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Acknowledgement and useful links I

My slides are inspired by the following introductions to Bayesian nonparametric
approaches that I found myself very useful:

• Botond Szabo’s tutorial introduction

• Kurt Miller’s tutorial introduction

• Peter Orbanz’ tutorials webpage, as well as his lecture notes

• Yee Whye Teh’s tutorial at MLSS 2011

• Mike Jordan’s tutorial at NIPS 2005

http://math.bme.hu/~bszabo/talk_poster/BME_SzB2014.pdf
https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/nonparametric/slides.pdf
http://stat.columbia.edu/~porbanz/npb-tutorial.html
http://stat.columbia.edu/~porbanz/papers/porbanz_BNP_draft.pdf
https://www.stats.ox.ac.uk/~teh/teaching/npbayes/mlss2011F.pdf
https://people.eecs.berkeley.edu/~jordan/nips-tutorial05.ps
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Acknowledgement and useful links II

I also have some handwritten lecture notes for a Master/PhD course on
Bayesian nonparametrics

Thanks Micha l Lewandowski for typing help.

https://www.dropbox.com/s/ugo6v1axcuf0tnj/main.pdf?dl=0
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Parametric versus nonparametric

Parametric models

• Finite and fixed number of parameters

• Number of parameters is independent of the dataset

Nonparametric models

• Do have parameters

• Can be understood as having an infinite number of parameters

• Can be understood as having a random number of parameters

• Number of parameters can grow with the dataset
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Underlying function
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Data
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Parametric fitting
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Non-parametric fitting
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Parametric vs. Nonparametric models

Complexity of the model {Pθ : θ ∈ Θ}:

Models: Parametric Nonparametric

Dimension: Finite dimensional Θ. Infinite dimensional Θ.

Advanta-
ges:

Easier to handle and make in-
terpretations of the results.

Less chance for misspecifica-
tions.

Computationally faster. More flexible.

Disadvan-
tages:

Without strong belief in the
particular structure of the
model not reliable.

Computationally and analyti-
cally challenging.

Examples: Poisson (number of car crashes,
typos in a book).

Density, regression function es-
timation.

Normal distribution (grades of
students, height, weight, foot-
size of people).

Clustering (unknown cluster
size and
number).
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Noisy picture



13/95

P vs NP Dirichlet process Mixtures Other priors Discovery Research directions References

Parametric
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Nonparametric
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Bayesian nonparametric priors

Two main categories of priors depending on parameter spaces

Spaces of functions
random functions

• Continuous stochastic
processes
e.g. Gaussian processes

• Random basis expansions

• Random densities (expon.)

Spaces of probability measures
random probability measures (RPM)

• Often discrete proba. measures
Cornerstone: Dirichlet process
We’ll see others: Pitman–Yor, Normalized
generalized gamma process, Normalized
stable process, Gibbs-type processes,
Normalized random measures, etc

[Brix, 1999]
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Dirichlet distribution
A Dirichlet distribution on a simplex ∆K is a probability distribution with
parameters αi > 0 and a density function

f (x1, . . . , xK ;α1, . . . , αK ) =
1

B(α)

K∏
i=1

xαi−1
i .

It is common to refer to Dirichlet distribution as Dir(α1, . . . , αk).

Remark Dirichlet distribution conjugate for multinomial distribution.

[Image by Y.W. Teh]
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Dirichlet process
A central Bayesian nonparametric prior (Ferguson, 1973)

Definition (Dirichlet process)

A Dirichlet process on the space Y is a random process P such that there exist
α (precision parameter) and G0 (base/centering distribution) such that for any
finite partition {A1, . . . ,Ad} of Y, the random vector (P(A1), . . . ,P(Ad)) is
Dirichlet distributed

(P(A1), . . . ,P(Ad)) ∼ Dir(αG0(A1), . . . , αG0(Ad))

Notation: P ∼ DP(α,G0)
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Moments of Dirichlet process I

Proposition
Let p ∼ DP(α,P0) then for every measurable sets A,B we have

E(p(A)) = P0(A), (1)

Var(p(A)) =
P0(A)(1− P0(A))

1 + α
, (2)

cov(p(A), p(B)) =
P0(A ∩ B)− P0(A)P0(B)

1 + α
. (3)
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Moments of Dirichlet process II

Proof
We will make use of p(A) ∼ Beta(αP0(A), α(1− P0(A))). From this we obtain

E(p(A)) =
αP0(A)

α(P0(A) + 1− P0(A))
= P0(A)

and

Var(p(A)) =
α2P0(A)(1− P0(A))

α2(α + 1)
.

We derive the covariance term in two cases, firstly taking into consideration the
one with A ∩ B = ∅. In that case any space Ω may be decomposed into three
sets:

Ω = {A,B, (A ∪ B)c}.

Using de Morgan’s law the last can be written as (A ∪ B)c = Ac ∩ Bc =: C .
Therefore we may write a joint probability vector(

p(A), p(B), p(Ac ∩ Bc)
)
∼ Dir

(
αP0(A), αP0(B), αP0(C)

)
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Moments of Dirichlet process III

and hence cov(p(A), p(B)) = −P0(A)P0(B)/(1 + α). In the more general case
one may decompose

A = (A ∩ B) ∪ (A ∩ Bc)

B = (B ∩ A) ∪ (B ∩ Ac),

so that

cov(P(A),P(B)) = cov(P(A ∩ B) + P(A ∩ Bc),P(B ∩ A) + P(B ∩ Ac))

and so forth using the linearity of covariance.
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Marginalizing out the DP

Property 1 can be written equivalently as

E(P(A)) = P0(A) =

∫
P(A)dDP(P). (4)

A Dirichlet process model can be constructed as two level sampling:P ∼ DP(α,P0)

X |P ∼ P,

i.e. we sample probability measure P from the Dirichlet process and then given
P we sample random variables Xi .

