Simplified Malliavin calculus[END_REF], and references therein.

The relevant mathematical apparatus for the description and the variational analysis of stochastic processes on manifolds being technically more sophisticated than conventional differential calculus, this introduction only discusses nonlinear and interacting diffusions on Euclidian spaces. The extended versions of these models on Riemannian manifolds are discussed in some details in section 3.2, as well as in section 4.3.

Let P 2 pR d q be the set of Borel probability measures on R d with finite second absolute moment, equipped with the 2-Wasserstein distance given by W 2 pη, µq " inf Ep}X ´Y } 2 q 1{2

In the above display, the infimum is taken over all pairs of random variables pX, Y q with respective distributions η and µ P P 2 pR d q; and }X ´Y } stands for the Euclidian distance between X and Y on the product space R d .

Also let b t and σ t be differentiable functions from R 2d into R d and R dˆr , for some r ě 1; and let W t be an r-dimensional Brownian motion. For any µ P P 2 pR d q and any time horizon s ě 0 we denote by X µ s,t pxq be the stochastic flow defined for any t P rs, 8r and any starting point x P R d by the McKean-Vlasov diffusion dX µ s,t pxq " b t `φs,t pµq, X µ s,t pxq ˘dt `σt `φs,t pµq, X µ s,t pxq ˘dW t (1.4)

In the above display, φ s,t stands for the evolution semigroup φ s,t pµqpdyq " µP µ s,t pdyq :" ż µpdxq P µ s,t px, dyq with P µ s,t px, dyq :" PpX µ s,t pxq P dyq

We further assume that the mean field drift and diffusion functions are given by b t pη, yq :" ż ηpdxq b t px, yq and σ t pη, yq :" ż ηpdxq σ t px, yq

We shall assume that the nonlinear diffusion flow (1.4) is well defined. For instance, the existence of this flow is ensured as son as b t and σ t are Lipschitz, see for instance [START_REF] Graham | Ito-Skorohod equations and nonlinear diffusions with discrete jumps[END_REF][START_REF] Huang | Nonlinear Fokker-Planck equations for probability measures on path space and path-distribution dependent SDEs[END_REF].

The mean field particle system associated with (1.4) is defined by the stochastic flow ξ s,t pzq " pξ i s,t pzqq 1ďiďN of a system of N interacting diffusions dξ i s,t pzq " b t `mpξ i s,t pzqq, ξ i s,t pzq ˘dt `σt `mpξ i s,t pzqq, ξ i s,t pzq ˘dW i t (1.5) with the empirical measures mpξ i s,t pzqq :"

1 N ÿ 1ďjďN δ ξ j s,t pzq
In the above displayed formulae, ξ s,s pzq " z " pz i q 1ďN P pR d q N stands for the initial configuration and W i t are N independent copies of W t .

Statement of some main results and article organisation

To motivate this study, the variational calculus developed in the article is illustrated with the following example r " d σpx, yq " σ 0 I and bpx, yq " ´∇U pyq ´∇V py ´xq (1.6) for some σ 0 ą 0, some confinement type potential function U (a.k.a. the exterior potential) and some interaction potential function V . This class of nonlinear diffusions and the corresponding particle interpretations were introduced by H. P. McKean in [START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF][START_REF] Mckean | Propagation of chaos for a class of non-linear parabolic equations[END_REF]. The extended versions of these Langevin-type nonlinear diffusions on Riemannian manifolds are discussed in the end of section 3.2 as well as in section 4.3. Nonlinear diffusions (1.4) with constant diffusion and gradient-type drifts (1.6) arise in fluid mechanics, and more particularly in the modeling of granular flows [START_REF] Benedetto | A kinetic equation for granular media[END_REF][START_REF] Benedetto | A non-Maxwellian steady distribution for one-dimensional granular media[END_REF][START_REF] Toscani | One-dimensional kinetic models of granular flows[END_REF][START_REF] Villani | A survey of mathematical topics in the collisional kinetic theory of gases[END_REF]. In this context, φ s,t represents the evolution semigroup of the velocity of a diffusive particule interacting with the distribution of the particles around its location and following some confinement exterior potential. In this interpretation, the mean field particle model (1.5) can be seen as a particle-type representation of the granular flow.

In the last two decades, the analysis of the long time behavior of this particular class of gradient type flow diffusions have been developed in various directions:

The first articles on the long time behavior of these models are the couple of articles by Tamura [START_REF] Tamura | On asymptotic behaviors of the solution of a nonlinear diffusion equation[END_REF][START_REF] Tamura | Free energy and the convergence of distributions of diffusion processes of McKean type[END_REF]. The stability properties of one dimensional models has been started in [START_REF] Benachour | Nonlinear self-stabilizing processes, part I. Existence, invariant probability, propagation of chaos[END_REF][START_REF] Benachour | Nonlinear self-stabilizing processes, part II: Convergence to invariant probability[END_REF] as well as in [START_REF] Benedetto | A kinetic equation for granular media[END_REF], see also [START_REF] Calvez | Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities[END_REF][START_REF] Carrillo | Wasserstein metric and large-time assymptotics of nonlinear diffusion equations[END_REF][START_REF] Toscani | One-dimensional kinetic models of granular flows[END_REF].

Since this period, several sophisticated probabilistic techniques have been developed to analyze the long time behavior of these Langevin-type nonlinear diffusions, including log-Sobolev functional inequalities [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF][START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF], entropy dissipation [START_REF] Carrillo | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF][START_REF] Cordero-Erausquin | Inequalities for generalized entropy and optimal transportation[END_REF], as well as gradient flows in Wasserstein metric Unfortunately, most of the probabilistic techniques discussed above only apply to gradient flow type diffusions of the form (1.6). The variational calculus developed in the present article is not restricted to this class of gradient-type nonlinear models. Nevertheless, because of their importance in practice this introduction illustrates some of our main results in this context.

Firstly, and rather surprisingly, the variational methodology developed in the present article applies directly to gradient flow models of the form (1.6), simplifying considerably both of their stability analysis as well as the convergence analysis of their mean field particle interpretations.

This framework also allows to relax unnecessary technical conditions such as the symmetry of the interaction potential function, or the invariance of the center of mass, currently used in the literature on this subject (see for instance [START_REF] Tamura | On asymptotic behaviors of the solution of a nonlinear diffusion equation[END_REF], as well as section 2 in [START_REF] Carrillo | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF], and section 1 in the more recent article [START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF]). It also allows to derive uniform as well as almost sure exponential stability inequalities at the level of the nonlinear diffusion flow. For instance, when V is an even convex function with bounded Hessian }∇ 2 V } 2 :" sup x }∇ 2 V pxq} 2 ă 8, and when ∇ 2 U ě λ I, for some λ ą 0 we have the almost sure estimates

}X η s,t pxq ´Xµ s,t pyq} ď }∇ 2 V } 2 pt ´sq e ´λpt´sq W 2 pη, µq `e´λpt´sq }x ´y} (1.7)
The above estimate is also met for odd interaction potential, as soon as ∇ 2 U pyq`∇ 2 V py ´xq ě λ I.

In the above display, it is implicitly assumed that the stochastic flows are driven by the same Brownian motion. These almost sure inequalities are direct consequence of the contraction inequality (2.6), the remark (2.15) and the almost sure estimates stated in corollary 3.2.

To the best of our knowledge, the almost sure exponential decays (1.7) are the first result of this type for this class of nonlinear gradient flow diffusions.

Consider a pair of random variables pZ 0 , Z 1 q with distributions pµ 0 , µ 1 q on R d and set Z ǫ :" p1 ´ǫq Z 0 `ǫ Z 1 µ ǫ :" LawpZ ǫ q and X ǫ s,t :" X µǫ s,t pZ ǫ q (1.8)

Under the assumptions on the potential functions discussed above, for any differentiable function f on R d with bounded gradient we have the first order differential formula rφ s,t pµ 1 q ´φs,t pµ 0 qs pf q "

ż 1 0 B ǫ φ s,t pµ ǫ qpf q dǫ (1.9)
with the linear differential operator

B ǫ φ s,t pµ ǫ qpf q :" E `@B ǫ X ǫ s,t , ∇f pX ǫ s,t q D˘s .t. |B ǫ φ s,t pµ ǫ qpf q| ď e ´λpt´sq }∇f }
For a more precise statement we refer to theorem 2.2. Almost sure and uniform estimates of the first order differential maps ǫ Þ Ñ B ǫ X ǫ s,t are also provided in theorem 2.3. Section 4.1 also presents a differential calculus to estimate the gradient ∇ξ s,t pzq of the stochastic flow ξ s,t pzq of the interacting particle model (1.5). Under the assumptions on the potential functions discussed above, we shall prove the following uniform spectral norm estimate }∇ξ s,t pzq} 2 ď e ´λpt´sq

The above result is a direct consequence of theorem 4.1. The above estimate ensures that the Nparticle model converges exponentially fast to its invariant measure with some exponential decay that doesn't depends on the number of particles. The latter property can also be checked using more sophisticated Logarithmic Sobolev inequalities [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF]. To the best of our knowledge, the almost sure exponential decays stated above are the first result of this type for this class of interacting Langevin-type diffusions.

Section 4.2 also provides a natural differential calculus to derive quantitative and uniform propagation of chaos estimates for nonlinear diffusions of the form (1.5). Applying these results to interacting Langevin-type diffusions, without further work we recover the uniform estimates stated in theorem 1.2 in [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF].

