Introduction to Bayesian nonparametrics

\boxtimes julyan.arbel@inria.fr 色 www.julyanarbel.com

Cinzía Grenoble, France

Rencontres Statistiques de Rochebrune 26-28 March, 2018, Megève, France

Acknowledgement and useful links I

My slides are inspired by the following introductions to Bayesian nonparametric approaches that I found myself very useful:

- Botond Szabo's tutorial introduction
- Kurt Miller's tutorial introduction
- Peter Orbanz' tutorials webpage, as well as his lecture notes
- Yee Whye Teh's tutorial at MLSS 2011
- Mike Jordan's tutorial at NIPS 2005

Acknowledgement and useful links II

I also have some handwritten lecture notes for a Master/PhD course on Bayesian nonparametrics

Thanks Michał Lewandowski for typing help.

Table of Contents

Motivations to go nonparametric

Introduction to Dirichlet process

Mixtures and model-based clustering

Priors beyond the DP

Discovery probabilities

Some research directions

Table of Contents

Motivations to go nonparametric

Introduction to Dirichlet process

Mixtures and model-based clustering

Priors beyond the DP

Discovery probabilities

Some research directions

Parametric versus nonparametric

Parametric models

- Finite and fixed number of parameters
- Number of parameters is independent of the dataset

Nonparametric models

- Do have parameters
- Can be understood as having an infinite number of parameters
- Can be understood as having a random number of parameters
- Number of parameters can grow with the dataset

Underlying function

True function

Data

Observations

Parametric fitting

Parametric

Non-parametric fitting

Nonparametric

Parametric vs. Nonparametric models

Complexity of the model $\left\{P_{\theta}: \theta \in \Theta\right\}$:

Models:	Parametric
Dimension:	Finite dimensional Θ.
Advanta-	
ges:	Easier to handle and make in- terpretations of the results. Computationally faster.
Disadvan-	Without strong belief in the particular structure of the model not reliable.
Examples:	Poisson (number of car crashes, typos in a book). Normal distribution (grades of students, height, weight, foot- size of people).

Nonparametric

Infinite dimensional Θ.
Less chance for misspecifications.

More flexible.
Computationally and analytically challenging.

Density, regression function estimation.

Clustering (unknown cluster size and number).

Noisy picture

Parametric

Nonparametric

Bayesian nonparametric priors

Two main categories of priors depending on parameter spaces

Bayesian nonparametric priors

Two main categories of priors depending on parameter spaces Spaces of functions random functions

- Continuous stochastic processes
e.g. Gaussian processes
- Random basis expansions
- Random densities (expon.)

[Wikipedia]

Bayesian nonparametric priors

Two main categories of priors depending on parameter spaces

Spaces of functions random functions

- Continuous stochastic processes
e.g. Gaussian processes
- Random basis expansions
- Random densities (expon.)

Spaces of probability measures random probability measures (RPM)

- Often discrete proba. measures Cornerstone: Dirichlet process We'll see others: Pitman-Yor, Normalized generalized gamma process, Normalized stable process, Gibbs-type processes, Normalized random measures, etc

[Brix, 1999]

Bayesian nonparametric priors

Two main categories of priors depending on parameter spaces

Spaces of functions random functions

- Continuous stochastic processes
e.g. Gaussian processes
- Random basis expansions
- Random densities (expon.)

Spaces of probability measures random probability measures (RPM)

- Often discrete proba. measures Cornerstone: Dirichlet process We'll see others: Pitman-Yor, Normalized generalized gamma process, Normalized stable process, Gibbs-type processes, Normalized random measures, etc

[Brix, 1999]

Table of Contents

Motivations to go nonparametric

Introduction to Dirichlet process

Mixtures and model-based clustering

Priors beyond the DP

Discovery probabilities

Some research directions

Dirichlet distribution

A Dirichlet distribution on a simplex Δ_{K} is a probability distribution with parameters $\alpha_{i}>0$ and a density function

$$
f\left(x_{1}, \ldots, x_{K} ; \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{1}{B(\alpha)} \prod_{i=1}^{K} x_{i}^{\alpha_{i}-1}
$$

It is common to refer to Dirichlet distribution as $\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$.
Remark Dirichlet distribution conjugate for multinomial distribution.

$(2,2,2)$
$(2,2,5)$
$(5,5,5)$
$(0.7,0.7,0.7)$

Dirichlet process

A central Bayesian nonparametric prior (Ferguson, 1973)
Definition (Dirichlet process)
A Dirichlet process on the space \mathcal{Y} is a random process P such that there exist α (precision parameter) and G_{0} (base/centering distribution) such that for any finite partition $\left\{A_{1}, \ldots, A_{d}\right\}$ of \mathcal{V}, the random $\operatorname{vector}\left(P\left(A_{1}\right), \ldots, P\left(A_{d}\right)\right)$ is Dirichlet distributed

$$
\left(P\left(A_{1}\right), \ldots, P\left(A_{d}\right)\right) \sim \operatorname{Dir}\left(\alpha G_{0}\left(A_{1}\right), \ldots, \alpha G_{0}\left(A_{d}\right)\right)
$$

Notation: $\mathrm{P} \sim \mathrm{DP}\left(\alpha, \mathrm{G}_{0}\right)$

Dirichlet process

A central Bayesian nonparametric prior (Ferguson, 1973)
Definition (Dirichlet process)
A Dirichlet process on the space \mathcal{Y} is a random process P such that there exist α (precision parameter) and G_{0} (base/centering distribution) such that for any finite partition $\left\{A_{1}, \ldots, A_{d}\right\}$ of \mathcal{V}, the random vector $\left(P\left(A_{1}\right), \ldots, P\left(A_{d}\right)\right)$ is Dirichlet distributed

Notation: $P \sim D P\left(\alpha, G_{0}\right)$

Dirichlet process

A central Bayesian nonparametric prior (Ferguson, 1973)

Definition (Dirichlet process)

A Dirichlet process on the space \mathcal{Y} is a random process P such that there exist α (precision parameter) and G_{0} (base/centering distribution) such that for any finite partition $\left\{A_{1}, \ldots, A_{d}\right\}$ of \mathcal{Y}, the random vector $\left(P\left(A_{1}\right), \ldots, P\left(A_{d}\right)\right)$ is Dirichlet distributed

$$
\left(P\left(A_{1}\right), \ldots, P\left(A_{d}\right)\right) \sim \operatorname{Dir}\left(\alpha G_{0}\left(A_{1}\right), \ldots, \alpha G_{0}\left(A_{d}\right)\right)
$$

Notation: $P \sim D P\left(\alpha, G_{0}\right)$

Moments of Dirichlet process I

Proposition

Let $p \sim D P\left(\alpha, P_{0}\right)$ then for every measurable sets A, B we have

$$
\begin{align*}
\mathbb{E}(p(A)) & =P_{0}(A), \tag{1}\\
\operatorname{Var}(p(A)) & =\frac{P_{0}(A)\left(1-P_{0}(A)\right)}{1+\alpha}, \tag{2}\\
\operatorname{cov}(p(A), p(B)) & =\frac{P_{0}(A \cap B)-P_{0}(A) P_{0}(B)}{1+\alpha} . \tag{3}
\end{align*}
$$

Moments of Dirichlet process II

Proof

We will make use of $p(A) \sim \operatorname{Beta}\left(\alpha P_{0}(A), \alpha\left(1-P_{0}(A)\right)\right)$. From this we obtain

$$
\mathbb{E}(p(A))=\frac{\alpha P_{0}(A)}{\alpha\left(P_{0}(A)+1-P_{0}(A)\right)}=P_{0}(A)
$$

and

$$
\operatorname{Var}(p(A))=\frac{\alpha^{2} P_{0}(A)\left(1-P_{0}(A)\right)}{\alpha^{2}(\alpha+1)}
$$