Marginalizing out P, we obtain the marginal distribution of X :

X ∼ P0
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Posterior distribution I

Let X1, . . . ,Xn =: X1:n be sampled from the hierarchical modelP ∼ DP(α,P0)

X1:n|P
i.i.d.∼ P,

(5)

This model is usually used as a building block in a larger hierarchical model,
e.g. mixture models, graphs etc.

Theorem (Ferguson [1973])

The posterior of P as presented in (5) is

P|X1:n ∼ DP(αP0 +
n∑

i=1

δXi ). (6)

The predictive distribution of a next observation is given by

P(Xn+1|X1:n) =
α

α + n
P0 +

1

α + n

n∑
i=1

δXi . (7)
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Posterior distribution II

The predictive (7) is also called Polya Urn schema or Blackwell-MacQueen Urn
Schema.
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Posterior distribution III

Proof
Property (6) can be obtained by remarking that the posterior distribution of
P(A1), . . . ,P(Ak) depends on the observations only via their cell counts (it
comes from tail–free property). Denote Nj = #{1 ≤ i ≤ n : xi ∈ Aj}, i.e. the
number of observations in each partition of X . Then we have(

P(A1), . . . ,P(Ak)
)∣∣X1:n

d
=
(
P(A1), . . . ,P(Ak)

)∣∣N1:k .

Lets use shorthand notation: α = (α1, . . . , αk) = (P(A1), . . . ,P(Ak)) and
N = (N1, . . . ,Nk). Then N|P ∼ Multinomk(P(A1), . . . ,P(Ak))

(P(A1), . . . ,P(Ak)) ∼ Dirk(αP0(A1), . . . , αP0(Ak))

and hence we obtain the prior of the form

p(α) ∝ ααP0(A1)−1
1 . . . α

αP0(Ak )−1
k ,

while sampling model is
p(N|α) ∝ αN1

1 . . . α
Nk
k .
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Posterior distribution IV

This results in the posterior of form

p(α|N) ∝ ααP0(A1)+N1−1
1 . . . α

αP0(Ak )+Nk−1
k = Dirk

(
αP0(A1)+N1, . . . , αP0(Ak)+Nk

)
.

Property (7) is a result of taking the expected value of (6).
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Combinatorial properties: Number of distinct values I

Assume that the base measure P0 is non-atomic. Then with probability 1:

Xi /∈ {X1, . . . ,Xi−1} ⇔ Xi ∼ P0.

Let Di = I(Xi is a new value) and lets denote Kn =
∑n

i=1 Di , a number of
distinct values X1, . . . ,Xn with distribution L(Kn).

Proposition
Random variables Di are distributed i.i.d. with respect to
Bernoulli(α/(α + i − 1)). Therefore for fixed α and for n→∞ we have:

i) EKn ∼ α log n ∼ Var(Kn)

ii) Kn/ log(n)
a.s.−−→ α

iii) (Kn − EKn)/sd(Kn)→ N(0, 1)

iv) dTV

(
L(Kn),Poisson(EKn)

)
= o

(
1/ log(n)

)
where

dTV(P,Q) = sup|P(A)− Q(A)|

over measurable partition A



28/95

P vs NP Dirichlet process Mixtures Other priors Discovery Research directions References

Combinatorial properties: Number of distinct values II

Proof

i) EKn =
∑n

i=1
α

α+i−1
and Var(Kn) =

∑n
i=1

α(i−1)

(α+i−1)2
.

ii) Since Di ’s are I one may use Kolmogorov law of strong numbers and

∞∑
i=1

Var(Di )

(log i)2
=
∞∑
i=1

α(i − 1)

(α + i − 1)2(log i)2
<∞

by e.g. the fact that
∑

i (1/i(log i)2) converges.

iii) By Lindeberg central limit theorem.

iv) This is implied from Chein–Stein approximation.
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Combinatorial properties: Number of distinct values III

Theorem
Suppose Xi are i.i.d. such that EXi = µi and VarXi = σ2

i <∞. Define
Yi = Xi − µi , Tn =

∑n
i=1 Yi , s2n = Var(Tn) =

∑n
i=1 σ

2
i . Then provided that

∀ε > 0
1

s2n

n∑
i=1

E
(
Y 2

i I(|Yi | > εsn)
) n→∞−−−→ 0

we have Tn/sn
d−→ N(0, 1).
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Combinatorial properties: Distribution of distinct values I

We have now the limits of Kn and we know its approximate distribution L(Kn).
The exact distribution of Kn is:

Proposition
If P0 is non-atomic then

P(Kn = k) = Cn(k)n!αk Γ(α)

Γ(α + n)
, (8)

where

Cn(k) =
1

n!