We emphasize that the differential calculus presented in this article allows to consider nonlinear diffusions evolving in differential manifolds. This should not come as a surprise since our framework allows to enter the variations of the diffusion matrices associated with these stochastic models which encapsulates the Riemannian structure of the manifold.

We illustrate these comments in the end of section 2.2 with a rather detailed discussion of an elementary nonlinear geometric-type diffusion. The manifold version of (1.9) is also provided in theorem 3.14.

We also underline that the variational calculus on differentiable manifolds developed in section 3.2 provides another view and additional results for the diffusions in R d endowed, when possible, with the Riemannian metric under which these diffusions are Brownian motion with drift. In this context, different types of synchronous coupling lead to gradient flow estimates where gradients of the diffusion functions are replaced by Ricci curvatures.

Quantitative propagation of chaos estimates of mean field particle systems on Riemannian manifolds are provided in section 4.3. Special attention is paid to derive uniform estimates w.r.t. the time horizon.

Nonlinear diffusion semigroups

Some gradient flow estimates

This section presents some basic properties of the first variational equation associated with the nonlinear diffusion (1.4). Let σ k,t be the k-th column vector of σ t , and let ∇ u b t px, yq and ∇ u σ k,t px, yq be the gradient of the functions b t px, yq and σ k,t px, yq w.r.t. the coordinate u P tx, yu. We also let X i,µ s,t pxq be the i-th coordinate of the column vector X µ s,t pxq. The Jacobian ∇X µ s,t pxq of the diffusion flow X µ s,t pxq is given by the gradient pd ˆdq-matrix ∇X µ s,t pxq :" ´∇X Whenever λ A ă 0 the above estimates ensure that the transition semigroup P µ s,t is exponentially stable, that is we have that

W 2 `η0 P µ s,t , η 1 P µ s,t ˘ď c exp r´λ A pt ´sqs W 2 pη 0 , η 1 q (2.7)
These contraction inequalities quantify the stability of the stochastic flow X µ s,t pxq w.r.t. the initial state x, but they don't give any information of the stability properties of the nonlinear semigroup φ s,t pµq w.r.t. the initial measure µ.

A first order differential calculus

This section presents a natural first order differential calculus to analyze the stability properties of the nonlinear semigroup φ s,t pµq. Consider the matrices

B t pz 1 , z 2 q :" » - ∇ y b t pz 2 , z 1 q ∇ x b t pz 1 , z 2 q ∇ x b t pz 2 , z 1 q ∇ y b t pz 1 , z 2 q fi fl D t :" ÿ 1ďkďr » - ∇ x σ t,k ∇ x σ 1 t,k ∇ x σ t,k ∇ y σ 1 t,k ∇ y σ t,k ∇ x σ 1 t,k ∇ y σ t,k ∇ y σ 1 t,k fi fl
(2.8) In this notation, our second regularity condition takes the following form: pH C q : There exists some λ C P R such that for any x, y P R d and t ě 0 we have

C t px, yq :" 1 2 " B t px, yq `Bt px, yq 1 ‰ `Dt px, yq ď ´λC I (2.9)
Let Z ǫ be the collection of random variables with distribution µ ǫ defined in (1.8). We also consider a couple of independent stochastic flows X ǫ s,t :" X µǫ s,t pZ ǫ q and Y ǫ s,t :" Y µǫ s,t pZ ǫ q (2.10)

driven by independent Brownian motions, say W t " pW k t q 1ďkďd and W t " pW k t q 1ďkďd , and starting from a couple of independent random variables Z ǫ and Z ǫ with the same law.

In the further development of this section, we denote by E X p.q the expectation operator w.r.t. the Brownian motion W t " pW k t q 1ďkďd and the random variable Z ǫ . In this notation, we have

dY ǫ s,t " E X " b t `Xǫ s,t , Y ǫ s,t ˘‰ dt `EX " σ t `Xǫ s,t , Y ǫ s,t ˘‰ dW t This implies that d " B ǫ Y ǫ s,t ‰ " E X " ∇ x b t `Xǫ s,t , Y ǫ s,t ˘1 B ǫ X ǫ s,t `∇y b t `Xǫ s,t , Y ǫ s,t ˘1 B ǫ Y ǫ s,t ı dt `ÿ 1ďkďr E X " ∇ x σ t,k `Xǫ s,t , Y ǫ s,t ˘1 B ǫ X ǫ s,t `∇y σ t,k `Xǫ s,t , Y ǫ s,t ˘1 B ǫ Y ǫ s,t ı dW k t (2.11) with the initial condition B ǫ Y ǫ s,s " B ǫ Z ǫ " Z 1 ´Z0 A simple calculation yields the following estimate B t E " › › B ǫ Y ǫ s,t › › 2 ı ď E ˆ"B ǫ X ǫ s,t , B ǫ Y ǫ s,t ‰ 1 C t `Xǫ s,t , Y ǫ s,t ˘" B ǫ X ǫ s,t B ǫ Y ǫ s,t ˙( 2.
12)

The inequality in the above display can be turned into an equality when D t " 0. Also note that

pH C q ùñ E `}Y 0 s,t ´Y 1 s,t } 2 ˘ď ż 1 0 E ´› › B ǫ Y ǫ s,t › › 2 ¯dǫ ď e ´2λ C pt´sq E `}Z 1 ´Z0 } 2 Let
C 1 b pR d q be the set of differentiable functions on R d with bounded derivative. A direct consequence of the fundamental theorem of calculus yields the following theorem.

Theorem 2.2. For any s ď t and any f P C 1 b pR d q and µ 0 , µ 1 P P 2 pR d q we have the first order differential formula (1.9). In addition, we have the exponential contraction inequality pH C q ùñ W 2 pφ s,t pµ 0 q, φ s,t pµ 1 qq ď e ´λC pt´sq W 2 pµ 0 , µ 1 q (2.13)

When λ C ą 0, the above theorem provides an alternative and rather elementary proof of the exponential asymptotic stability of time varying McKean-Vlasov diffusions with non necessarily homogenous diffusion functions. To the best of our knowledge this stability property is the first result of this type for this general class of nonlinear diffusions.

For the Langevin-type diffusion discussed in (1.6) we have D t " 0 and the matrix C t reduces to

´Ct pz 1 , z 2 q " » - ∇ 2 U pz 1 q 0 0 ∇ 2 U pz 2 q fi fl `» - - - - ∇ 2 V pz 1 ´z2 q ´"∇ 2 V pz 2 ´z1 q `∇2 V pz 1 ´z2 q ‰ 2 ´"∇ 2 V pz 2 ´z1 q `∇2 V pz 1 ´z2 q ‰ 2 ∇ 2 V pz 2 ´z1 q fi ffi ffi ffi fl
When V is odd we have

pH C q ðñ ∇ 2 U pz 1 q `∇2 V pz 1 ´z2 q ě λ C I ðñ pH A q (2.14)
In the reverse angle, if V is even and convex then we have

pH C q ðñ ∇ 2 U ě λ C I ùñ pH A q (2.15)
As expected, explicit formulae are available for linear and Gaussian models. For instance, when b t px, yq " A 1 x `A2 y and σ t px, yq " R 1{2 with A 1 , A 2 P R dˆd and R ě 0 the diffusion flow X µ s,t pxq P R d is linear w.r.t. µ and given for any x P R d by the formula

X µ s,t pxq " e A 2 pt´sq px ´µpeqq `erA 1 `A2 spt´sq µpeq `ż t s e A 2 pt´uq R 1{2 dW u
In the above display, epxq " x stands for the identity function on R d . In this context, the process X ǫ s,t defined in (2.10) is also given by the formula

X ǫ s,t " e A 2 pt´sq pZ ǫ ´µǫ peqq `erA 1 `A2 spt´sq µ ǫ peq `ż t s e A 2 pt´uq R 1{2 dW u ùñ B ǫ X ǫ s,t " e A 2 pt´sq ppZ 1 ´Z0 q ´EpZ 1 ´Z0 qq `erA 1 `A2 spt´sq EpZ 1 ´Z0 q
This yields the rather crude estimate

E `}B ǫ X ǫ s,t } 2 ˘ď " }e rA 1 `A2 spt´sq } 2 2 `}e A 2 pt´sq } 2 2 ı Ep}Z 1 ´Z0 } 2 q
Up to some constant, this shows that the r.h.s. Wasserstein contraction estimate in (2.13) is met with ´λC " ρpA 1 `A2 q_ρpA 2 q. Applying Coppel's inequality (cf. Proposition 3 in [START_REF] Coppel | Stability and asymptotic behavior of differential equations[END_REF]) we can also choose ´λC " rςpA 1 `A2 q _ ςpA 2 qs p1 ´δq for any 0 ă δ ă 1, where ςpAq :" max i tRerλ i pAqsu ď ρpAq stands for the spectral abscissa of a square matrix A.