We derive the covariance term in two cases, firstly taking into consideration the one with $A \cap B=\emptyset$. In that case any space Ω may be decomposed into three sets:

$$
\Omega=\left\{A, B,(A \cup B)^{c}\right\}
$$

Using de Morgan's law the last can be written as $(A \cup B)^{c}=A^{c} \cap B^{c}=: C$. Therefore we may write a joint probability vector

$$
\left(p(A), p(B), p\left(A^{c} \cap B^{c}\right)\right) \sim \operatorname{Dir}\left(\alpha P_{0}(A), \alpha P_{0}(B), \alpha P_{0}(C)\right)
$$

Moments of Dirichlet process III
and hence $\operatorname{cov}(p(A), p(B))=-P_{0}(A) P_{0}(B) /(1+\alpha)$. In the more general case one may decompose

$$
\begin{aligned}
& A=(A \cap B) \cup\left(A \cap B^{c}\right) \\
& B=(B \cap A) \cup\left(B \cap A^{c}\right),
\end{aligned}
$$

so that

$$
\operatorname{cov}(P(A), P(B))=\operatorname{cov}\left(P(A \cap B)+P\left(A \cap B^{c}\right), P(B \cap A)+P\left(B \cap A^{c}\right)\right)
$$

and so forth using the linearity of covariance.

Marginalizing out the DP

Property 1 can be written equivalently as

$$
\begin{equation*}
\mathbb{E}(P(A))=P_{0}(A)=\int P(A) d D P(P) \tag{4}
\end{equation*}
$$

A Dirichlet process model can be constructed as two level sampling:

$$
\left\{\begin{array}{c}
P \sim D P\left(\alpha, P_{0}\right) \\
X \mid P \sim P
\end{array}\right.
$$

i.e. we sample probability measure P from the Dirichlet process and then given P we sample random variables X_{i}.

Marginalizing out P , we obtain the marginal distribution of X :

$$
X \sim P_{0}
$$

Posterior distribution I

Let $X_{1}, \ldots, X_{n}=: X_{1: n}$ be sampled from the hierarchical model

$$
\left\{\begin{array}{c}
P \sim D P\left(\alpha, P_{0}\right) \tag{5}\\
X_{1: n} \mid P \stackrel{i . i . d .}{\sim} P
\end{array}\right.
$$

This model is usually used as a building block in a larger hierarchical model, e.g. mixture models, graphs etc.

Theorem (Ferguson [1973])
The posterior of P as presented in (5) is

$$
\begin{equation*}
P \mid X_{1: n} \sim D P\left(\alpha P_{0}+\sum_{i=1}^{n} \delta X_{i}\right) \tag{6}
\end{equation*}
$$

The predictive distribution of a next observation is given by

$$
\begin{equation*}
\mathbb{P}\left(X_{n+1} \mid X_{1: n}\right)=\frac{\alpha}{\alpha+n} P_{0}+\frac{1}{\alpha+n} \sum_{i=1}^{n} \delta X_{i} \tag{7}
\end{equation*}
$$

Posterior distribution II

The predictive (7) is also called Polya Urn schema or Blackwell-MacQueen Urn Schema.

Posterior distribution III

Proof

Property (6) can be obtained by remarking that the posterior distribution of $P\left(A_{1}\right), \ldots, P\left(A_{k}\right)$ depends on the observations only via their cell counts (it comes from tail-free property). Denote $N_{j}=\#\left\{1 \leq i \leq n: x_{i} \in A_{j}\right\}$, i.e. the number of observations in each partition of X. Then we have

$$
\left(P\left(A_{1}\right), \ldots, P\left(A_{k}\right)\right)\left|X_{1: n} \stackrel{\mathrm{~d}}{=}\left(P\left(A_{1}\right), \ldots, P\left(A_{k}\right)\right)\right| N_{1: k}
$$

Lets use shorthand notation: $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\left(P\left(A_{1}\right), \ldots, P\left(A_{k}\right)\right)$ and $N=\left(N_{1}, \ldots, N_{k}\right)$. Then

$$
\left\{\begin{array}{c}
N \mid P \sim \operatorname{Multinom}_{k}\left(P\left(A_{1}\right), \ldots, P\left(A_{k}\right)\right) \\
\left(P\left(A_{1}\right), \ldots, P\left(A_{k}\right)\right) \sim \operatorname{Dir}_{k}\left(\alpha P_{0}\left(A_{1}\right), \ldots, \alpha P_{0}\left(A_{k}\right)\right)
\end{array}\right.
$$

and hence we obtain the prior of the form

$$
p(\alpha) \propto \alpha_{1}^{\alpha P_{0}\left(A_{1}\right)-1} \ldots \alpha_{k}^{\alpha P_{0}\left(A_{k}\right)-1}
$$

while sampling model is

$$
p(N \mid \alpha) \propto \alpha_{1}^{N_{1}} \ldots \alpha_{k}^{N_{k}}
$$

Posterior distribution IV

This results in the posterior of form
$p(\alpha \mid N) \propto \alpha_{1}^{\alpha P_{0}\left(A_{1}\right)+N_{1}-1} \ldots \alpha_{k}^{\alpha P_{0}\left(A_{k}\right)+N_{k}-1}=\operatorname{Dir}_{k}\left(\alpha P_{0}\left(A_{1}\right)+N_{1}, \ldots, \alpha P_{0}\left(A_{k}\right)+N_{k}\right)$.
Property (7) is a result of taking the expected value of (6).

Combinatorial properties: Number of distinct values I

Assume that the base measure P_{0} is non-atomic. Then with probability 1 :

$$
X_{i} \notin\left\{X_{1}, \ldots, X_{i-1}\right\} \Leftrightarrow X_{i} \sim P_{0} .
$$

Let $D_{i}=\mathbb{I}\left(X_{i}\right.$ is a new value $)$ and lets denote $K_{n}=\sum_{i=1}^{n} D_{i}$, a number of distinct values X_{1}, \ldots, X_{n} with distribution $\mathcal{L}\left(K_{n}\right)$.

Proposition

Random variables D_{i} are distributed i.i.d. with respect to Bernoulli $(\alpha /(\alpha+i-1))$. Therefore for fixed α and for $n \rightarrow \infty$ we have:
i) $\mathbb{E} K_{n} \sim \alpha \log n \sim \operatorname{Var}\left(K_{n}\right)$
ii) $K_{n} / \log (n) \xrightarrow{\text { a.s. }} \alpha$
iii) $\left(K_{n}-\mathbb{E} K_{n}\right) / s d\left(K_{n}\right) \rightarrow N(0,1)$
iv) $d_{T V}\left(\mathcal{L}\left(K_{n}\right), \operatorname{Poisson}\left(\mathbb{E} K_{n}\right)\right)=o(1 / \log (n))$ where

$$
d_{T V}(P, Q)=\sup |P(A)-Q(A)|
$$

over measurable partition A

Combinatorial properties: Number of distinct values II

Proof

i) $\mathbb{E} K_{n}=\sum_{i=1}^{n} \frac{\alpha}{\alpha+i-1}$ and $\operatorname{Var}\left(K_{n}\right)=\sum_{i=1}^{n} \frac{\alpha(i-1)}{(\alpha+i-1)^{2}}$.
ii) Since D_{i} 's are \mathbb{I} one may use Kolmogorov law of strong numbers and

$$
\sum_{i=1}^{\infty} \frac{\operatorname{Var}\left(D_{i}\right)}{(\log i)^{2}}=\sum_{i=1}^{\infty} \frac{\alpha(i-1)}{(\alpha+i-1)^{2}(\log i)^{2}}<\infty
$$

by e.g. the fact that $\sum_{i}\left(1 / i(\log i)^{2}\right)$ converges.
iii) By Lindeberg central limit theorem.
iv) This is implied from Chein-Stein approximation.