∑
S∈Jn(k)

∏
j∈S

j (9)

and Jn(k) = {S ⊂ {1, . . . , n − 1}, |S | = n − k}.
Recall the definition of the Gamma function Γ(x) =

∫∞
0

ux−1e−udu.
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Combinatorial properties: Distribution of distinct values II

Let us consider when we may deal with events Kn = k: we have two casesKn−1 = k − 1 and Xn is a new value

Kn−1 = k and Xn is not a new value.

This results in

pn(k, α) := P(kn = k|α) =
α

α + n − 1
pn−1(k − 1, α) +

n − 1

α + n − 1
pn−1(k, α).

(10)
Now let us remark that Cn(k) = pn(k, α = 1). Therefore

Cn(k) =
1

n
Cn−1(k − 1) +

n − 1

n
Cn−1(k). (11)

By induction over n: first we check case n = 1:

p1(1, α) = C1(1)
α

α
= C1(1). (12)
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Combinatorial properties: Distribution of distinct values III

To check case n > 1 we use (8) and then (10):

pn(k, α) =
α

α + n − 1
pn−1(k − 1, α) +

n − 1

α + n − 1
pn−1(k, α)

=
α

α + n − 1
Cn−1(k − 1)(n − 1)!αk−1 Γ(α)

Γ(α + n − 1)
+

+
n − 1

α + n − 1
Cn−1(k)(n − 1)!αk Γ(α)

Γ(α + n − 1)

=
αk

α + n − 1
(n − 1)!

Γ(α)

Γ(α + n − 1)
n

(
1

n
Cn−1(k − 1) +

n − 1

n
Cn−1(k)

)
= Cn(k)n!αk Γ(α)

Γ(α + n)
,

which proves property (8).
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Combinatorial properties: Distribution of distinct values IV

To prove (9) let use define a polynomial An(s) as An(s) =
∑∞

i=1 Cn(k)sk . Then
using (11) polynomial An(s) can be written as

An(s) =
∞∑
k=1

(
1

n
Cn−1(k − 1) +

n − 1

n
Cn−1(k)

)
sk

=
1

n
(sAn−1(s) + (n − 1)An−1(s)) =

s + n − 1

n
An−1(s)

= . . . = A1(s)
n∏

j=2

s + j − 1

j
=

s(s + 1) · . . . · (s + n − 1)

n!
.

Last equality implies from the fact that C1(k) = 1δk1 and hence A1(s) = s.
Checking terms after the expansion finishes the proof of (9).
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Combinatorial properties: Chinese Restaurant process I

Chinese restaurant process: a culinary metaphor of the random partition
induced by the DP. Customers join a populated table with probability
nj/(α + n), where nj denotes the number of clients already sitting around the
table or sit at new table with probability α/(α + n).

Proposition
A random sample X1:n from a DP with precision parameter α induces a
partition of {1, . . . , n} into k sets of sizes n1, . . . , nk with probability

p(n1, . . . , nk) = p({n1, . . . , nk}) = αk Γ(α)

Γ(α + n)

k∏
j=1

Γ(nj).
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Combinatorial properties: Chinese Restaurant process II
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Combinatorial properties: Chinese Restaurant process III

Proof
We will use the Polya urn schema slightly changed by using n1, . . . , nk

P(Xn+1|X1:n) =
α

α + n
P0 +

1

α + n

k∑
j=1

njδX∗j .

By exchangeability, the distribution of {n1, . . . , nk} does not depend on the
order of the observations. Let’s compute p(n1, . . . , pk) as the probability of one
draw where the first table consists of first n1 observations etc.
To proceed, let us use Polya urn scheme: we denote n̄j =

∑j
i=1 ni and hence

n̄k = n, the total number of observations. We can observe the following
pattern: first ball open new table, following nj − 1 ones fill in that table and so
forth. That quantity can be rewritten as

αk

α(α + 1) . . . (α + n − 1)

k∏
j=1

(nj − 1)!,
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Combinatorial properties: Chinese Restaurant process IV

where one can rewrite both terms using Gamma function
Γ(x) =

∫∞
0

ux−1e−udu: the first term can be written as

αk

α(α + 1) . . . (α + n − 1)
=

Γ(α + n)

Γ(α)
,

while the second one as (nj − 1)! = Γ(nj).
One should remark that for ordered partitions we have

p̄(n1, . . . , nk) =
p(n1, . . . , nk)

k!
.
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Combinatorial properties: Ewens sampling formula I

Ewens sampling formula (ESF), presented originally by Ewens [1972], is the
distribution of multiplicities m = (m1, . . . ,mn), m` is the number of groups of
size `.
Also known as allelic partitions in population genetics, when there is no
selective difference between types: null hypothesis in non Darwinian theory.

Proposition (Ewens [1972]; Antoniak [1974])

Random variables X1, . . . ,Xn generated from a DP has multiplicity class
(m1, . . . ,mn) with probability

p(m1, . . . ,mn) =
αk

α(n)

n!∏n
`=1 `

m`m`!
.

Notation n(k) := n(n − 1) · . . . · (n − k + 1).
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Combinatorial properties: Ewens sampling formula II
Proof
Two steps: 1) Compute probability of particular sequence of X1, . . . ,Xn in
given class (m1, . . . ,mn), note that all such sequences are equally likely and 2)
multiply obtained quantity by the number of such sequences.