It may happen the stochastic flow (1.4) remains in some domain S Ă R d . The simplest model we have in head is the geometric diffusion on S " r0, 8r associated with the parameters b t px, yq " ra 1 ´a2 xs y and σ t px, yq " σ 0 y with a 1 P R and a 2 , σ 0 ą 0 In this situation, the diffusion flow X µ s,t pxq P S is nonlinear w.r.t. µ and given for any x P S by X µ s,t pxq " ψ t´s pµq E s,t pW q x with E s,t pW q :" exp

" σ 0 pW t ´Ws q ´σ2 0 2 pt ´sq  (2.16)
with the function ψ t defined by ψ t pµq " 1 e ´a1 t `a2 µpeq θ a 1 ptq with θ a 1 ptq :" a ´1 1 p1 ´e´a 1 t q

In the above display, we have used the convention θ 0 ptq " t. In this context, the process X ǫ s,t defined in (2.10) is also given by the formula X ǫ s,t " ψ t´s pµ ǫ q E s,t pW q Z ǫ ùñ B ǫ X ǫ s,t " ψ t´s pµ ǫ q E s,t pW qq rpZ 1 ´Z0 q ´a2 θ a 1 ptq ψ t´s pµ ǫ q Z ǫ EpZ 1 ´Z0 qs Assume that a 1 ă 0 is chosen so that |a 1 | ą σ 2 0 {2. In this situation, for any x, y P S we have

A t px, yq " 2ra 1 ´a2 xs `σ2 0 ď 2a 1 `σ2 0 ùñ pH A q with λ A " |a 1 | ´σ2 0 {2 ă 0
as well as

ψ t pµq " |a 1 | e ´|a 1 |t |a 1 | `a2 µpeq `1 ´e´|a 1 |t ˘ď e ´|a 1 |t
This yields the estimate

E " rB ǫ X ǫ s,t s 2 ‰ ď " 1 `|a ´1 1 a 2 | e ´|a 1 |pt´sq ´EpZ 2 0 q 1{2 _ EpZ 2 1 q 1{2 ¯ı2 e ´p2|a 1 |´σ 2 0 qpt´sq EppZ 1 ´Z0 q 2 q
Up to some constant, this shows that the r.h.s. Wasserstein contraction estimate in (2.13) is met with λ C " |a 1 | ´σ2 0 {2. The analysis of nonlinear diffusions on more general differentiable manifolds is based on more sophisticated differential techniques. The extension of the variational calculus developed above to this class of stochastic processes on manifolds is provided in section 3.2.

We end this section with some illustrations of our results on time homogeneous models pb t , σ t q " pb, σq satisfying condition pH C q. We set φ t :" φ 0,t , and P µ t :" P µ 0,t . By theorem 2.2, there exists an unique invariant measure π " φ t pπq and W 2 pφ t pµq, πq ď e ´λC t W 2 pµ, πq For the nonlinear Langevin diffusion discussed in (1.6) condition pH C q is met when (2.14) or (2.15) are satisfied. In this context, X π t :" X π 0,t is a conventional Langevin diffusion given by the time homogeneous stochastic differential equation dX π t " ´∇V π pX π t q dt `σ0 dW t with 2 ´1V π pyq " U pyq `ż πpdxq V py ´xq

In this situation, the unique invariant measure of X π t is given by

̟pπqpdxq :" 1 v π exp " ´1 σ 0 V π pxq  dx with v π :" ż exp " ´1 σ 0 V π pxq  dx
In the above display, dx stands for the Lebesgue measure on R d . In this case the measure π " φ t pπq " πP π t is the unique solution of the equation π " ̟pπq. We underline that the uniqueness of the invariant measure is not ensured for double-well confinement potential functions and too small noise. Further details on this subject including a description of the invariant measures for small noise can be found in the series of articles [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF][START_REF] Herrmann | Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit[END_REF][START_REF] Herrmann | Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit[END_REF].

Whenever pH C q is met, we also have the uniform moment estimates

φ t pµqp}e} 2 q 1{2 ď πp}e} 2 q 1{2 `W2 pµ, πq (2.17) 
In the same vein, when when pH A q and pH C q are met we have

E " }X µ t pxq} 2 ‰ 1{2 ď πp}e} 2 q 1{2 `W2 pδ x P µ t , πq ď c " πp}e} 2 q _ µp}e} 2 q ‰ 1{2 r1 `}x}s
for some finite constant c. The last assertion comes from the fact that W 2 pδ x P µ t , πq ď W 2 pδ x P µ t , φ t pµqq `W2 pφ t pµq, πq ď c e ´pλ A ^λC qt rW 2 pδ x , µq `W2 pµ, πqs

Some almost sure estimates

We fix the parameters ǫ and some given time horizon s ě 0, and we set y t :" B ǫ Y ǫ s,t , for any t P rs, 8r, with the process Y ǫ s,t defined in (2.11). Also consider the processes

dz t :" z 0,t dt `ÿ 1ďkďr z k,t dW k t and dZ t :" Z 0,t dt `ÿ 1ďkďr Z k,t dW k t
with the collection of processes

z 0,t :" E X " ∇ x b t `Xǫ s,t , Y ǫ s,t ˘1 B ǫ X ǫ s,t ı z k,t :" E X " ∇ x σ t,k `Xǫ s,t , Y ǫ s,t ˘1 B ǫ X ǫ s,t ı Z 0,t :" E X " ∇ y b t `Xǫ s,t , Y ǫ s,t ˘1ı and Z k,t :" E X " ∇ y σ t,k `Xǫ s,t , Y ǫ s,t ˘1ı 
In this notation, the evolution equation ( 2 In this notation, we readily check that

y t " E s,t y s `ż t s E u,t ˜dz u ´ÿ 1ďkďr Z k,u z k,u du
Whenever condition pH A q is met, for any given u ě 0 and any t P ru, 8r we have

d " E 1 u,t E u,t ‰ " E 1 u,t « Z 0,t `Z1 0,t `ÿ 1ďkďr Z 1 k,t Z k,t ff E u,t dt `ÿ 1ďkďr E 1 u,t `Zk,t `Z1 k,t ˘Eu,t dW k t ď ´2λ A E 1 u,t E u,t dt `ÿ 1ďkďr E 1 u,t `Zk,t `Z1 k,t ˘Eu,t dW k t
This shows that pH A q and ∇ y σ k,t " 0 ùñ E 1 u,t E u,t ď e ´2λ A pt´uq I In addition, when ∇ x b t is uniformly bounded, ∇ x σ k,t " 0 and pH C q is met, using (2.12) we have almost sure estimate

}B ǫ Y ǫ s,t } ď e ´λA pt´sq }Z 1 ´Z0 } `}∇ x b t } 2 ż t s e ´λA pt´uq E `}B ǫ X ǫ s,u } ˘du ď e ´λA pt´sq }Z 1 ´Z0 } `}∇ x b t } 2 λ A ´λC ´e´λ C pt´sq ´e´λ A pt´sq ¯E `}Z 1 ´Z0 } 2 ˘1{2
with the uniform spectral norm

}∇ x b t } 2 :" sup x,y }∇ x b t px, yq} 2
We summarize the above discussion with the following theorem.

Theorem 2.3. Assume that ∇ x b t is uniformly bounded, ∇ x σ k,t " 0 " ∇ y σ k,t and conditions pH A q and pH C q are met. In this situation, we have the almost sure estimate

}B ǫ X ǫ s,t } ď e ´λA pt´sq }Z 1 ´Z0 } `pt ´sq e ´λpt´sq }∇ x b t } 2 E `}Z 1 ´Z0 } 2 ˘1{2
with the process X ǫ s,t defined in (1.8) and the parameter λ :" λ A ^λC .

3 Some extensions

A backward variational formula

The stochastic transition semigroup associated with the flow X µ s,t pxq is defined for any mesurable function f on R d by the formula where p d W u stands for the backward integration notation, so that the r.h.s. term in the above formula is a square integrable backward martingale.

P µ s,
The proof of the above formula follows the elegant stochastic backward variational analysis developed in [START_REF] Da Prato | Some results of backward Ito formula[END_REF]. A sketched proof is provided in the appendix, on page 26.

We further assume that ∇ x σ k,t px, yq " 0. In this situation, using the backward formula (3. 

where for y P M b S t pη, yq "

ż M ηpdxqb S t px, yq, b S t px, yq P T y M,
W t is a R m -valued Brownian motion and σpyq is a linear map R m Ñ T y M . For simplicity σ will not depend on time, but the time-dependent σ can also be treated, we refer to [START_REF] Arnaudon | Horizontal diffusions in C 1 path space[END_REF] for this extension, and also for the details of the constructions below.

The only situation we will be interested in is when for all y P M the map

pσσ ˚qpyq : T ẙ M Ñ T y M
is a linear diffeomorphism. In this situation a scalar product can be defined in T ẙ M and then in T y M , leading to a Riemannian structure on M . The scalar product in T ẙ M is

g ˚pyqpα, βq " xσ ˚pyqpαq, σ ˚pyqpβqy R m , (3.4) 
and the scalar product in T y M is gpyqpu, vq " g ˚pyq `pσσ ˚q´1 pyqpuq, pσσ ˚q´1 pyqpvq ˘.

(3.5) Associated to the metric g is the Levi-Civita connection ∇, which will be used to define parallel transport, Itô equations, Itô covariant differentials. Recall that the parallel transport along a continuous M -valued semimartingale X is the linear map {{ t : T X 0 M Ñ T Xt M which satisfies {{ 0 " Id and the Stratonovich SDE ∇ ˝dXt {{ t " 0. It is the natural extension to parallel transport along smooth paths, and it is an isometry. Parallel translation allows to anti-develop X t in T X 0 M with the Stratonovich integral

A pXq t " ż t 0 {{ ´1 s ˝dX s
The process ApXq takes its values in the vector space, it has an Itô differential dApXq t , which allows to define the Itô differential of X t d ∇ X t :" {{ t dA pXq t .