Combinatorial properties: Number of distinct values III

Theorem
Suppose X_{i} are i.i.d. such that $\mathbb{E} X_{i}=\mu_{i}$ and $\operatorname{Var} X_{i}=\sigma_{i}^{2}<\infty$. Define $Y_{i}=X_{i}-\mu_{i}, T_{n}=\sum_{i=1}^{n} Y_{i}, s_{n}^{2}=\operatorname{Var}\left(T_{n}\right)=\sum_{i=1}^{n} \sigma_{i}^{2}$. Then provided that

$$
\forall \epsilon>0 \quad \frac{1}{s_{n}^{2}} \sum_{i=1}^{n} \mathbb{E}\left(Y_{i}^{2} \mathbb{I}\left(\left|Y_{i}\right|>\epsilon s_{n}\right)\right) \xrightarrow{n \rightarrow \infty} 0
$$

we have $T_{n} / s_{n} \xrightarrow{d} N(0,1)$.

Combinatorial properties: Distribution of distinct values I

We have now the limits of K_{n} and we know its approximate distribution $\mathcal{L}\left(K_{n}\right)$. The exact distribution of K_{n} is:

Proposition

If P_{0} is non-atomic then

$$
\begin{equation*}
\mathbb{P}\left(K_{n}=k\right)=\mathfrak{C}_{n}(k) n!\alpha^{k} \frac{\Gamma(\alpha)}{\Gamma(\alpha+n)} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{C}_{n}(k)=\frac{1}{n!} \sum_{S \in \mathfrak{J}_{n}(k)} \prod_{j \in S} j \tag{9}
\end{equation*}
$$

and $\mathfrak{J}_{n}(k)=\{S \subset\{1, \ldots, n-1\},|S|=n-k\}$.
Recall the definition of the Gamma function $\Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u$.

Combinatorial properties: Distribution of distinct values II

Let us consider when we may deal with events $K_{n}=k$: we have two cases

$$
\left\{\begin{array}{l}
K_{n-1}=k-1 \text { and } X_{n} \text { is a new value } \\
K_{n-1}=k \text { and } X_{n} \text { is not a new value. }
\end{array}\right.
$$

This results in

$$
\begin{equation*}
p_{n}(k, \alpha):=\mathbb{P}\left(k_{n}=k \mid \alpha\right)=\frac{\alpha}{\alpha+n-1} p_{n-1}(k-1, \alpha)+\frac{n-1}{\alpha+n-1} p_{n-1}(k, \alpha) . \tag{10}
\end{equation*}
$$

Now let us remark that $\mathfrak{C}_{n}(k)=p_{n}(k, \alpha=1)$. Therefore

$$
\begin{equation*}
\mathfrak{C}_{n}(k)=\frac{1}{n} \mathfrak{C}_{n-1}(k-1)+\frac{n-1}{n} \mathfrak{C}_{n-1}(k) . \tag{11}
\end{equation*}
$$

By induction over n : first we check case $n=1$:

$$
\begin{equation*}
p_{1}(1, \alpha)=\mathfrak{C}_{1}(1) \frac{\alpha}{\alpha}=\mathfrak{C}_{1}(1) \tag{12}
\end{equation*}
$$

Combinatorial properties: Distribution of distinct values III

To check case $n>1$ we use (8) and then (10):

$$
\begin{aligned}
p_{n}(k, \alpha) & =\frac{\alpha}{\alpha+n-1} p_{n-1}(k-1, \alpha)+\frac{n-1}{\alpha+n-1} p_{n-1}(k, \alpha) \\
& =\frac{\alpha}{\alpha+n-1} \mathfrak{C}_{n-1}(k-1)(n-1)!\alpha^{k-1} \frac{\Gamma(\alpha)}{\Gamma(\alpha+n-1)}+ \\
& +\frac{n-1}{\alpha+n-1} \mathfrak{C}_{n-1}(k)(n-1)!\alpha^{k} \frac{\Gamma(\alpha)}{\Gamma(\alpha+n-1)} \\
& =\frac{\alpha^{k}}{\alpha+n-1}(n-1)!\frac{\Gamma(\alpha)}{\Gamma(\alpha+n-1)} n\left(\frac{1}{n} \mathfrak{C}_{n-1}(k-1)+\frac{n-1}{n} \mathfrak{C}_{n-1}(k)\right) \\
& =\mathfrak{C}_{n}(k) n!\alpha^{k} \frac{\Gamma(\alpha)}{\Gamma(\alpha+n)},
\end{aligned}
$$

which proves property (8).

Combinatorial properties: Distribution of distinct values IV

To prove (9) let use define a polynomial $A_{n}(s)$ as $A_{n}(s)=\sum_{i=1}^{\infty} \mathfrak{C}_{n}(k) s^{k}$. Then using (11) polynomial $A_{n}(s)$ can be written as

$$
\begin{aligned}
A_{n}(s) & =\sum_{k=1}^{\infty}\left(\frac{1}{n} \mathfrak{C}_{n-1}(k-1)+\frac{n-1}{n} \mathfrak{C}_{n-1}(k)\right) s_{k} \\
& =\frac{1}{n}\left(s A_{n-1}(s)+(n-1) A_{n-1}(s)\right)=\frac{s+n-1}{n} A_{n-1}(s) \\
& =\ldots=A_{1}(s) \prod_{j=2}^{n} \frac{s+j-1}{j}=\frac{s(s+1) \cdot \ldots \cdot(s+n-1)}{n!}
\end{aligned}
$$

Last equality implies from the fact that $\mathfrak{C}_{1}(k)=1 \delta_{k 1}$ and hence $A_{1}(s)=s$. Checking terms after the expansion finishes the proof of (9).

Combinatorial properties: Chinese Restaurant process I

Chinese restaurant process: a culinary metaphor of the random partition induced by the DP. Customers join a populated table with probability $n_{j} /(\alpha+n)$, where n_{j} denotes the number of clients already sitting around the table or sit at new table with probability $\alpha /(\alpha+n)$.

Proposition

A random sample $X_{1: n}$ from a DP with precision parameter α induces a partition of $\{1, \ldots, n\}$ into k sets of sizes n_{1}, \ldots, n_{k} with probability

$$
p\left(n_{1}, \ldots, n_{k}\right)=p\left(\left\{n_{1}, \ldots, n_{k}\right\}\right)=\alpha^{k} \frac{\Gamma(\alpha)}{\Gamma(\alpha+n)} \prod_{j=1}^{k} \Gamma\left(n_{j}\right)
$$

Combinatorial properties: Chinese Restaurant process II

Combinatorial properties: Chinese Restaurant process III

Proof

We will use the Polya urn schema slightly changed by using n_{1}, \ldots, n_{k}

$$
\mathbb{P}\left(X_{n+1} \mid X_{1: n}\right)=\frac{\alpha}{\alpha+n} P_{0}+\frac{1}{\alpha+n} \sum_{j=1}^{k} n_{j} \delta_{X_{j}^{*}}
$$

By exchangeability, the distribution of $\left\{n_{1}, \ldots, n_{k}\right\}$ does not depend on the order of the observations. Let's compute $p\left(n_{1}, \ldots, p_{k}\right)$ as the probability of one draw where the first table consists of first n_{1} observations etc.
To proceed, let us use Polya urn scheme: we denote $\bar{n}_{j}=\sum_{i=1}^{j} n_{i}$ and hence $\bar{n}_{k}=n$, the total number of observations. We can observe the following pattern: first ball open new table, following $n_{j}-1$ ones fill in that table and so forth. That quantity can be rewritten as

$$
\frac{\alpha^{k}}{\alpha(\alpha+1) \ldots(\alpha+n-1)} \prod_{j=1}^{k}\left(n_{j}-1\right)!
$$