1) Consider a sequence X1, . . . ,Xn such that X1, . . . ,Xm1 occur each only
once, then the next m2 occur only twice and so on. This sequence has
probability which may be obtained by the Polya Urn scheme in the same
fashion as CRP:

αm1(α · 1)m2 . . .
(
α · 1 · . . . · (n − 1)

)mn

α(n)
=

αk

α(n)

n∏
`=1

((`− 1)!)m` .

2) Number of sequences X1, . . . ,Xn with frequencies (m1, . . . ,mn) is a
number of ways of putting n distinct objects into bins, so called
multinomial coefficient. Since ordering of the m` bins of frequency ` is
irrelevant, divide by m`!:

1∏n
l=1(m`)!

 n

1×#m1, 2×#m2, . . . , n ×#mn

 =
n!∏n

`=1 m`!(`!)m`

To finish one needs to multiply results obtained in 1) and 2).
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Stick-breaking representation

The DP has almost surely discrete realizations (Sethuraman, 1994)

P =
∞∑
j=1

πjδθj

• locations θj
iid∼ G0

• weights πj = π̃j

∏
l<j(1− π̃l) with

π̃j
iid∼ Beta(1, α),
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Stick-breaking representation I

Theorem (Sethuraman [1994])

If V1,V2, . . .
i.i.d.∼ Be(1, α) and φ1, φ2, . . .

i.i.d.∼ P0 are i.i.d. variables, then define
p1 = V1 and

pj = Vj

∏
1≤l≤j

(1− Vl)

then

P =
∞∑
i=1

piδφi ∼ DP(α,P0).
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Stick-breaking representation II

Lemma
For independent φ ∼ P0 and V ∼ Be(1, α) the DP is the only solution of the
distributional equation

P
d
= V δφ + (1− V )P, (13)

where P ∼ DP(α,P0).
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Stick-breaking representation III

Proof
1) The weights (p1, p2, . . .) need to form a probability vector. The leftover
mass at stage j is

1−
( j∑

i=1

pi

)
=

j∏
i=1

(1− Vi ) =: Rj .

One may notice that Rj is decreasing and for every j we have Rj ∈ [0, 1], hence
we obtain almost sure convergence which is equivalent with convergence in
mean. Therefore

ERj = E
∏
j

(1− Vj) =
∏
j

E(1− Vj) =

(
α

α + 1

)j

→ 0.

So (p1, . . .) is a probability vector almost surely and P is a probability measure
almost surely.
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Stick-breaking representation IV

2) Now one may write

P = p1δφ1 +
∞∑
j=2

pjδφj = V1δφ1 + (1− V1)
∞∑
j=1

p̃jδφ̃j
,

where p̃j =
pj+1

1−V1
= Vj+1

∏j
l=2(1− Vl) and φ̃j = φj+1, then (p̃j) and (φ̃j) satisfy

the same distributional definitions as (pj) and (φj), hence P̃
d
= P and so P is

solution of the Lemma equation (13) whose only solution is the DP.
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DP as a normalized Gamma process I

The DP can be obtained by normalizing a Gamma process. It is a generic way
to obtain independently distributed probability measures from almost surely
finite random measures. Let us investigate for the case Y = R.

Definition
Gamma process on R+ is a process (S(u) : u ≥ 0) with independent increments
satisfying

∀u1 : 0 ≤ u1 ≤ u2 : S(u2)− S(u1)
⊥∼ Ga(u2 − u1, 1).

This ensures that the process has non-decreasing right continuous sample path
u 7→ S(u).

Theorem
For every α > 0 and for every cumulative distribution function G , a random
cumulative distribution function such that

F (t) =
S(αG(t))

S(α)

is the distribution of a DP(α,G).
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DP as a normalized Gamma process II

Proof
For any set of ti satisfying −∞ = t0 < t1 < . . . < tk =∞ we have

S(αG(ti ))− S(αG(ti−1)) ∼ Ga
(
αG(ti )− αG(ti−1), 1

)
.

Use property that if Yi
ind∼ Ga(αi , 1) then

(Y1, . . . ,Yn)/
∑

i Yi ∼ Dirn(α1, . . . , αn) to obtain(
F (t1)−F (t0), . . . ,F (tk)−F (tk−1)

)
∼ Dirk

(
αG(t1)−αG(t0), . . . , αG(tk)−αG(tk−1)

)
.

Hence the definition of DP holds for every partition in intervals. These form a
measure determining class, so that the definition holds for every partition in
general.
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Definition via the Polya Urn Scheme

A Polya sequence with parameter αP0 is a sequence of random variables
X1, . . . ,Xn whose joint distribution satisfies

X1 ∼ P0, Xn+1|X1, . . . ,Xn ∼
α

α + n
P0 +

1

α + n

n∑
i=1

δXi . (14)

Theorem
If X1,X2, . . . is a Polya sequence then exists random probability measure P

such that Xi |P
i.i.d.∼ P and P ∼ DP(α,P0).