This Itô differential is formally a vector which can be expressed in local coordinates as So we can consider that the starting point of our study is SDE (3.9) in a Riemannian manifold pM, gq.

d ∇ X t " ˆdX i t `1 2 Γ i j,k pX t q dăX j , X k ą t ˙B Bx i pX t q
Let us adapt the regularity conditions pH A q and pH C q: Define A g t px, yq :" ∇ y b t px, yq `∇y b t px, yq 1 , where ∇ y b t px, yq is the covariant derivative with respect to the variable y, it is a linear map from T y M into itself, and ∇ y b t px, yq 1 is its adjoint with respect to the Riemannian metric.

pH g A q : There exists some λ g A P R such that for any x, y P M and t ě 0 we have

A g t px, yq ´Ricpyq ď ´2λ g A gpyq (3.11)
where Ric is the Ricci curvature tensor of M . Let B g t be as in (2.8) with gradient replaced by covariant derivative. Define C g t px, yq :" 1 2 " B g t px, yq `Bg t px, yq 1 ‰ . pH g C q : There exists some λ g C P R such that for any x, y P M and t ě 0 we have

C g t px, yq ´1 2 Ric M ˆM px, yq ď ´λg C g M ˆM px, yq (3.12) 
where g M ˆM px, yq, Ric M ˆM px, yq are the product metric and Ricci curvature on M ˆM .

Theorem 3.3. We have the exponential expansion or contraction inequalities pH g A q ùñ W 2 `η0 P µ s,t , η 1 P µ s,t ˘ď c e ´λg A pt´sq W 2 pη 0 , η 1 q (3.13)

for some finite constant c. In addition, we have pH g C q ùñ W 2 pφ s,t pµ 0 q, φ s,t pµ 1 qq ď e ´λg C pt´sq W 2 pµ 0 , µ 1 q (3.14)

Remark: The results of Theorem 3.3 still hold when σ " σ t and g " g t depend on time, one just has to replace in pH g A q Ric by Ric ´9 g and in pH g C q Ric MˆM by Ric MˆM ´9 g M ˆM .

Proof. The proof of the first estimate is similar to the proof of Theorem 4.1 in [START_REF] Arnaudon | Horizontal diffusions in C 1 path space[END_REF] (where time dependent metrics are considered), so we will omit it. The proof of the second one is a combination of this proof and to the one of Theorem 2.2 in the present article. Let us go into the details. Let Z 0 , Z 1 two random variables with values in M , and such that pZ 0 , Z 1 q minimizes Erd 2 pZ 0 , Z 1 qs under the condition that Z 0 has law µ 0 and Z 1 has law µ 1 . For all ω, let ǫ Þ Ñ Z ǫ pωq be a geodesic between Z 0 pωq and Z 1 pωq.

As in the proof of Theorem 2.2, let Y µ 0 s,s pxq " x and t P rs, 8rÞ Ñ Y µ 0 s,t pxq solve the equation

dY µ 0 s,t pxq " b t pφ s,t pµ 0 q, Y µ 0 s,t pxqq dt `σpY µ 0 s,t pxqq d Wt
where Wt is a R m valued Brownian motion independent of W t . Let p Zǫ q ǫPr0,1s be independent of pZ ǫ q ǫPr0,1s with the same law, Y ǫ s,s " Zǫ and Y ǫ s,t the solution to the Itô SDE

dY ǫ s,t " E X " b t pX ǫ s,t , Y ǫ s,t q ‰ dt `{{ 0,ǫ s,t `σpY 0 s,t q d Wt ˘, (3.15) 
where ǫ Þ Ñ {{ 0,ǫ s,t pωq is the parallel transport along the ǫ Þ Ñ Y ǫ s,t pωq. Notice that Y 0 s,t " Y µ 0 s,t p Z0 q. The equation (3.15) is not an SDE on the manifold M , it is an SDE on C 1 M -valued paths. Existence of solutions have been established in [START_REF] Arnaudon | Horizontal diffusions in C 1 path space[END_REF]. The processes t Þ Ñ Y ǫ s,t are obtained one from the others by infinitesimal synchronious coupling, and it is the only construction where a.s. the paths ǫ Þ Ñ Y ǫ s,t pωq has finite variation. Moreover, the derivatives of theses paths satisfy

DB ǫ Y ǫ s,t " E X " ∇ x b t pX ǫ s,t , Y ǫ s,t qB ǫ X ǫ s,t ‰ dt `EX " ∇ y b t pX ǫ s,t , Y ǫ s,t q ‰ B ǫ Y ǫ s,t dt ´1 2 Ric 7 pB ǫ Y ǫ s,t q dt (3.16)
where Ric 7 puq is the vector such that xRic 7 puq, vy " Ricpu, vq. The advantage of this construction is that the above covariant derivative has finite variation, and this implies

d}B ǫ Y ǫ s,t } 2 " 2 xB ǫ Y ǫ s,t , DB ǫ Y ǫ s,t y.
Then the proof is similar to the one of Theorem 2.2:

B t E " }B ǫ Y ǫ s,t } 2 ‰ " E "BˆB ǫ X ǫ s,t B ǫ Y ǫ s,t ˙, B t pX ǫ s,t , Y ǫ s,t q ˆBǫ X ǫ s,t B ǫ Y ǫ s,t ˙F ´E " RicpB ǫ Y ǫ s,t , B ǫ Y ǫ s,t q ‰ " E "BˆB ǫ X ǫ s,t B ǫ Y ǫ s,t ˙, B t pX ǫ s,t , Y ǫ s,t q ˆBǫ X ǫ s,t B ǫ Y ǫ s,t ˙F ´1 2 E " Ric M ˆM ˆˆB ǫ X ǫ s,t B ǫ Y ǫ s,t ˙, ˆBǫ X ǫ s,t B ǫ Y ǫ s,t ˙˙ ď ´λg C E « › › › › ˆBǫ X ǫ s,t B ǫ Y ǫ s,t ˙› › › › 2 ff " ´2λ g C E " }B ǫ Y ǫ s,t } 2 ‰ .
This implies that

E " }B ǫ Y ǫ s,t } 2 ‰ ď E " }B ǫ | ǫ"0 Z ǫ } 2 ı e ´2λ g C pt´sq " e ´2λ g C pt´sq W 2 2 pµ 0 , µ 1 q.
On the other hand, we have

W 2 2 pφ s,t pµ 0 q, φ s,t pµ 1 qq ď E « ˆż 1 0 }B ǫ Y ǫ s,t } dǫ ˙2ff ď ż 1 0 E " }B ǫ Y ǫ s,t } 2 ‰ dǫ ď e ´2λ g C pt´sq W 2 2 pµ 0 , µ 1 q
This ends the proof of the theorem.

An important example of nonlinear diffusions in manifolds is again given by Langevin diffusions, defined as in (3.9), with now b t px, yq " ´∇U pyq ´∇pF ˝ρx qpyq (3.17

)
where U is a potential function, ρ is the Riemannian distance associated to the metric g, ρ x is the distance to x and F : R `Ñ R is a C 2 function. A sufficient condition b t px, yq defined by (3.17) to be well defined and smooth is that the derivative of F is nul at the origin and the support of F is included in r0, ıpM qq, where ıpM q denotes the injectivity radius of M . But smoothness of b t px, yq is not a necessary condition for defining nonlinear diffusions. We find that for u, v P T y M , ∇ y bpu, vq " ´∇2 U pu, vq ´∇2 pF ˝ρx qpu, vq. (3.18) In this context, condition pH g A q reduces to

∇ 2 U pyq `∇2 pF ˝ρx qpyq `1 2 Ricpyq ě λ g A gpyq. (3.19)
If for instance M is simply connected with nonpositive curvature (which implies that the distance function ρ is convex), and F is nondecreasing, a sufficient condition is

∇ 2 U pyq `1 2 Ricpyq ě λ g A gpyq. (3.20)
The computation of B t reveals that it is symmetric, and that for pu, vq P T x M ˆTy M , B t px, yqppu, vq, pu, vqq " ´∇2 U pxqpu, uq ´∇2 U pyqpv, vq ´∇2 pF ˝ρqpx, yqppu, vq, pu, vqq, (3.21) In this context condition pH g C q reduces to

∇ 2 U '2 px, yq `∇2 pF ˝ρqpx, yq `1 2 Ric M ˆM px, yq ě λ g C g M ˆM px, yq (3.22)
where U '2 px, yq " U pxq `U pyq. Here again, when M is simply connected with nonpositive curvature, F is convex and nondecreasing, the above condition is met as soon as

∇ 2 U pyq `1 2 Ricpyq ě λ g C gpyq. (3.23)
4 Mean field interacting diffusions

Stability properties

The interacting diffusion flow ξ j s,t pzq " pξ j,k s,t pzqq 1ďkďd P R d presented in (1.5) can be rewritten as dξ j s,t pzq " F j t pξ s,t pzqq dt `ÿ 1ďαďr G j t,α pξ s,t pzqq dW j,α t with the drift and the diffusion functions defined for any z " pz 1 , . . . , z N q P pR d q N with z i " pz l i q 1ďlďd P R d by the formulae