Combinatorial properties: Chinese Restaurant process IV

where one can rewrite both terms using Gamma function $\Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u$: the first term can be written as

$$
\frac{\alpha^{k}}{\alpha(\alpha+1) \ldots(\alpha+n-1)}=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}
$$

while the second one as $\left(n_{j}-1\right)!=\Gamma\left(n_{j}\right)$. One should remark that for ordered partitions we have

$$
\bar{p}\left(n_{1}, \ldots, n_{k}\right)=\frac{p\left(n_{1}, \ldots, n_{k}\right)}{k!}
$$

Combinatorial properties: Ewens sampling formula I

Ewens sampling formula (ESF), presented originally by Ewens [1972], is the distribution of multiplicities $m=\left(m_{1}, \ldots, m_{n}\right), m_{\ell}$ is the number of groups of size ℓ.
Also known as allelic partitions in population genetics, when there is no selective difference between types: null hypothesis in non Darwinian theory.
Proposition (Ewens [1972]; Antoniak [1974])
Random variables X_{1}, \ldots, X_{n} generated from a DP has multiplicity class $\left(m_{1}, \ldots, m_{n}\right)$ with probability

$$
p\left(m_{1}, \ldots, m_{n}\right)=\frac{\alpha^{k}}{\alpha_{(n)}} \frac{n!}{\prod_{\ell=1}^{n} \ell^{m_{\ell}} m_{\ell}!} .
$$

Notation $n_{(k)}:=n(n-1) \cdot \ldots \cdot(n-k+1)$.

Combinatorial properties: Ewens sampling formula II

Proof

Two steps: 1) Compute probability of particular sequence of X_{1}, \ldots, X_{n} in given class (m_{1}, \ldots, m_{n}), note that all such sequences are equally likely and 2) multiply obtained quantity by the number of such sequences.

1) Consider a sequence X_{1}, \ldots, X_{n} such that $X_{1}, \ldots, X_{m_{1}}$ occur each only once, then the next m_{2} occur only twice and so on. This sequence has probability which may be obtained by the Polya Urn scheme in the same fashion as CRP:

$$
\frac{\alpha^{m_{1}}(\alpha \cdot 1)^{m_{2}} \ldots(\alpha \cdot 1 \cdot \ldots \cdot(n-1))^{m_{n}}}{\alpha_{(n)}}=\frac{\alpha^{k}}{\alpha_{(n)}} \prod_{\ell=1}^{n}((\ell-1)!)^{m_{\ell}} .
$$

2) Number of sequences X_{1}, \ldots, X_{n} with frequencies $\left(m_{1}, \ldots, m_{n}\right)$ is a number of ways of putting n distinct objects into bins, so called multinomial coefficient. Since ordering of the m_{ℓ} bins of frequency ℓ is irrelevant, divide by m_{ℓ} !:

$$
\frac{1}{\prod_{l=1}^{n}\left(m_{\ell}\right)!}\binom{n}{1 \times \# m_{1}, 2 \times \# m_{2}, \ldots, n \times \# m_{n}}=\frac{n!}{\prod_{\ell=1}^{n} m_{\ell}!(\ell!)^{m_{\ell}}}
$$

To finish one needs to multiply results obtained in 1) and 2).

Stick-breaking representation

The DP has almost surely discrete realizations (Sethuraman, 1994)


```
- locations }\mp@subsup{0}{j}{}\stackrel{\mathrm{ iid }}{~}\mp@subsup{G}{0}{
- weights }\mp@subsup{\pi}{j}{}=\mp@subsup{\tilde{\pi}}{j}{}\mp@subsup{\prod}{1<j}{}(1-\mp@subsup{\tilde{\pi}}{l}{})\mathrm{ with
\tilde{\pi}
```


Stick-breaking representation

The DP has almost surely discrete realizations (Sethuraman, 1994)

$$
P=\sum_{j=1}^{\infty} \pi_{j} \delta_{\theta_{j}}
$$

- locations $\theta_{j} \stackrel{\text { iid }}{\sim} G_{0}$
- weights $\pi_{j}=\tilde{\pi}_{j} \prod_{l<j}\left(1-\tilde{\pi}_{l}\right)$ with $\tilde{\pi}_{j} \stackrel{\text { iid }}{\sim} \operatorname{Beta}(1, \alpha)$,

Stick-breaking representation

The DP has almost surely discrete realizations (Sethuraman, 1994)

$$
P=\sum_{j=1}^{\infty} \pi_{j} \delta_{\theta_{j}}
$$

- locations $\theta_{j} \stackrel{\text { iid }}{\sim} G_{0}$
- weights $\pi_{j}=\tilde{\pi}_{j} \prod_{l<j}\left(1-\tilde{\pi}_{l}\right)$ with $\tilde{\pi}_{j} \stackrel{\text { iid }}{\sim} \operatorname{Beta}(1, \alpha)$,

Stick-breaking representation

The DP has almost surely discrete realizations (Sethuraman, 1994)

$$
P=\sum_{j=1}^{\infty} \pi_{j} \delta_{\theta_{j}}
$$

- locations $\theta_{j} \stackrel{\text { iid }}{\sim} G_{0}$
- weights $\pi_{j}=\tilde{\pi}_{j} \prod_{l<j}\left(1-\tilde{\pi}_{l}\right)$ with $\tilde{\pi}_{j} \stackrel{\text { iid }}{\sim} \operatorname{Beta}(1, \alpha)$,

Stick-breaking representation

The DP has almost surely discrete realizations (Sethuraman, 1994)

$$
P=\sum_{j=1}^{\infty} \pi_{j} \delta_{\theta_{j}}
$$

- locations $\theta_{j} \stackrel{\text { iid }}{\sim} G_{0}$
- weights $\pi_{j}=\tilde{\pi}_{j} \prod_{l<j}\left(1-\tilde{\pi}_{l}\right)$ with $\tilde{\pi}_{j} \stackrel{\text { iid }}{\sim} \operatorname{Beta}(1, \alpha)$,

Stick-breaking representation I

Theorem (Sethuraman [1994])
If $V_{1}, V_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim} B e(1, \alpha)$ and $\phi_{1}, \phi_{2}, \ldots \stackrel{\text { i.i.d. }}{\sim} P_{0}$ are i.i.d. variables, then define $p_{1}=V_{1}$ and

$$
p_{j}=V_{j} \prod_{1 \leq \backslash \leq j}\left(1-V_{l}\right)
$$

then

$$
P=\sum_{i=1}^{\infty} p_{i} \delta_{\phi_{i}} \sim D P\left(\alpha, P_{0}\right) .
$$

Stick-breaking representation II

Lemma
For independent $\phi \sim P_{0}$ and $V \sim \operatorname{Be}(1, \alpha)$ the $D P$ is the only solution of the distributional equation

$$
\begin{equation*}
P \stackrel{\mathrm{~d}}{=} V \delta_{\phi}+(1-V) P \tag{13}
\end{equation*}
$$

where $P \sim D P\left(\alpha, P_{0}\right)$.

Stick-breaking representation III

Proof

1) The weights (p_{1}, p_{2}, \ldots) need to form a probability vector. The leftover mass at stage j is

$$
1-\left(\sum_{i=1}^{j} p_{i}\right)=\prod_{i=1}^{j}\left(1-V_{i}\right)=: R_{j} .
$$

One may notice that R_{j} is decreasing and for every j we have $R_{j} \in[0,1]$, hence we obtain almost sure convergence which is equivalent with convergence in mean. Therefore

$$
\mathbb{E} R_{j}=\mathbb{E} \prod_{j}\left(1-V_{j}\right)=\prod_{j} \mathbb{E}\left(1-V_{j}\right)=\left(\frac{\alpha}{\alpha+1}\right)^{j} \rightarrow 0 .
$$

So (p_{1}, \ldots) is a probability vector almost surely and P is a probability measure almost surely.