Proof
We can consider Polya sequence as an outcome of Polya urn, we see that it is
exchangeable. By de Finetti theorem exists such probability measure P such

that Xi |P
i.i.d.∼ P. So far we have proved existence of the DP and know that DP

generates a Polya sequence. Since the RPM given by de Finetti’s theorem is
unique this proves that P ∼ DP(α,P0).
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A parametric approach

Mixture Model with K components

G =
K∑

k=1

πkδφk

δφk is a point mass at φk .
G is to be understood as a K -faceted dice. The mixture density is:

p(X |π, φ) =
K∑

k=1

πkp(x |φk)
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A Bayesian parametric approach

Bayesian Mixture Models with K components
We need a distribution over the probability measure (aka dice) G , that is a
distribution over weights or classes π = (π1, . . . , πK ) and over mean and
covariance (for 2-dimensional data) φk = (µk ,Σk)

• π ∼ Dirichlet(α/K , . . . , α/K)

• (µk ,Σk) ∼ Normal× Inverse-Wishart

This makes G =
∑K

k=1 πkδφk a random dice
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Choosing K

There are several options for choosing K

• Model selection with information criteria: AIC, BIC, or cross-validation, etc

• Hierarchical model, with a prior on K

• Be nonparametric, and let K get large... possibly infinite.
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A Bayesian nonparametric approach

Bayesian nonparametric Mixture Models
We now move to G being an infinite sum G =

∑∞
k=1 πkδφk

We need a distribution over this infinite dice G , that is exactly what the
Dirichlet process does. It is parameterized by the precision parameter α and
the base measure G0.

• π = (π1, π2, . . .) ∼ GEM(α)

• φk ∼ G0
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Posterior sampling

Markov chain Monte Carlo (MCMC) methods

• Marginal methods: marginalizing over the posterior DP P, and sampling
using the posterior Pólya urn scheme (easy in conjugate case) Neal [2000]

• Conditional methods: sampling a finite but sufficient number of
parameters

• ε-DP Muliere and Tardella [1998], ε-PY Arbel et al. [2018b]
• Blocked Gibbs sampler Ishwaran and James [2001]
• Slice sampler Walker [2007]
• Retrospective sampler Papaspiliopoulos and Roberts [2008]
• Ferguson and Klass algorithm Ferguson and Klass [1972]; Arbel and

Prünster [2017]

• Variational approximations
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Sampling from the posterior distribution

Packages that do precisely that!

• DPpackage: Jara et al. [2011], implemented in Fortran

• BNPdensity: Barrios et al. [2013], extension to flexible classes of priors
(normalized random measures)

• BNPmix (ongoing): Arbel et al. [2018a], Dirichlet process mixtures, fast
implementation with Rcpp package. Can be installed by:

library(devtools)
install github(”rcorradin/BNPmix”)
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Warning on interpretation of Kn I

Consider a simple DP mixture
model with

• Gaussian base measure,

• Gaussian kernel,

• where data are sampled iid
from some distribution.

Then the posterior on Kn is
inconsistent [Miller and Harrison,
2013].
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Warning on interpretation of Kn II

From Miller and Harrison [2013] (here Kn is denoted Tn):

But there is some hope...
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Bayesian decision theory

From decision theory: a Bayes estimator minimizes a posterior expected loss.

âL = arg inf
a∈A

Eπ(θ)[La(θ)].

Examples with Euclidean parameter spaces:

• L2, squared loss −→ posterior mean

• L1, absolute loss −→ posterior median

• 0− 1 loss −→ mode a posteriori (MAP)
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Deriving an optimal clustering

The posterior expected loss of clustering c ′, denoted by L(c ′), is obtained by
averaging the loss with respect to posterior weight

L(c ′) =
∑
c∈An

L(c, c ′)p(c|x),

and the decision is taken by choosing the best

ĉ = arg min
c′∈An

∑
c∈An

L(c, c ′)p(c|x)

Several losses have been considered:

• 0-1 loss [Rajkowski, 2016],

• Binder loss [Dahl, 2006],

• Variation of information [Wade and Ghahramani, 2018].
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Simplest loss: L0−1

L0−1(c ′) =
∑
c∈An

L0−1(c, c ′)p(c|x) =
∑

c∈An, c 6=c′

p(c|x),

= 1− p(c ′|x)

which is to say that the expected loss of c ′ is all the posterior mass except
that of c ′. So that it is easily minimized at the value c ′ which has maximum
posterior weight:

ĉ = arg min
c′∈An

L0−1(c ′) = arg max
c′∈An

p(c ′|x) := MAP.

Negative results by Rajkowski [2016] show that the mode a posteriori (MAP)
is inconsistent.
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Variation of information

Variation of information (VI) by Meilă [2007] for cluster comparison. From
information theory, compares information in two clusterings with information
shared between the two clusterings:

VI(c, ĉ) = H(c) + H(ĉ)− 2I(c, ĉ)
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Variation of information

Wade and Ghahramani [2018] compare Binder and VI:
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Variation of information

Wade and Ghahramani [2018] provide credible balls around the estimated
clustering, based on Hasse diagram:
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Need for a power-law for Kn

Newman [2005]; Clauset et al. [2009] show that “Power-law distributions occur
in many situations of scientific interest and have significant consequences for
our understanding of natural and man-made phenomena”.

[Image from Newman [2005]]

Hence the need to depart from Kn ∼ α log n induced by a Dirichlet process.
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Chinese restaurant process

Consider discrete data X1, . . .Xn|P
iid∼ P, and P ∼ Q

Features kn ≤ n unique values X ∗1 , . . . ,X
∗
kn with resp. frequencies n1, . . . , nkn

Discrete random probability measures are characterized by predictive distr.

Dirichlet process by Ferguson (1973): P ∼ DP(α,G0)

P[Xn+1 ∈ · |X1, . . .Xn] =
α

α + n
G0(.) +

1

α + n

kn∑
j=1

njδX∗j (.)