F j,k t pzq " 1 N ÿ 1ďnďN b k t pz n , z j q and G j,k t,α pzq " 1 N ÿ 1ďnďN σ k t,α pz n , z j q
For any differentiable function H : z P pR d q N Þ Ñ Hpzq P pR d q N and any 1 ď i, j ď N and 1 ď l, k ď d we consider the gradient blocks

r∇Hpzqs i,j " ∇ z i H j pzq with " ∇ z i H j pzq ‰ l,k " B z l i H j,k pzq
In this notation, for any i " j we have "

∇ z i F j t pzq ı l,k " 1 N B z l i b k t pz i , z j q ùñ r∇F t pzqs i,j " 1 N ∇ x b t pz i , z j q
and the diagonal term

r∇F t pzqs i,i " 1 N ∇ x b t pz i , z i q `∇y b t pmpzq, z i q
Using the composition rule ∇ rH 1 ˝H2 s pzq " ∇H 2 pzq p∇H 1 q pH 2 pzqq (4.1)

we check that d r∇ξ s,t pzqs i,j " r∇ξ s,t pzq∇F t pξ s,t pzqqs i,j dt `ÿ 1ďαďd r∇ξ s,t pzq∇G t,α pξ s,t pzqqs i,j dW j,α t (4.2)

pH A q : There exists some λ A P R such that for any z P pR d q N and t ě 0 we have

A t pzq " ∇F t pzq `∇F t pzq 1 `ÿ 1ďαďr ∇G t,α pzq∇G t,α pzq 1 ď ´2λ A I (4.3)
This spectral condition produces several gradient estimates. For instance, arguing as in (2.6) we have the following theorem. Theorem 4.1. Assume condition pH A q is satisfied. In this situation we have the uniform exponential decay estimates

E " }∇ξ s,t pzq} 2 2 ‰ 1{2 ď E " }∇ξ s,t pzq} 2 F ‰ 1{2 ď ? dN e ´λA pt´sq (4.4)
In addition, when ∇G t,α pzq " 0 we have the uniform almost sure exponential decay estimate }∇ξ s,t pzq} 2 ď e ´λA pt´sq and }ξ s,t pzq ´ξs,t pzq} ď e ´λA pt´sq }z ´z} (4.5)

The proof of the above theorem is provided in the appendix, on page 28.

For the nonlinear Langevin diffusion discussed in (1.6) we have ∇G t,α pzq " 0 and

r∇F t pzqs i,j " 1 N ∇ 2 V pz j ´zi q r∇F t pzqs i,i " ´∇2 U pz i q `1 N ∇ 2 V p0q ´1 N ÿ 1ďnďN ∇ 2 V pz i ´zn q
In this situation we have

2 ´1A t pzq " ´Diag `∇2 U pz 1 q, . . . , ∇ 2 U pz N q ˘´1 N E t pzq
with the matrix E t pzq with block entries

rE t pzqs i,j " ´1 2 " ∇ 2 V pz j ´zi q `∇2 V pz i ´zj q ‰ and rE t pzqs i,i " ÿ 1ďn "iďN ∇ 2 V pz i ´zn q
When V is odd we have

∇ 2 U pyq `ˆ1 ´1 N ˙∇2 V py ´xq ě λ A I ùñ pH A q
When V is even and convex we have E t pzq ě 0 and therefore

∇ 2 U pyq ě λ A I ùñ pH A q
In this situation, we also have

dξ i t " ´1 N ÿ 1ďjďN " ∇V pξ i t ´ξj t q `∇U pξ i t q ı dt `dW i t with 1 ď i ď N (4.6)
Last but not least, whenever ∇V p0q " 0 we have

Vpzq :" 1 N ÿ 1ďiăjďN V pz i ´zj q `V pz j ´zi q 2 `ÿ 1ďiďN U pz i q ùñ ∇ z i Vpzq " 1 N ÿ 1ďjďN
∇V pz i ´zj q `∇U pz i q

Note that ∇V p0q " 0 holds when V is even. In this situation, the diffusion ξ t reduces to a conventional Langevin diffusion dξ t " ´∇Vpξ t q dt `dW t with W t " pW 1 t , . . . , W N t q 1

In this context, the stationary measure of the particle model ξ t is given by the Gibbs measure νpdzq 9 exp r´2Vpzqs dz

Propagation of chaos properties

For any differentiable function gpx, yq from R 2d into R d we let ∇ u gpx, yq be the gradient matrices w.r.t. the coordinate u P tx, yu, and we set ∇ x{y g :" ∇ x g `∇y g

We extend matrix-valued functions G : z P R k Þ Ñ Gpzq P R dˆd to the product space R 2k by setting Grz; zs :"

ż 1 0
Gpz `ǫpz ´zqq dǫ ùñ Grz; zs " Gpzq

We also consider the mapping δ : 

R d Ñ R d ˆRd , x Þ Ñ px,

Ċonsider

the following regularity condition: pH C q : There exists some λ C P R such that for any z, z P R 2d and t ě 0 we have

C t pz, zq :" 1 2 " B t pz, zq `Bt pz, zq 1 ‰ `Dt pz, zq ď ´λC I (4.7)
Let ζ 0 " pζ i 0 q 1ďiďN be N independent copies of a random variable with distribution µ on R d . Let ξ t :" ξ 0,t pζ 0 q and consider the diffusion processes ζ t " pζ i t q 1ďiďN defined as ξ t by replacing the occupation measures mpξ t q by the distributions µ t " φ t pµq :" φ 0,t pµq; that is, for any 1 ď i ď N we have dζ i t " b t pµ t , ζ i t q dt `σt pµ t , ζ i t q dW i t Theorem 4.2. Assume condition pH C q is satisfied. In this situation, for any ǫ ą 0 and any distribution µ on R d we have Proof. We set S t :" E `}ξ 1 t ´ζ1 t } 2 ˘. Using the decomposition

E `}ξ 1 t ´ζ1 t } 2 ˘ď 1 N ż t 0 e ´2pλ C ´ǫqpt´sq
dpξ 1 t ´ζ1 t q " " b t pmpξ t q, ξ 1 t q ´bt pµ t , ζ 1 t q ‰ dt `"σ t pmpξ t q, ξ 1 t q ´σt pµ t , ζ 1 t q ‰ dW 1 t we check that B t S t " 2 E `xξ 1 t ´ζ1 t , b t pmpξ t q, ξ 1 t q ´bt pµ t , ζ 1 t qy ˘`Σ t `Γt `2 ÿ 1ďkďr E `@σ t,k pmpξ t q, ξ 1 t q ´σt,k pmpζ t q, ζ 1 t q, σ t,k pmpζ t q, ζ 1 t q ´σt,k pµ t , ζ 1 t q
Dw ith Σ t and Γ t defined by

Σ t :" ÿ 1ďkďr E `}σ t,k pmpξ t q, ξ 1 t q ´σt,k pmpζ t q, ζ 1 t q} 2 Γt :" ÿ r E `}σ t,k pmpζ t q, ζ 1 t q ´σt,k pµ t , ζ 1 t q} 2

Ȃpplying

Cauchy-Schwartz inequality we find that

2 ´1B t S t ď I t `Σt `Jt `Γt with I t :" E `xξ 1 t ´ζ1 t , b t pmpξ t q, ξ 1 t q ´bt pmpζ t q, ζ 1 t qy Jt :" E `xξ 1 t ´ζ1 t , b t pmpζ t q, ζ 1 t q ´bt pµ t , ζ 1 t qy
To estimate the term Σ t we observe that 

E `}σ t,k pmpξ t q, ξ 1 t q ´σt,k pmpζ t q, ζ 1 t q} 2 " 1 N 2 ÿ 1ďi,jďN E ´Aσ t,k pξ i t , ξ 1 t q ´σt,k pζ i t , ζ 1 t q, σ t,k pξ j t , ξ 1 t q ´σt,k pζ j t , ζ 1 t q Eď 1 N 2 ÿ 1ďi,jďN E ´}σ t,k pξ i t , ξ 1 t q ´σt,k pζ i t , ζ 1 t q}}σ t,k pξ j t , ξ 1 t q ´σt,k pζ j t , ζ 1 t q} ď 1 N E `}σ t,k pξ 1 t , ξ 1 t q ´σt,k pζ 1 t , ζ 1 t q} 2 ˘`ˆ1 ´1 N ˙E `}σ t,k pξ 1 t , ξ 2 t q ´σt,k pζ 1 t , ζ
2 ÿ 1ďkďr E `}σ t,k pξ 1 t , ξ 1 t q ´σt,k pζ 1 t , ζ 1 t q} 2 " E " `ξ1 t ´ζ1 t , ξ 2 t ´ζ2 t ˘1 D p1q t ppξ 1 t , ξ 2 t q, pζ 1 t , ζ 2 t qq ˆξ1 t ´ζ1 t ξ 2 t ´ζ2 t ˙
In the same vein, we have

2 ÿ 1ďkďr E `}σ t,k pξ 1 t , ξ 2 t q ´σt,k pζ 1 t , ζ 2 t q} 2 " E " `ξ1 t ´ζ1 t , ξ 2 t ´ζ2 t ˘1 D p0q t ppξ 1 t , ξ 2 t q, pζ 1 t , ζ 2 t qq ˆξ1 t ´ζ1 t ξ 2 t ´ζ2 t ˙
This yields the estimate

2Σ t ď E " `ξ1 t ´ζ1 t , ξ 2 t ´ζ2 t ˘1 D t ppξ 1 t , ξ 2 t q, pζ 1 t , ζ 2 t qq ˆξ1 t ´ζ1 t ξ 2 t ´ζ2 t ˙ ' (4.9) 
To estimate the term I t we use the decomposition Ṫhis ends the proof of the theorem.