Stick-breaking representation IV

2) Now one may write

$$
P=p_{1} \delta_{\phi_{1}}+\sum_{j=2}^{\infty} p_{j} \delta_{\phi_{j}}=V_{1} \delta_{\phi_{1}}+\left(1-V_{1}\right) \sum_{j=1}^{\infty} \tilde{p}_{j} \delta_{\tilde{\phi}_{j}},
$$

where $\tilde{\rho}_{j}=\frac{p_{j+1}}{1-V_{1}}=V_{j+1} \prod_{l=2}^{j}\left(1-V_{l}\right)$ and $\tilde{\phi}_{j}=\phi_{j+1}$, then $\left(\tilde{p}_{j}\right)$ and $\left(\tilde{\phi}_{j}\right)$ satisfy the same distributional definitions as $\left(p_{j}\right)$ and $\left(\phi_{j}\right)$, hence $\tilde{P} \stackrel{\mathrm{~d}}{=} P$ and so P is solution of the Lemma equation (13) whose only solution is the DP.

DP as a normalized Gamma process I

The DP can be obtained by normalizing a Gamma process. It is a generic way to obtain independently distributed probability measures from almost surely finite random measures. Let us investigate for the case $\mathcal{Y}=\mathbb{R}$.

Definition

Gamma process on \mathbb{R}_{+}is a process $(S(u): u \geq 0)$ with independent increments satisfying

$$
\forall u_{1}: 0 \leq u_{1} \leq u_{2}: \quad S\left(u_{2}\right)-S\left(u_{1}\right) \stackrel{\perp}{\sim} G a\left(u_{2}-u_{1}, 1\right) .
$$

This ensures that the process has non-decreasing right continuous sample path $u \mapsto S(u)$.

Theorem

For every $\alpha>0$ and for every cumulative distribution function G, a random cumulative distribution function such that

$$
F(t)=\frac{S(\alpha G(t))}{S(\alpha)}
$$

is the distribution of a $D P(\alpha, G)$.

DP as a normalized Gamma process II

Proof

For any set of t_{i} satisfying $-\infty=t_{0}<t_{1}<\ldots<t_{k}=\infty$ we have

$$
S\left(\alpha G\left(t_{i}\right)\right)-S\left(\alpha G\left(t_{i-1}\right)\right) \sim G a\left(\alpha G\left(t_{i}\right)-\alpha G\left(t_{i-1}\right), 1\right)
$$

Use property that if $Y_{i} \stackrel{\text { ind }}{\sim} \operatorname{Ga}\left(\alpha_{i}, 1\right)$ then $\left(Y_{1}, \ldots, Y_{n}\right) / \sum_{i} Y_{i} \sim \operatorname{Dir}_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ to obtain
$\left(F\left(t_{1}\right)-F\left(t_{0}\right), \ldots, F\left(t_{k}\right)-F\left(t_{k-1}\right)\right) \sim \operatorname{Dir}_{k}\left(\alpha G\left(t_{1}\right)-\alpha G\left(t_{0}\right), \ldots, \alpha G\left(t_{k}\right)-\alpha G\left(t_{k-1}\right)\right)$.
Hence the definition of DP holds for every partition in intervals. These form a measure determining class, so that the definition holds for every partition in general.

Definition via the Polya Urn Scheme

A Polya sequence with parameter αP_{0} is a sequence of random variables X_{1}, \ldots, X_{n} whose joint distribution satisfies

$$
\begin{equation*}
X_{1} \sim P_{0}, X_{n+1} \mid X_{1}, \ldots, X_{n} \sim \frac{\alpha}{\alpha+n} P_{0}+\frac{1}{\alpha+n} \sum_{i=1}^{n} \delta X_{i} \tag{14}
\end{equation*}
$$

[^0]
Definition via the Polya Urn Scheme

A Polya sequence with parameter αP_{0} is a sequence of random variables X_{1}, \ldots, X_{n} whose joint distribution satisfies

$$
\begin{equation*}
X_{1} \sim P_{0}, X_{n+1} \mid X_{1}, \ldots, X_{n} \sim \frac{\alpha}{\alpha+n} P_{0}+\frac{1}{\alpha+n} \sum_{i=1}^{n} \delta X_{i} \tag{14}
\end{equation*}
$$

Theorem If X_{1}, X_{2}, \ldots is a Polya sequence then exists random probability measure P such that $X_{i} \mid P \stackrel{\text { i.i.d. }}{\sim} P$ and $P \sim D P\left(\alpha, P_{0}\right)$.
Proof
We can consider Polya sequence as an outcome of Polya urn, we see that it is exchangeable. By de Finetti theorem exists such probability measure P such that $X_{i} \mid P \stackrel{i i d}{\sim} P$. So far we have proved existence of the DP and know that DP generates a Polya sequence. Since the RPM given by de Finetti's theorem is unique this proves that $P \sim D P\left(\alpha, P_{0}\right)$.

Definition via the Polya Urn Scheme

A Polya sequence with parameter αP_{0} is a sequence of random variables X_{1}, \ldots, X_{n} whose joint distribution satisfies

$$
\begin{equation*}
X_{1} \sim P_{0}, X_{n+1} \mid X_{1}, \ldots, X_{n} \sim \frac{\alpha}{\alpha+n} P_{0}+\frac{1}{\alpha+n} \sum_{i=1}^{n} \delta x_{i} \tag{14}
\end{equation*}
$$

Theorem
If X_{1}, X_{2}, \ldots is a Polya sequence then exists random probability measure P such that $X_{i} \mid P \stackrel{\text { i.i.d. }}{\sim} P$ and $P \sim D P\left(\alpha, P_{0}\right)$.

Proof

We can consider Polya sequence as an outcome of Polya urn, we see that it is exchangeable. By de Finetti theorem exists such probability measure P such that $X_{i} \mid P \stackrel{i . i . d .}{\sim} P$. So far we have proved existence of the DP and know that DP generates a Polya sequence. Since the RPM given by de Finetti's theorem is unique this proves that $P \sim D P\left(\alpha, P_{0}\right)$.

Table of Contents

Motivations to go nonparametric
 Introduction to Dirichlet process

Mixtures and model-based clustering

Priors beyond the DP

Discovery probabilities

Some research directions

A parametric approach

Mixture Model with K components

$$
G=\sum_{k=1}^{K} \pi_{k} \delta_{\phi_{k}}
$$

$\delta_{\phi_{k}}$ is a point mass at ϕ_{k}.
G is to be understood as a K-faceted dice. The mixture density is:

$$
p(X \mid \pi, \phi)=\sum_{k=1}^{K} \pi_{k} p\left(x \mid \phi_{k}\right)
$$

Then

$$
\begin{aligned}
\theta_{i} & \sim G \\
x_{i} & \sim p\left(x \mid \theta_{i}\right)
\end{aligned}
$$

A Bayesian parametric approach

Bayesian Mixture Models with K components We need a distribution over the probability measure (aka dice) G, that is a distribution over weights or classes $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$ and over mean and covariance (for 2-dimensional data) $\phi_{k}=\left(\mu_{k}, \Sigma_{k}\right)$

- $\pi \sim \operatorname{Dirichlet}(\alpha / K, \ldots, \alpha / K)$
- $\left(\mu_{k}, \Sigma_{k}\right) \sim$ Normal \times Inverse-Wishart

This makes $G=\sum_{k=1}^{K} \pi_{k} \delta_{\phi_{k}}$ a random dice

$$
\begin{aligned}
\phi_{k} & \sim G_{0} \\
\pi & \sim \operatorname{Dirichlet}(\alpha / K, \ldots, \alpha / K) \\
G & =\sum_{i=1}^{K} \pi_{k} \delta_{\phi_{k}} \\
\theta_{i} & \sim G \\
x_{i} & \sim p\left(x \mid \theta_{i}\right)
\end{aligned}
$$

Choosing K

There are several options for choosing K

- Model selection with information criteria: AIC, BIC, or cross-validation, etc
- Hierarchical model, with a prior on K
- Be nonparametric, and let K get large... possibly infinite.