Log rate for number of clusters kn � α log n

Product form exchangeable partition probability function

p(n1, . . . , nkn ) = αkn Γ(α)

Γ(α + kn)

kn∏
j=1

(nj − 1)!
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Chinese restaurant process

Consider discrete data X1, . . .Xn|P
iid∼ P, and P ∼ Q

Features kn ≤ n unique values X ∗1 , . . . ,X
∗
kn with resp. frequencies n1, . . . , nkn

Discrete random probability measures are characterized by predictive distr.

Pitman–Yor process by Pitman & Yor (1997): P ∼ PY (σ, α,G0), σ ∈ (0, 1)

P[Xn+1 ∈ · |X1, . . .Xn] =
α + σkn
α + n

G0(.) +
1

α + n

kn∑
j=1

(nj − σ)δX∗j (.)

Power law rate for number of clusters kn � Snσ

Product form exchangeable partition probability function

p(n1, . . . , nkn ) =

∏kn−1
i=1 (α + iσ)

(α + 1)(n−1)

kn∏
j=1

(1− σ)(nj−1)
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Chinese restaurant process

Consider discrete data X1, . . .Xn|P
iid∼ P, and P ∼ Q

Features kn ≤ n unique values X ∗1 , . . . ,X
∗
kn with resp. frequencies n1, . . . , nkn

Discrete random probability measures are characterized by predictive distr.

Gibbs-type processes by Pitman (2003): P ∼ Gibbs(σ, (Vn,k)n,k ,G0), σ < 1

P[Xn+1 ∈ · |X1, . . .Xn] =
Vn+1,kn+1

Vn,kn

G0(.) +
Vn+1,kn

Vn,kn

kn∑
j=1

(nj − σ)δX∗j (.)

Rate for number of clusters kn �


K random variable a.s. finite if σ < 0

α log n if σ = 0

Snσ if σ ∈ (0, 1), (S random variable).

Product form exchangeable partition probability function

p(n1, . . . , nkn ) = Vn,kn

kn∏
j=1

(1− σ)(nj−1)
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Beyond the DP from predictive function viewpoint

A discrete random probability measure P can be classified in 3 main categories
according to P[Xn+1 is “new” | X n]

1) P[Xn+1 is “new” | X n] = f (n,model parameters)
⇐⇒ depends on n but not on kn and (n1, . . . , nkn )
⇐⇒ Dirichlet process (Ferguson, 1973);

2) P[Xn+1 is “new” | X n] = f (n, kn,model parameters)
⇐⇒ depends on n and kn but not on (n1, . . . , nkn )
⇐⇒ Gibbs-type prior (Pitman, 2003);

3) P[Xn+1 is “new” | X n] = f (n, kn, (n1, . . . , nkn ),model parameters)
⇐⇒ depends on n, kn and (n1, . . . , nkn )
⇐⇒ tractability issues
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Tree of discrete random probability measures

CRM SSM

SBP NRMI SB Gibbs

BP Non-homo. Homo. ‡ Ø 0 ‡ < 0

NGG ‡ = 0 PY

NIG ‡-stable DP PT
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Tree of discrete random probability measures

CRM SSM

SBP NRMI SB Gibbs

BP Non-homo. Homo. ‡ Ø 0 ‡ < 0

NGG ‡ = 0 PY

NIG ‡-stable DP PTDP
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Pitman–Yor process I

Proposition (Pitman Sampling formula)

The multiplicities (m1, . . . ,mn) in X1, . . . ,Xn|P
i.i.d.∼ P, P ∼ PY (σ, αP0) have

distribution

p(m1, . . . ,mn) =
n!

(1 + α)(n−1)
(α+σ)·. . .·(α+(Kn−1)σ)

n∏
`=1

1

m`!

(
(1− σ)(`−1)

`!

)m`

Proof
Same technique as for the DP ESF.



68/95

P vs NP Dirichlet process Mixtures Other priors Discovery Research directions References

Pitman–Yor process II

Proposition
Power Law and σ-diversity
For σ > 0 we have the almost sure convergence

n−σKn → Sσ,α,

where Sσ,α is called σ-diversity of the PY,
whose density is a polynomially tilted
Mittag–Leffler density (ML):

gσ,α(x) ∝ xα/σgα(x),

and gα is ML density.
[Image: Wikipedia]



69/95

P vs NP Dirichlet process Mixtures Other priors Discovery Research directions References

Pitman–Yor process III

Theorem
Stick breaking representation for PY process

If Vj
ind∼ Be(1− σ, α + jσ) and p1 = V1, pj = Vj

∏
l<j(1− Vl) and further we

have φj
i.i.d.∼ P0 then

P =
∞∑
j=1

pjδφj ∼ PY (σ, αP0).
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Pitman–Yor process IV

Proposition (Moments of PY)

If P ∼ PY (σ, αP0), then for every measurable sets A,B we have

1) E(P(A)) = P0(A),

2) E(P(A)P(B)) = (1− σ)/(1 +α)P0(A∩B) + (α+ σ)/(1 +α)P0(A)P0(B),

3) cov(P(A),P(B)) = (1− σ)/(1 + α)
(
P0(A ∩ B)− P0(A)P0(B)

)
.