I t " 1 N E `xξ 1 t ´ζ1 t , b t pξ 1 t , ξ 1 t q ´bt pζ 1 t , ζ 1 t qy ˘`ˆ1 ´1 N ˙E `xξ 1 t ´ζ1 t , b t pξ 2 t , ξ 1 t q ´bt pζ 2 t , ζ 1 t qy ˘(4.10) Also notice that 2 E `xξ 1 t ´ζ1 t , b t pξ 1 t , ξ 1 t q ´bt pζ 1 t , ζ 1 t qy " 2 E `xξ
We end this section with some comments on the regularity condition pH C q.

For the nonlinear Langevin diffusion discussed in (1.6) Several uniform estimates can be derived combining (4.8) with the moments estimates (2.17). For instance, suppose we are given a time homogeneous model pb t , σ t q " pb, σq, for some functions pb, σq with uniformly bounded first order derivatives. Also assume pH C p1q q is met for some λ C p1q ą 0. In this context, the moments estimates (2.17) ensure that α t pµq _ β t pµq ď cpµq for some constant cpµq whose values only depends on the measure µ. Choosing ǫ " λ C {2 in (4.8) we readily check that

E `}ξ 1 t ´ζ1 t } 2 ˘ď cpµq N 1 λ C ˆ2 `1 λ C

Propagation of chaos in manifolds

Our aim is to state an analogous of Theorem 4.2 in a Riemannian manifold pM, gq. We will take the notations of Section 3.2. Let us denote by ρ the Riemannian distance in M . Now ζ 0 " pζ i 0 q 1ďiďN are independent copies of a random variable with distribution µ on M . For with σpyq : R m Ñ T y M linear, σσ ˚" g ˚, and pW i t q, 1 ď i ď N independent R m -valued Brownian motions independent of ζ 0 . Denote µ t :" φ 0,t pµq, ζ t :" ζ 0,t pζ 0 q. The diffusions ζ i t are independent and identically distributed, with law µ t at time t. Define an approximation of ζ t with the Markov process ξ t " pξ i t q 1ďiďN satisfying ξ 0 " ζ 0 and for all i,

d ∇ ξ i t " b t pmpξ t q, ξ i t q dt `{{ ζ i t ,ξ i t pσpζ i t q dW i t q (4.14)
where for x, y P M , {{ x,y denotes parallel translation along the minimal geodesic from x to y. It is well-known that such an equation has a solution, which realizes the coupling by parallel translation of martingale parts of ζ i t and ξ i t (see e.g. [START_REF] Arnaudon | Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below[END_REF] or [START_REF] Wang | Analysis for diffusion processes on Riemannian manifolds[END_REF]). The only difficulty is when ξ i t is in the cutlocus of ζ i t , but this difficulty can be overcome by constructing approximations of the solutions which are decoupled in an ǫ-neighbourhood of the cutlocus, and by letting then ǫ tend to 0. However the solution obtained is not strong. Anyway, since {{ ζ i t ,ξ i t is an isometry and the W i t are independent, the process ξ t is a Brownian motion in M N with drift pb t pmpξ t q, ξ i t qq 1ďiďN , so it is a diffusion process. Moreover independent R m valued Brownian motions w i t can be found such that

d ∇ ξ i t " b t pmpξ t q, ξ i t q dt `σpξ i t q dw i t , (4.15) 
they satisfy dw i t " σ ˚pξ i t q pσσ ˚q´1 pξ i t q {{ ζ i t ,ξ i t pσpζ i t q dW i t q `dm i t for some "complementary" martingale m i t . The important fact about this construction is that the distance ρ 2 pζ i t , ξ i t q has finite variation. More precisely, letting for x, y P M with y not belonging to the cutlocus of x, s Þ Ñ γpx, yqpsq the geodesic from x to y in time 1 and Ý Ñ xy " 9 γpx, yqp0q we have

dρ 2 pζ 1 t , ξ 1 t q " 2x 9 γpζ 1 t , ξ 1 t qp1q, b t pmpξ t q, ξ i t qy dt ´2x 9 γpζ 1 t , ξ 1 t qp0q, b t pµ t , ζ i t qy dt `2ρpζ 1 t , ξ 1 t q 1 2 Ipζ 1 t , ξ 1 t q dt ´dL t (4.16)
In the above display L t stands for a nondecreasing process which increases only when ξ where ϕ is a unit speed geodesic from x to y started at time 0, pJ i p0qq 1ďiďd´1 is an orthonormal basis of 9 ϕp0q K , J i pρpx, yqq " {{ x,y J i p0q and s Þ Ñ Jpsq is a Jacobi field along s Þ Ñ ϕpsq (see e.g. [START_REF] Arnaudon | Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below[END_REF]). It is well known that when Ric M ě κ then Ipx, yq ď Īpρpx, yq, κq where Īpρpx, yq, κq is the same quantity computed in a constant curvature manifold, for two points at the same distance. 

Consider the following regularity condition: pH g C q : There exists some λ C P R such that for any z, z P M ˆM and t ě 0 we have

C t pz, zq :" 1 2 " B t pz, zq `Bt pz, zq 1 ‰ ď ´λC g M ˆM pzq (4.25)
Theorem 4.3. Assume that the Ricci curvatures of M are bounded below by κ P R and that the condition pH g C q is satisfied. Then

E " ρ 2 pζ 1 t , ξ 1 t q ‰ 1{2 ď 2 2λ C `κ ´1 ´e´p 2λ C `κqt 2 ¯c β t pµq N (4.26)
with the parameter β t pµq defined as in Theorem 4.2.

Remark: The result of Theorem 4.3 extends to the case when σ " σ t and g " g t depend on time, if we replace the bound below of the Ricci curvatures by the assumption that Ric M ´9 g ě κg.

Proof. The proof is completely similar to the one of Theorem 4. We need the additional assumption BF p0q " 0. In this situation, the computation of I t in (4.28) yields the formula The end of the proof of (4.4) and (4.5) follows the same lines of arguments as the proof of (2.2) and (2.3), thus it is skipped. This ends the proof of the theorem.

I t " ´1 2 

  Also recall that the infinitesimal generator L t,φs,tpµq of the stochastic flow (1.4) is given for any twice differentiable function f by the second order operator L t,φs,tpµq pf qpxq :" xb t pφ s,t pµq, xq, ∇f pxqy

	t pf qpxq :" f pX µ s,t pxqq ùñ P µ s,t pf qpxq " E `Pµ s,t pf qpxq For
	twice differentiable function f we have the gradient and the Hessian formulae
	∇ P µ s,t pf qpxq " ∇X µ s,t pxq P µ s,t p∇f qpxq ∇ 2 P µ s,t pf qpxq " " ∇X µ s,t pxq b ∇X µ s,t pxq ‰	P µ s,t p∇ 2 f qpxq `∇2 X µ s,t pxq P µ s,t p∇f qpxq
	In the above display, ∇ 2 X µ s,t pxq stand for the tensors functions
	∇ 2 X µ s,t pxq pi,jq,k " B i,j X µ,k s,t pxq s,t pxq b ∇X µ ∇X µ " s,t pxq ‰ pi,jq,pk,lq " ∇X µ s,t pxq i,k ∇X µ s,t pxq j,l
	P µ s,t pf qpxq " f pxq	`ż t s	L u,φs,upµq	´Pφs,upµq u,t	pf q ¯pxq du
				`ż t s	∇ P	φs,upµq u,t

`1 2 Tr " ∇ 2 f pxq σ t pφ s,t pµq, xq σ t pφ s,t pµq, xq 1 ‰ Next theorem is an extension of a theorem by Da Prato-Menaldi-Tubaro [16] to nonlinear diffusions. Theorem 3.1. Assume that b t px, yq and σ t px, yq are Lipschitz functions w.r.t. the parameters pt, x, yq. In this situation, for any µ P P 2 pR d q we have pf qpxq 1 σ u pφ s,u pµq, xq p d W u (3.1)

  Corollary 3.2. Assume the conditions of theorem 3.1 are satisfied and we have ∇ x σ k,t " 0 and }∇ x b t px, yq} 2 ď c, for some constant c ă 8. Also assume that pH A q and pH C q are met for some parameters λ A and λ C . In this situation we have the exponential decay estimates E `}X η s,t pxq ´Xµ s,t pxq} 2 ˘1{2 ď c ? d pt ´sq e ´λpt´sq W 2 pη, µq with λ :" λ A ^λCIn addition, when ∇ y σ k,t " 0 we have the uniform and almost sure estimates }X η s,t pxq ´Xµ s,t pxq} ď c pt ´sq e ´λpt´sq W 2 pη, µq3.2 Diffusions on smooth manifoldsThis section is concerned with the extension of our results to nonlinear diffusions on Riemannian manifolds. Let us begin with the general necessary facts about nonlinear diffusions in manifolds. Our presentation will be made as similar as possible to the one in Euclidean space. For this, we will need Itô differentials of manifold valued diffusions, parallel translation, covariant differential of tangent bundle valued semimartingales.Let M be a smooth manifold of dimension d. Stratonovich calculus is similar on M and on R d . So we are able to deal with Stratonovich SDE's of the type