A Bayesian nonparametric approach

Bayesian nonparametric Mixture Models
We now move to G being an infinite sum $G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$
We need a distribution over this infinite dice G, that is exactly what the Dirichlet process does. It is parameterized by the precision parameter α and the base measure G_{0}.

- $\pi=\left(\pi_{1}, \pi_{2}, \ldots\right) \sim \operatorname{GEM}(\alpha)$
- $\phi_{k} \sim G_{0}$

Posterior sampling

Markov chain Monte Carlo (MCMC) methods

- Marginal methods: marginalizing over the posterior DP P, and sampling using the posterior Pólya urn scheme (easy in conjugate case) Neal [2000]
- Conditional methods: sampling a finite but sufficient number of parameters
- ϵ-DP Muliere and Tardella [1998], ϵ-PY Arbel et al. [2018b]
- Blocked Gibbs sampler Ishwaran and James [2001]
- Slice sampler Walker [2007]
- Retrospective sampler Papaspiliopoulos and Roberts [2008]
- Ferguson and Klass algorithm Ferguson and Klass [1972]; Arbel and Prünster [2017]
- Variational approximations

Sampling from the posterior distribution

Packages that do precisely that!

- DPpackage: Jara et al. [2011], implemented in Fortran
- BNPdensity: Barrios et al. [2013], extension to flexible classes of priors (normalized random measures)
- BNPmix (ongoing): Arbel et al. [2018a], Dirichlet process mixtures, fast implementation with Rcpp package. Can be installed by:

```
library(devtools)
install_github(''rcorradin/BNPmix")
```


Warning on interpretation of K_{n} I

Consider a simple DP mixture model with

- Gaussian base measure,
- Gaussian kernel,
- where data are sampled iid from some distribution.

Then the posterior on K_{n} is inconsistent [Miller and Harrison, 2013].
(a) One component

Warning on interpretation of K_{n} II

From Miller and Harrison [2013] (here K_{n} is denoted T_{n}):

Theorem 4.1. If $X_{1}, X_{2}, \ldots \in \mathbb{R}$ are i.i.d. from any distribution with $\mathbb{E}\left|X_{i}\right|<\infty$, then with probability 1 , under the standard normal DPM with $\alpha=1$ as defined above, $p\left(T_{n}=1 \mid X_{1: n}\right)$ does not converge to 1 as $n \rightarrow \infty$.

Theorem 5.1. If $X_{1}, X_{2}, \ldots \sim \mathcal{N}(0,1)$ i.i.d. then

$$
p\left(T_{n}=1 \mid X_{1: n}\right) \xrightarrow{\mathrm{Pr}_{\mathrm{P}}} 0 \quad \text { as } n \rightarrow \infty
$$

under the standard normal DPM with concentration parameter $\alpha=1$.

But there is some hope...

Bayesian decision theory

From decision theory: a Bayes estimator minimizes a posterior expected loss.

$$
\hat{a}_{L}=\arg \inf _{a \in A} \mathbb{E}_{\pi(\theta)}\left[L_{a}(\theta)\right] .
$$

Examples with Euclidean parameter spaces:

- L^{2}. squared loss \longrightarrow posterior mean
- L^{1}, absolute loss \longrightarrow posterior median
- 0-1 loss \longrightarrow mode a posteriori (MAP)

Bayesian decision theory

From decision theory: a Bayes estimator minimizes a posterior expected loss.

$$
\hat{a}_{L}=\arg \inf _{a \in A} \mathbb{E}_{\pi(\theta)}\left[L_{a}(\theta)\right] .
$$

Examples with Euclidean parameter spaces:

- L^{2}, squared loss \longrightarrow posterior mean
- L^{1}, absolute loss \longrightarrow posterior median
- 0-1 loss \longrightarrow mode a posteriori (MAP)

Deriving an optimal clustering

The posterior expected loss of clustering c^{\prime}, denoted by $L\left(c^{\prime}\right)$, is obtained by averaging the loss with respect to posterior weight

$$
L\left(c^{\prime}\right)=\sum_{c \in \mathcal{A}_{n}} L\left(c, c^{\prime}\right) p(c \mid \mathbf{x})
$$

and the decision is taken by choosing the best

$$
\hat{c}=\arg \min _{c^{\prime} \in \mathcal{A}_{n}} \sum_{c \in \mathcal{A}_{n}} L\left(c, c^{\prime}\right) p(c \mid \mathbf{x})
$$

Several losses have been considered:

- 0-1 loss [Rajkowski, 2016]
- Binder loss [Dahl, 2006],
- Variation of information [Wade and Ghahramani, 2018]

Deriving an optimal clustering

The posterior expected loss of clustering c^{\prime}, denoted by $L\left(c^{\prime}\right)$, is obtained by averaging the loss with respect to posterior weight

$$
L\left(c^{\prime}\right)=\sum_{c \in \mathcal{A}_{n}} L\left(c, c^{\prime}\right) p(c \mid \mathbf{x})
$$

and the decision is taken by choosing the best

$$
\hat{c}=\arg \min _{c^{\prime} \in \mathcal{A}_{n}} \sum_{c \in \mathcal{A}_{n}} L\left(c, c^{\prime}\right) p(c \mid \mathbf{x})
$$

Several losses have been considered:

- 0-1 loss [Rajkowski, 2016],
- Binder loss [Dahl, 2006],
- Variation of information [Wade and Ghahramani, 2018].

Simplest loss: L_{0-1}

$$
\begin{aligned}
L_{0-1}\left(c^{\prime}\right)=\sum_{c \in \mathcal{A}_{n}} L_{0-1}\left(c, c^{\prime}\right) p(c \mid \mathbf{x}) & =\sum_{c \in \mathcal{A}_{n}, c \neq c^{\prime}} p(c \mid \mathbf{x}) \\
& =1-p\left(c^{\prime} \mid \mathbf{x}\right)
\end{aligned}
$$

which is to say that the expected loss of c^{\prime} is all the posterior mass except that of c^{\prime}. So that it is easily minimized at the value c^{\prime} which has maximum posterior weight:

$$
\hat{c}=\arg \min _{c^{\prime} \in \mathcal{A}_{n}} L_{0-1}\left(c^{\prime}\right)=\arg \max _{c^{\prime} \in \mathcal{A}_{n}} p\left(c^{\prime} \mid \mathbf{x}\right):=M A P .
$$

Negative results by Rajkowski [2016] show that the mode a posteriori (MAP) is inconsistent.

Simplest loss: L_{0-1}

$$
\begin{aligned}
L_{0-1}\left(c^{\prime}\right)=\sum_{c \in \mathcal{A}_{n}} L_{0-1}\left(c, c^{\prime}\right) p(c \mid \mathbf{x}) & =\sum_{\substack{c \in \mathcal{A}_{n}, c \neq c^{\prime}}} p(c \mid \mathbf{x}), \\
& =1-p\left(c^{\prime} \mid \mathbf{x}\right)
\end{aligned}
$$

which is to say that the expected loss of c^{\prime} is all the posterior mass except that of c^{\prime}. So that it is easily minimized at the value c^{\prime} which has maximum posterior weight:

$$
\hat{c}=\arg \min _{c^{\prime} \in \mathcal{A}_{n}} L_{0-1}\left(c^{\prime}\right)=\arg \max _{c^{\prime} \in \mathcal{A}_{n}} p\left(c^{\prime} \mid \mathbf{x}\right):=M A P .
$$

Negative results by Rajkowski [2016] show that the mode a posteriori (MAP) is inconsistent.