Remark
As before P0 is the mean measure, while σ lowers dependance with respect to
DP.
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Pitman–Yor process V
Proof

1) We use stick–breaking representation:

EP(A) =
∑
j

EpjEδφj =
∑
j

E(pj)P0(A) = P0(A)E(
∑
j

pj) = P0(A).

2) Let X1,X2|P
i.i.d.∼ P, then

E(P(A)P(B)) = P(X1 ∈ A,X2 ∈ B) = P(X1 ∈ A)P(X2 ∈ B|X1 ∈ A).

Lets investigate two terms above: from 1) we know that
P(X1 ∈ A) = P0(A). We know the predictive of PY:

X2|X1 ∼
α + σ

α + 1
P0 +

1− σ
α + 1

δX1 ,

and hence

P(X2 ∈ B|X1 ∈ A) =
α + σ

α + 1
P0(B) +

1− σ
α + 1

P0A(B),

when we used notation P0A(B) = P0(B|A) = P0(A ∩ B)/P0(A) for a
conditional measure.

3) It is straightforward combination of 1) and 2).
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Pitman–Yor process VI

Unlike the DP, PY is not conjugate under incoming independent samples.
However, the posterior can be explicited.

Theorem (Posterior distribution of PY)

If P ∼ PY (σ, αP0) then the posterior of P based on observations X1:n|P
i.i.d.∼ P

has the distribution of the random probability measure

(1− qn)Pn + qn

Kn∑
j=1

p∗j δX∗j ,

where X ∗1:n are the Kn distinct values in X1:n, frequencies are refered to as
n1, . . . , nKn and

• qn ∼ Beta(n − Knσ, α + Knσ),

• (p∗1 , . . . , p
∗
Kn

) ∼ DirKn (n1 − σ, . . . , nKn − σ),

• Pn ∼ PY (σ, (α + σKn)P0).
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Impact of the stability parameter σ
Prior distribution of the number of clusters kn

• α controls the location (as for the DP)
• σ controls the flatness (or variability)

Example with n = 50, α = 1 and σ = 0.2, 0.3, . . . , 0.8

00

0.20.2
1010 0.30.3

0.10.1

0.40.42020
0.50.5

3030
0.60.6

0.20.2

4040 0.70.7

0.80.85050

0.30.3

[Image by De Blasi et al. [2015]]
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Hierarchical Dirichlet process Teh et al. [2006]
A nonparametric version of Latent dirichlet allocation [Blei et al., 2003]

[Image by M. Jordan]
Associated partition distr. called Chinese Restaurant Franchise.
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Indian Buffet process Ghahramani and Griffiths [2006]
Feature allocation model: observations may share several features.
Generative model is as follows

• first customer samples Poisson(γ) dishes
• second customer chooses every dish of first customer wp 1/2, plus

Poisson(γ/2) new dishes
• . . .
• ith step: K dishes have been sampled, each by n1, . . . , nK customers; ith

customer chooses jth dish wp nj/i , plus Poisson(γ/i) new dishes.

Log growth for Kn:

Kn ∼ Poisson(γ log n).

[Image by M. Jordan]
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Discovery problem

• Population of individuals (Xi )i≥1 belonging to an ideally infinite number of
species (θj)j≥1, respective unknown proportions (pj)j≥1

• Given X n = (X1, . . . ,Xn), make inference on the probability that
Xn+1 coincides with a species whose frequency is ` = 0, 1, . . . , n

`-discovery = P(Xn+1 is a species seen ` times in X n)

• Applications arising from ecology, biology, design of experiments,
bioinformatics, genetics, linguistic, economics, network modeling, ...
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Discovery problem, notations

• Given X n, the `-discovery probability is

Dn(`) =
∑

j :#(Xi=θj )=`

pj

• Dn(0) denotes the proportion of yet unobserved species, or the probability
of discovering a new species, or the missing mass

• Let X ∗1 , . . . ,X
∗
kn be the kn distinct observations featured in X n, with

corresponding frequencies (n1,n, . . . , nkn,n)

• The information provided by (n1,n, . . . , nkn,n) can be coded by
mn = (m1,n, . . . ,mn,n) where m`,n = number of species in the sample X n

having frequency `
Under this alternative codification one obtains

∑
1≤`≤n m`,n = kn and∑

1≤`≤n `m`,n = n.
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Good–Turing estimators of discovery

Alan Turing and Irving John Good worked on this problem Bletchley Park to
crack German ciphers for the Enigma machine during World War II. They
proposed the empirical estimator

Ďn(0) =
Number of species observed once

Total number of observations

Ďn(0) =
m1,n

n
, Ďn(`) =

(`+ 1)m`+1,n

n
, ∀` ≤ n

Good (1953)

BNP counterparts of these empirical estimators with appropriate uncertainty
quantification?
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BNP model

BNP approach for estimating Dn(`) based on randomization of unknown
species proportions pi ’s introduced by Lijoi, Mena and Prünster (2007)

Let Q denote a discrete random probability measure with random draws
P =

∑
j≥1 pjδθj . Let X n = (X1, . . . ,Xn) be a sample from a population with

composition P, namely

Xi |P
iid∼ P =

∑
j≥1

pjδθj

P ∼ Q

Define sets

A0 = X\{X ∗1 , . . . ,X ∗kn}
A` = {X ∗j : nj,n = `}

Unknown quantities reduce to

Dn(0) = P(A0) and Dn(`) = P(A`)