			˝dX µ s,t pxq " b S	
							1)
	we check the stochastic interpolation formula	
	B u	´Xφs,upµq u,t	˝Xη s,u ¯pyq 1 " rφ s,u pηq ´φs,u pµqs pb u p., X η s,u pyqqq 1	" ∇X u,t φs,upµq	ı	pX η s,u pyqq
	Equivalently, we have			
	X η s,t pxq ´Xµ s,t pxq "	ż t s	" ∇X u,t φs,upµq	

ı pX η s,u pxqq 1 rφ s,u pηq ´φs,u pµqs pb u p., X η s,u pxqqq du (3.2) Combining (2.2) and (2.3) with (2.13) we obtain the following corollary. t pφ s,t pµq, X µ s,t pxqq dt `σpX µ s,t pxqqq ˝dW t ,

  , with the Christoffel symbols Γ i j,k .The next object to consider is Itô covariant derivative DU t of a T Xt M -valued continuous semimartingale U t :DU t :" {{ t d `{{ ´1 t U t ˘,(3.7)easily defined from the fact that {{ ´1 t U t is vector valued. From the isometry property of parallel translation we easily get the formula for V t another T Xt M -valued semimartingale and x¨, ¨y :" g, dxU t , V t y " xDU t , V t y `xU t , DV t y `xDU t , DV t y.

							(3.8)
	Defining b t px, yq :" b S t px, yq	`1 2				
		L t,η "	1 2	∆	`żM	ηpdxq b t px, yq.	(3.10)

m ÿ k"1

∇σ k pσ k pyqq (where for two vector fields A, B, ∇ApBpyqq denotes the covariant derivative of A in the direction Bpyq), it is well known that the Stratonovich SDE (3.3) is equivalent to the Itô SDEs

d ∇ X µ s,t pxq " b t pφ s,t pµq, X µ s,t pxqq dt `σpX µ s,t pxqq dW t .

(3.9)

A remarkable fact concerning this equation, is that whenever it exists, a solution to equation (3.9) is a diffusion with nonlinear generator L t,φs,t pµq, where

  xq, and for any x; x P R d we set ∇ δ x{y b t rx; xs :" ∇ x{y pb t ˝δqrx; xs and ∇ δ x{y σ t,k rx; xs :" ∇ x{y pσ t,k ˝δqrx; xs Let B t pz, zq and D t pz, zq be the functions defined for any z " px, yq and z :" px, yq P R 2d by rz; zs 1 ∇ x σ t,k rz; zs ∇ x σ t,k rz; zs 1 ∇ y σ t,k rz; zs ∇ y σ t,k rz; zs 1 ∇ x σ t,k rz; zs ∇ y σ t,k rz; zs 1 ∇ y σ t,k rz; zs

	B t pz, zq :" D t pz, zq :"	1 N 1 N	B D p1q t pz, zq `ˆ1 p1q t pz, zq `ˆ1	´1 N ´1 N	˙Bp0q t pz, zq ˙Dp0q t pz, zq
	The matrices B				
	« » -∇ ÿ ∇ δ x{y b t rx; xs 0 t pz, zq :" p0q 1ďkďr « ∇ δ x{y σ t,k rx; xs 1 ∇ δ x{y σ t,k rx; xs 0 ∇ δ x{y b t ry; ys 0 ∇ δ ff x{y σ t,k ry; ys 1 ∇ δ 0 x{y σ t,k ry; ys 1ďkďr t pz, zq :" 2 B D p0q ÿ ˆ∇x σ t,k	ff

piq t pz, zq in the above display are given by B p1q t pz, zq :" y b t rpy, xq; py, xqs ∇ x b t rpy, xq; py, xqs ∇ x b t rpx, yq; px, yqqs ∇ y b t rpx, yq; px, yqs fi fl and the matrices D piq t pz, zq are given by D p1q t pz, zq :"

  pµqpdxq }b t px, xq ´bt pφ t pµq, xq} 2 `ˆ1 ´1 N ˙ż φ t pµqpdxqφ t pµqpdyq }b t px, yq ´bt pφ t pµq, yq} 2

				ˆ2α s pµq	`βs pµq 2ǫ	˙ds	(4.8)
	with the parameters		
	α t pµq :" β t pµq :"	ÿ 1ďkďr ż 1 N	ż φ t	φ t pµqpdxq }σ t,k px, xq ´σt,k pφ t pµq, xq} 2

  On the other hand, for any differentiable function g from R 2d into R d , and for any z " px, yq and z " px, yq P R 2d we have the first order decomposition gpzq ´gpzq " ∇ x grz, zs px ´xq `∇y grz, zs py ´yq xq ´gpx, xq} 2 " px ´xq 1 ∇ x{y grx, xs 1 ∇ x{y grx, xs px ´xq with the matrix ∇grz, zs :" ˆ∇x grz, zs 1 ∇ x grz, zs ∇ x grz, zs 1 ∇ y grz, zs ∇ y grz, zs 1 ∇ x grz, zs ∇ y grz, zs 1 ∇ y grz, zs

	ùñ	$ ' ' & ' ' %	}gpzq ´gpzq} 2 " px ´x, y ´yq 1 ∇grz, zs	ˆx y	´y ´x	}gpx,
					Ḃy
	symmetry arguments, this implies that			
						2 t q} 2

  we have D t pz, zq " 0 and ∇ x b t rpx, yq; px, yqs " ∇ 2 V ry ´x; y ´xs ∇ y b t rpx, yq; px, yqs " ´∇2 U ry; ys ´∇2 V ry ´x; y ´xs and ∇ δ x{y b t ry; ys " ´∇2 U ry; ys In the above display C t pzq stands for the matrix defined in (2.9), B ∇ x{y σ t,k px, xq 1 ∇ x{y σ t,k px, xq 0 0 ∇ x{y σ t,k py, yq 1 ∇ x{y σ t,k py, yqConsider the following regularity condition: pH C p1q q : There exists some λ C p1q P R such that for any px, yq P R 2d and t ě 0 we have Assume that pH C p1q q is met. Using the fact that EpΣ 1 qEpΣq ď EpΣ 1 Σq, for any random matrix Σ, we check that pH C q and pH C q are met with λ C " λ C p1q and λ C " ˆ1

	In this context, we have									
	´Ct pz, zq :" `ˆ1 " ∇ 2 U rx; xs 0 ´1 N ˙» --	0 ∇ 2 U ry; ys ´∇2 V rx´y;x´ys`∇ 2 V ry´x;y´xs  2 ∇ 2 V rx ´y; x ´ys	∇ 2 V ry ´x; y ´xs ´∇2 V rx´y;x´ys`∇ 2 V ry´x;y´xs 2	fi ffi fl
	Also observe that for any z P R 2d we have the decomposition C p1q t pzq :" C t pz, zq " ˆ1 ´1 N ˙Ct pzq	`1 N	C	p1q t pzq
	with the matrices	C	p1q t pzq :"	1 2	"	B	p1q t pzq	`Bp1q t pzq 1	ı	`Dp1q t pzq
	matrices defined for any z " px, yq P R 2d by B p1q t px, yq :" " ∇ x{y b t px, xq 0 ∇ x{y b t py, yq 0 D p1q 1ďkďr t px, yq :" ÿ "		p1q t pzq and D t pzq stand for the p1q
					C	p1q t px, yq ď ´λC p1q I	(4.11)
											˙´1
											´1 N	λ C p1q	(4.12)

  1 ď i ď N the diffusions

	ζ i s,t pxq satisfy the Itô SDE	
	d ∇ ζ i s,t pxq " b t pφ s,t pµq, ζ i s,t pxqq dt `σpζ i s,t pxqq dW i t ,	(4.13)

  1 t is in the cutlocus of ζ 1 t , and I is the index map defined for x, y P M , and y R Cutpxq, by

	Ipx, yq "	d´1 ÿ i"1	ż ρpx,yq 0	´› › ∇ 9 ϕpsq J i psq › › 2 ´xRp 9 ϕpsq, J i psqqJ i psq, 9 ϕpsqy ¯ds	(4.17)

  Īpρ, κq ď ´κρ, so we obtain as a general result that when Ric M ě κ

									Moreover
	we have the explicit values						
		Īpρ, κq "	$ ' ' ' ' & ' ' ' ' %	´2a pd ´1qκ tan 0 a 2 pd ´1qp´κq tanh ˆρ 2 ˆρ 2 c c d	κ ´1 ´κ ˙if κ ą 0 if κ " 0 d ´1 ˙if κ ă 0	(4.18)
	In any case, Ipx, yq ď ´κ ρpx, yq.	(4.19)
	So we have	dρ 2 pζ 1 t , ξ 1 t q ď 2 x 9 γpζ 1 t , ξ 1 t qp1q, b t pmpξ t q, ξ 1 t qy dt	(4.20)
					´2 x 9 γpζ 1 t , ξ 1 t qp0q, b t pµ t , ζ 1 t qy dt ´κ ρpζ 1 t , ξ 1 t q 2 dt.
									