Simplest loss: L_{0-1}

$$
\begin{aligned}
L_{0-1}\left(c^{\prime}\right)=\sum_{c \in \mathcal{A}_{n}} L_{0-1}\left(c, c^{\prime}\right) p(c \mid \mathbf{x}) & =\sum_{c \in \mathcal{A}_{n}, c \neq c^{\prime}} p(c \mid \mathbf{x}) \\
& =1-p\left(c^{\prime} \mid \mathbf{x}\right)
\end{aligned}
$$

which is to say that the expected loss of c^{\prime} is all the posterior mass except that of c^{\prime}. So that it is easily minimized at the value c^{\prime} which has maximum posterior weight:

$$
\hat{c}=\arg \min _{c^{\prime} \in \mathcal{A}_{n}} L_{0-1}\left(c^{\prime}\right)=\arg \max _{c^{\prime} \in \mathcal{A}_{n}} p\left(c^{\prime} \mid \mathbf{x}\right):=M A P
$$

Negative results by Rajkowski [2016] show that the mode a posteriori (MAP) is inconsistent.

Variation of information

Variation of information (VI) by Meilă [2007] for cluster comparison. From information theory, compares information in two clusterings with information shared between the two clusterings:

$$
\mathrm{VI}(c, \widehat{c})=\mathrm{H}(c)+\mathrm{H}(\widehat{c})-2 \mathcal{I}(c, \widehat{c})
$$

Variation of information

Wade and Ghahramani [2018] compare Binder and VI:

(a) Ex 1 Binder's: 9 clusters

(b) Ex 2 Binder's: 12 clusters

Variation of information

Wade and Ghahramani [2018] compare Binder and VI:

Variation of information

Wade and Ghahramani [2018] provide credible balls around the estimated clustering, based on Hasse diagram:

Figure 1: Hasse diagram for the lattice of partitions with a sample of size $N=4$. A line is drawn from \mathbf{c} up to $\widehat{\mathbf{c}}$ when \mathbf{c} is covered by $\widehat{\mathbf{c}}$.

Table of Contents

Motivations to go nonparametric
 Introduction to Dirichlet process
 Mixtures and model-based clustering

Priors beyond the DP

Discovery probabilities

Some research directions

Need for a power-law for K_{n}
Newman [2005]; Clauset et al. [2009] show that "Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena".

Need for a power-law for K_{n}

Newman [2005]; Clauset et al. [2009] show that "Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena".

[Image from Newman [2005]]
Hence the need to depart from $K_{n} \sim \alpha \log n$ induced by a Dirichlet process.

Chinese restaurant process

Consider discrete data $X_{1}, \ldots X_{n} \mid P \stackrel{\text { iid }}{\sim} P$, and $P \sim \mathcal{Q}$
Features $k_{n} \leq n$ unique values $X_{1}^{*}, \ldots, X_{k_{n}}^{*}$ with resp. frequencies $n_{1}, \ldots, n_{k_{n}}$
Discrete random probability measures are characterized by predictive distr.
Dirichlet process by Ferguson (1973): $P \sim D P\left(\alpha, G_{0}\right)$

$$
\mathbb{P}\left[X_{n+1} \in \cdot \mid X_{1}, \ldots X_{n}\right]=\frac{\alpha}{\alpha+n} G_{0}(.)+\frac{1}{\alpha+n} \sum_{j=1}^{k_{n}} n_{j} \delta_{X_{j}^{*}}(.)
$$

Log rate for number of clusters $k_{n} \asymp \alpha \log n$
Product form exchangeable partition probability function

$$
p\left(n_{1}, \ldots, n_{k_{n}}\right)=\alpha^{k_{n}} \frac{\Gamma(\alpha)}{\Gamma\left(\alpha+k_{n}\right)} \prod_{j=1}^{k_{n}}\left(n_{j}-1\right)!
$$

Chinese restaurant process

Consider discrete data $X_{1}, \ldots X_{n} \mid P \stackrel{\text { iid }}{\sim} P$, and $P \sim \mathcal{Q}$
Features $k_{n} \leq n$ unique values $X_{1}^{*}, \ldots, X_{k_{n}}^{*}$ with resp. frequencies $n_{1}, \ldots, n_{k_{n}}$
Discrete random probability measures are characterized by predictive distr.
Pitman-Yor process by Pitman \& Yor (1997): $P \sim P Y\left(\sigma, \alpha, G_{0}\right), \sigma \in(0,1)$

$$
\mathbb{P}\left[X_{n+1} \in \cdot \mid X_{1}, \ldots X_{n}\right]=\frac{\alpha+\sigma k_{n}}{\alpha+n} G_{0}(.)+\frac{1}{\alpha+n} \sum_{j=1}^{k_{n}}\left(n_{j}-\sigma\right) \delta_{X_{j}^{*}}(.)
$$

Power law rate for number of clusters $k_{n} \asymp S n^{\sigma}$

Product form exchangeable partition probability function

$$
p\left(n_{1}, \ldots, n_{k_{n}}\right)=\frac{\prod_{i=1}^{k_{n}-1}(\alpha+i \sigma)}{(\alpha+1)_{(n-1)}} \prod_{j=1}^{k_{n}}(1-\sigma)_{\left(n_{j}-1\right)}
$$

Chinese restaurant process

Consider discrete data $X_{1}, \ldots X_{n} \mid P \stackrel{\text { iid }}{\sim} P$, and $P \sim \mathcal{Q}$
Features $k_{n} \leq n$ unique values $X_{1}^{*}, \ldots, X_{k_{n}}^{*}$ with resp. frequencies $n_{1}, \ldots, n_{k_{n}}$
Discrete random probability measures are characterized by predictive distr.
Gibbs-type processes by Pitman (2003): $P \sim \operatorname{Gibbs}\left(\sigma,\left(V_{n, k}\right)_{n, k}, G_{0}\right), \sigma<1$

$$
\mathbb{P}\left[X_{n+1} \in \cdot \mid X_{1}, \ldots X_{n}\right]=\frac{V_{n+1, k_{n}+1}}{V_{n, k_{n}}} G_{0}(.)+\frac{V_{n+1, k_{n}}}{V_{n, k_{n}}} \sum_{j=1}^{k_{n}}\left(n_{j}-\sigma\right) \delta_{X_{j}^{*}}(.)
$$

Rate for number of clusters $k_{n} \asymp\left\{\begin{array}{l}K \text { random variable a.s. finite if } \sigma<0 \\ \alpha \log n \text { if } \sigma=0 \\ S n^{\sigma} \text { if } \sigma \in(0,1),(S \text { random variable }) .\end{array}\right.$
Product form exchangeable partition probability function

$$
p\left(n_{1}, \ldots, n_{k_{n}}\right)=V_{n, k_{n}} \prod_{j=1}^{k_{n}}(1-\sigma)_{\left(n_{j}-1\right)}
$$

Beyond the DP from predictive function viewpoint

A discrete random probability measure P can be classified in 3 main categories according to $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]$

Beyond the DP from predictive function viewpoint

A discrete random probability measure P can be classified in 3 main categories according to $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]$

1) $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]=f$ (n, model parameters)
\Longleftrightarrow depends on n but not on k_{n} and $\left(n_{1}, \ldots, n_{k_{n}}\right)$
\Longleftrightarrow Dirichlet process (Ferguson, 1973);

Beyond the DP from predictive function viewpoint

A discrete random probability measure P can be classified in 3 main categories according to $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]$