Which r.p.m. Q to choose?
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BNP estimators of discovery

Re-write predictive distribution of Gibbs-type random probability measure

P[Xn+1 ∈ A |X n] =
Vn+1,kn+1

Vn,kn

G0(A) +
Vn+1,kn

Vn,kn

kn∑
i=1

(ni,n − σ) δX∗i (A)

BNP estimator of Dn(`) = P(A`) take the form of posterior expectations
D̂n(`) = E[P(A`) |X n]. Derived from the predictive using sets
A0 = X\{X ∗1 , . . . ,X ∗kn} and A` = {X ∗i : ni,n = `}

BNP Good–Turing

D̂n(0) =
Vn+1,kn+1

Vn,kn

PY
= α+σkn

α+n
Ďn(0) =

m1,n

n

D̂n(`) = (`− σ)m`,n
Vn+1,kn
Vn,kn

PY
= (`− σ)

m`,n

α+n
Ďn(`) = (`+ 1)

m`+1,n

n

The most notable difference between D̂n(`) and Ďn(`) consists in the use of the
information contained in the sample X n: Ďn(`) is a function of m`+1,n, and not
on (kn,m`,n) as one would intuitively expect for an estimator of the `-discovery
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Ďn(`) = (`+ 1)

m`+1,n

n

The most notable difference between D̂n(`) and Ďn(`) consists in the use of the
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Credible intervals for discovery

• Arbel et al. [2017]; Arbel and Favaro [2018] Under specification of
Pitman–Yor process prior, the posterior distribution of Dn(`) is a simple
Beta distribution

Dn(0) = P(A0) |X n ∼ Bα+σkn,n−σkn

and
Dn(`) = P(A`) |X n ∼ B(`−σ)m`,n,α+n−(`−σ)m`,n

• Similar results in the general Gibbs class

• Practical tool for deriving credible intervals for the BNP estimator D̂n(`),
for any ` = 0, 1, . . . , n: numerical evaluation of appropriate quantiles of
the distribution of P(A`) |X n
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Credible intervals: sketch of proof

Steps:

1. Compute by induction the posterior moments of P(A) for any set A

2. Evaluate the expressions on the sets A0 and A` to get posterior moments
of Dn(0) and Dn(`)

E[(P(A0))r |X n] =
r∑

i=0

(
r

i

)
(−1)i

Vn+i,kn

Vn,kn

(n − σkn)i

E[(P(A`))r |X n] =
Vn+r,kn

Vn,kn

((`− σ)m`,n)r

3. Identify the moments with moments of known distributions
• Beta for Pitman–Yor
• Mixture of simple r.v. otherwise
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Vn+i,kn

Vn,kn

(n − σkn)i

E[(P(A`))r |X n] =
Vn+r,kn

Vn,kn

((`− σ)m`,n)r

3. Identify the moments with moments of known distributions
• Beta for Pitman–Yor
• Mixture of simple r.v. otherwise
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Application to EST libraries

Application to genomic datasets called Expressed Sequence Tags (EST)
libraries for unicellular organisms sequenced recently

• Naegleria gruberi aerobic library consists of n = 959 ESTs with kn = 473
distinct genes and m`,959 = 346, 57, 19, 12, 9, 5, 4, 2, 4, 5, 4, 1, 1, 1, 1, 1, 1,
for ` ∈ {1, 2, . . . , 12} ∪ {16, 17, 18} ∪ {27} ∪ {55}

• Naegleria gruberi anaerobic library consists of n = 969 ESTs with
kn = 631 distinct genes and m`,969 = 491, 72, 30, 9, 13, 5, 3, 1, 2, 0, 1, 0, 1,
for ` ∈ {1, 2, . . . , 13}

Prior specification: Pitman–Yor process, with empirical Bayes procedure for
estimating (σ, α)

• σ̂ = 0.67, α̂ = 46 for the Naegleria gruberi aerobic library

• σ̂ = 0.65, α̂ = 155 for the Naegleria gruberi anaerobic library
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Application to EST libraries

Posterior distributions of discovery probabilities Dn(`), for ` ∈ {0, 1, 5}: dashed
curve for aerobic, solid curve for anaerobic
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Some research directions in BNP

Methodological

• Mixture models: density, regression, survival analysis, clustering

• Feature allocation models: Indian Buffet process

• Hierarchical model: hierarchical Dirichlet process

• Dependent priors (dependent Dirichlet process), multivariate processes,
non exchangeable data, copulas

• Gaussian processes

• Model selection, high dimensional setting, sparsity

• Relational data, networks, random graphs

• Structured data, segmentation of images, graphs, time series

• Extreme value theory

• . . .
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Some research directions in BNP

Theoretical

• Theoretical validation, eg asymptotic behavior of the posterior:
consistency, rates of convergence, Bernstein–von Mises theorem

• Support properties for priors: full support

• Model misspecification

• . . .
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Some research directions in BNP

Computational

• Markov chain Monte Carlo algorithms

• Scalable algorithms in the context of Big Data: variational inference

• Links with Machine Learning, Bayesian Deep Learning and Deep Bayesian
Learning

• . . .
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Some research directions in BNP

Applications

• Biostatistics

• Environmental science, ecotoxicology

• Neurosciences, neuroimaging

• Astrophysics

• Linguistics
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