									,	(4.22)
		B	p1q t pz, zq :"	"	∇pb t ˝δqrx; xs 0	0 ∇pb t ˝δqry; ȳs		,	(4.23)
		B t pz, zq :"	N 1	B	p1q t pz, zq `ˆ1	´1 N	˙Bp0q

Define similarly to the previous section for a Riemannian manifold M and a map G : M ˆM Ñ T M such that Gpx, yq P T y M : for z " px, yq, z " px, ȳq elements of M ˆM Grz; zs :"

ż 1 0 {{ ´1 y,

γpy,ȳqpǫq Gpγpz, zqpǫqq dǫ P T y M. (4.21) Also define B p0q t pz, zq :" " ∇ y b t rpy, xq; pȳ, xqs ∇ x b t rpy, xq; pȳ, xqs ∇ x b t rpx, yq; px, ȳqs ∇ y b t rpx, yq; px, ȳqs where δ : M Ñ M ˆM , x Þ Ñ px, xq, and set t pz, zq

  leading to the condition pH g C q: for all z, z P M ˆM , ∇ 2 U '2 rz; zs `ˆ1 ´1 N ˙∇2 pF ˝ρqrz; zs ě λ C g M ˆM pzq.(4.34) This condition is met for instance when for all z P M ˆM ,∇ 2 U '2 pzq `ˆ1 ´1 N ˙∇2 pF ˝ρqpzq ě λ C g M ˆM pzq. (4.35) and A t pµ, yq :" ∇ y b t pµ, yq `∇y b t pµ, yq 1 `ÿ 1ďkďr ∇ y σ t,k pµ, yq ∇ y σ t,k pµ, yq 1 ď ż µpdxq A t px, yqIn the above display, we have used the fact that EpΣ 1 qEpΣq ď EpΣ 1 Σq, for any random matrix Σ.The end of the proof of (2.2) and (2.3) is now clear.For any time mesh t k ď t k`1 with s 0 " s and s n " t with h :" max |s k ´sk´1 | we have u ˆφs k´1 ,u pφ s,s k´1 pµqq, X u ˆφs k´1 ,u pφ s,s k´1 pµqq, X k´1 ,s k pxq :" b s k pµ, xq ps k ´sk´1 q `σs k pµ, xq pW s k ´Ws k´1 q pφ s k´1 ,u pµq, X µ s k´1 ,u pxqq ´bs k pµ, xq pφ s k´1 ,u pµq, X µ s k´1 ,u pxqq ´σs k pµ, xq Using elementary manipulations, for any 0 ď h ď 1 we check thatE ´}X µ s,s`h pxq ´x} n ¯1{n ď c n h " }x} `µp}e} 2 q 1{2 ı and W 2 pφ s,s`h pµq, µq ď c h µp}e} 2 q 1{2for some finite constants c and c n . Recalling that pt, x, yq Þ Ñ b t px, yq and pt, x, yq Þ Ñ σ t px, yq are Lipschitz functions we check that the almost sure convergence Y µ s k´1 ,s k pxq ÝÑ hÑ0 0 Z µ s k´1 ,s k pxq ÝÑ hÑ0 0 and ∆ µ s k´1 ,s k pxq ÝÑ hÑ0 0 Tr " ∇ 2 P µ s k ,t pf qpxq σ s k pµ, xq σ s k pµ, xq 1 ‰ ,t pf qpxq pW s k ´Ws k´1 q 1 σ s k pµ, xq 1 ‰ `Rµ s k ,t pf qpxq with the remainder termR µ s k ,t pf qpxq :" R µ s k ,t pf qpxq `1 2 Tr " ∇ 2 P µ s k ,t pf qpxq b s k pµ, xq pW s k ´Ws k´1 q 1 σ s k pµ, xq 1 ‰ ps k ´sk´1 q `1 2 Tr " ∇ 2 P µ s k ,t pf qpxq σ s k pµ, xq pW s k ´Ws k´1 q b s k pµ, xq 1 ‰ ps k ´sk´1 q `1 2 Tr " ∇ 2 P µ s k ,t pf qpxq b s k pµ, xqqb s k pµ, xq 1 ‰ ps k ´sk´1 q 2 P µ s k ,t pf qpxq σ s k pµ, xq " pW s k ´Ws k´1 qpW s k ´Ws k´1 q 1 ´ps k ´sk´1 q I ‰ σ s k pµ, xq 1 ‰ ,s k pµq s k ,t pf qpxq b s k pφ s,s k pµq, xq 1 pf qpxq σ s k pφ s,s k pµq, xq σ s k pφ s,s k pµq, xq 1 pf qpxq pW s k ´Ws k´1 q 1 σ s k pφ s,s k pµq, xq 1We end the proof of (3.1) by letting the time step h Ñ 0.This ends the proof of (4.1). The proof of (4.4) and (4.5) come from the formula d ∇ξ s,t pzq∇ξ s,t pzq 1 " ∇ξ s,t pzqA t pξ s,t pzqq ∇ξ s,t pzq 1 dt `dM t pzq with the martingale M t pzq i,k " ÿ defined in terms of the diffusion processes dM j,α t pzq i,k :" r∇ξ s,t pzq∇G t,α pξ s,t pzqqs i,j dW j,α t ∇ξ s,t pzq 1 j,k `∇ξ s,t pzq i,j dW j,α t pr∇ξ s,t pzqs r∇G t,α s pξ s,t pzqqq 1

	This implies that						
	P µ s,t pf qpxq ´f pxq "	1ďkďn ÿ	!	Tr	∇P "	ı
	`1 2	Tr	"	∇ 2 P	φs,s k pµq s k ,t	ı *	ps k ´sk´1 q
	E ˆ1 " ∇ 2 U '2 " pζ 1 t , ζ 2 t q; pξ 1 t , ξ 2 t q ‰ ´Ý Ý Ñ ζ 1 t ξ 1 t , ´1 N ˙E " ∇ 2 pF ˝ρq " pζ 1 t , ζ 2 t q; pξ 1 Ý Ý Ñ ζ 2 t ξ 2 t ¯´Ý Ý Ñ ζ 1 t ξ 1 t , t , ξ 2 t q ‰ ´Ý Ý Ñ ζ 1 t ξ 1 t , Ý Ý Ñ ζ 2 t ξ 2 t Ý Ý Ñ ¯ı ζ 2 t ξ 2 t ¯´Ý Ý Ñ ζ 1 t ξ 1 t , where we denoted ´1 2 Ý Ý Ñ ζ 1 t ξ 1 t " 9 γpζ 1 t , ξ 1 P φs,s k´1 pµq s k´1 ,t " P φs,s k´1 pµq s k´1 ,s k P φs k´1 ,s k pφs,s k´1 pµqq s k ,t " P φs,s k´1 pµq s k´1 ,s k P φs,s k pµq Ý Ý Ñ ζ 2 t ξ 2 t s k ,t Also observe that ∆ φs,s k´1 pµq s k´1 ,s k pxq :" X φs,s k´1 pµq s k´1 ,s k pxq ´x " ż s k s k´1 φs,s k´1 pµq s k´1 ,u pxq ˙du `ż s k s k´1 φs,s k´1 pµq ¯ı s k´1 ,u `Tr " ∇P φs,s k pµq s k ,t ı `ÿ 1ďkďn R pxq ˙dW u (4.33) φs,s k pµq s k ,t pf qpxq Proof of theorem 4.1 Observe that B z l i " H j,k 1 ˝H2 ı pzq " ÿ 1ďmďd ÿ 1ďnďN ´Bz m n H j,k 1 ¯pH 2 pzqq B z l i H n,m 2 pzq " ÿ 1ďmďd ÿ 1ďnďN r∇ z i H n 2 s l,m pzq " ∇ zn H j 1 ı m,k pH 2 pzqq t qp0q, Proof of (3.1) " Y φs,s k´1 pµq s k´1 ,s k pxq `Zφs,s k´1 pµq s k´1 ,s k This implies that pxq with the random fields Y µ s Z µ s k´1 ,s k pxq :" ż s k s k´1 " " Tr " ∇P µ r∇ pH 1 ˝H2 q pzqs i,j " ∇ z i " H j 1 pH 2 pzqq ı ÿ " s * ps k ´sk´1 q b u ı du `ż s k s k´1 " σ u ı dW u Using the Taylor expansion `Tr " ∇P µ Tr " ∇ 2 On the other hand, we have 1ďjďN ÿ 1ďαďd M j,α t pzq i,k s k `1 2 j,k
	P µ s,t pf qpx `yq " P µ s,t pf qpxq `Tr `ż 1 0 p1 ´ǫq Tr P µ s,t pf qpxq ´f pxq " ÿ " P φs,s k´1 pµq " ∇P µ s,t pf qpxq y 1 ‰ "`∇ 2 P µ s,t pf qpx `ǫyq ´∇2 P µ `1 2 Tr " ∇ 2 P µ s,t pf qpxqyy 1 ‰ s,t pf qpxq ˘yy 1 ‰ s k´1 ,t pf qpxq  ´Pφs,s k pµq s k ,t pf qpxq 1ďkďn " ÿ 1ďkďn " P φs,s k pµq s k ,t pf q ˆx `∆φs,s k´1 pµq s k´1 ,s k pxq ˙´P s k ,t pf qpxq dǫ φs,s k pµq 

b σ k ,t pf qpxq b s k pµ, xq 1 ‰ `1 2 φs1ďnďN

r∇H 2 pzqs i,n rp∇H 1 q pH 2 pzqqs n,j
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Appendix

Proof of (2.2) and (2.3)