1) $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]=f(n$, model parameters)
\Longleftrightarrow depends on n but not on k_{n} and $\left(n_{1}, \ldots, n_{k_{n}}\right)$
\Longleftrightarrow Dirichlet process (Ferguson, 1973);
2) $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]=f\left(n, k_{n}\right.$, model parameters $)$
\Longleftrightarrow depends on n and k_{n} but not on ($n_{1}, \ldots, n_{k_{n}}$)
\Longleftrightarrow Gibbs-type prior (Pitman, 2003);
3) $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid X_{n}\right]=f\left(n, k_{n},\left(n_{1}, \ldots, n_{k_{n}}\right)\right.$, model parameters $)$ \Longleftrightarrow depends on n, k_{n} and $\left(n_{1}, \ldots, n_{k_{n}}\right)$
\Longleftrightarrow tractability issues

Beyond the DP from predictive function viewpoint

A discrete random probability measure P can be classified in 3 main categories according to $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]$

1) $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]=f(n$, model parameters)
\Longleftrightarrow depends on n but not on k_{n} and $\left(n_{1}, \ldots, n_{k_{n}}\right)$
\Longleftrightarrow Dirichlet process (Ferguson, 1973);
2) $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]=f\left(n, k_{n}\right.$, model parameters $)$
\Longleftrightarrow depends on n and k_{n} but not on ($n_{1}, \ldots, n_{k_{n}}$)
\Longleftrightarrow Gibbs-type prior (Pitman, 2003);
3) $\mathbb{P}\left[X_{n+1}\right.$ is "new" $\left.\mid \boldsymbol{X}_{n}\right]=f\left(n, k_{n},\left(n_{1}, \ldots, n_{k_{n}}\right)\right.$, model parameters $)$
\Longleftrightarrow depends on n, k_{n} and $\left(n_{1}, \ldots, n_{k_{n}}\right)$
\Longleftrightarrow tractability issues

Tree of discrete random probability measures

Tree of discrete random probability measures

Pitman-Yor process I

Proposition (Pitman Sampling formula)
The multiplicities $\left(m_{1}, \ldots, m_{n}\right)$ in $X_{1}, \ldots, X_{n} \mid \stackrel{\text { i.i.d. }}{\sim} P, P \sim P Y\left(\sigma, \alpha P_{0}\right)$ have distribution
$p\left(m_{1}, \ldots, m_{n}\right)=\frac{n!}{(1+\alpha)_{(n-1)}}(\alpha+\sigma) \cdots \cdot\left(\alpha+\left(K_{n}-1\right) \sigma\right) \prod_{\ell=1}^{n} \frac{1}{m_{\ell}!}\left(\frac{(1-\sigma)_{(\ell-1)}}{\ell!}\right)^{m_{\ell}}$

Proof

Same technique as for the DP ESF.

Pitman-Yor process II

Proposition

Power Law and σ-diversity

For $\sigma>0$ we have the almost sure convergence

$$
n^{-\sigma} K_{n} \rightarrow S_{\sigma, \alpha},
$$

where $S_{\sigma, \alpha}$ is called σ-diversity of the $P Y$, whose density is a polynomially tilted Mittag-Leffler density (ML):

$$
g_{\sigma, \alpha}(x) \propto x^{\alpha / \sigma} g_{\alpha}(x),
$$

and g_{α} is $M L$ density.

[Image: Wikipedia]

Pitman-Yor process III

Theorem
Stick breaking representation for PY process
If $V_{j} \stackrel{i n d}{\sim} \operatorname{Be}(1-\sigma, \alpha+j \sigma)$ and $p_{1}=V_{1}, p_{j}=V_{j} \prod_{l<j}\left(1-V_{l}\right)$ and further we have $\phi_{j} \stackrel{\text { i.i.d. }}{\sim} P_{0}$ then

$$
P=\sum_{j=1}^{\infty} p_{j} \delta_{\phi_{j}} \sim P Y\left(\sigma, \alpha P_{0}\right) .
$$

Pitman-Yor process IV

Proposition (Moments of PY)

If $P \sim \operatorname{PY}\left(\sigma, \alpha P_{0}\right)$, then for every measurable sets A, B we have

1) $\mathbb{E}(P(A))=P_{0}(A)$,
2) $\mathbb{E}(P(A) P(B))=(1-\sigma) /(1+\alpha) P_{0}(A \cap B)+(\alpha+\sigma) /(1+\alpha) P_{0}(A) P_{0}(B)$,
3) $\operatorname{cov}(P(A), P(B))=(1-\sigma) /(1+\alpha)\left(P_{0}(A \cap B)-P_{0}(A) P_{0}(B)\right)$.

Remark

As before P_{0} is the mean measure, while σ lowers dependance with respect to DP.

Pitman-Yor process V

Proof

1) We use stick-breaking representation:

$$
\mathbb{E} P(A)=\sum_{j} \mathbb{E} p_{j} \mathbb{E} \delta_{\phi_{j}}=\sum_{j} \mathbb{E}\left(p_{j}\right) P_{0}(A)=P_{0}(A) \mathbb{E}\left(\sum_{j} p_{j}\right)=P_{0}(A)
$$

2) Let $X_{1}, X_{2} \mid P \stackrel{i . i . d .}{\sim} P$, then

$$
\mathbb{E}(P(A) P(B))=\mathbb{P}\left(X_{1} \in A, X_{2} \in B\right)=\mathbb{P}\left(X_{1} \in A\right) \mathbb{P}\left(X_{2} \in B \mid X_{1} \in A\right)
$$

Lets investigate two terms above: from 1) we know that $\mathbb{P}\left(X_{1} \in A\right)=P_{0}(A)$. We know the predictive of PY:

$$
X_{2} \left\lvert\, X_{1} \sim \frac{\alpha+\sigma}{\alpha+1} P_{0}+\frac{1-\sigma}{\alpha+1} \delta_{X_{1}}\right.
$$

and hence

$$
\mathbb{P}\left(X_{2} \in B \mid X_{1} \in A\right)=\frac{\alpha+\sigma}{\alpha+1} P_{0}(B)+\frac{1-\sigma}{\alpha+1} P_{0 A}(B)
$$

when we used notation $P_{0 A}(B)=P_{0}(B \mid A)=P_{0}(A \cap B) / P_{0}(A)$ for a conditional measure.
3) It is straightforward combination of 1) and 2).

Pitman-Yor process VI

Unlike the DP, PY is not conjugate under incoming independent samples. However, the posterior can be explicited.
Theorem (Posterior distribution of PY) If $P \sim P Y\left(\sigma, \alpha P_{0}\right)$ then the posterior of P based on observations $X_{1: n} \mid P \stackrel{\text { i.i.d. }}{\sim} P$ has the distribution of the random probability measure

$$
\left(1-q_{n}\right) P_{n}+q_{n} \sum_{j=1}^{K_{n}} p_{j}^{*} \delta_{X_{j}^{*}}
$$

where $X_{1: n}^{*}$ are the K_{n} distinct values in $X_{1: n}$, frequencies are refered to as $n_{1}, \ldots, n_{K_{n}}$ and

- $q_{n} \sim \operatorname{Beta}\left(n-K_{n} \sigma, \alpha+K_{n} \sigma\right)$,
- $\left(p_{1}^{*}, \ldots, p_{K_{n}}^{*}\right) \sim \operatorname{Dir}_{K_{n}}\left(n_{1}-\sigma, \ldots, n_{K_{n}}-\sigma\right)$,
- $P_{n} \sim \operatorname{PY}\left(\sigma,\left(\alpha+\sigma K_{n}\right) P_{0}\right)$.

Impact of the stability parameter σ

Prior distribution of the number of clusters k_{n}

- α controls the location (as for the DP)
- σ controls the flatness (or variability)

Impact of the stability parameter σ

Prior distribution of the number of clusters k_{n}

- α controls the location (as for the DP)
- σ controls the flatness (or variability)

Impact of the stability parameter σ

Prior distribution of the number of clusters k_{n}

- α controls the location (as for the DP)
- σ controls the flatness (or variability)

Example with $n=50, \alpha=1$ and $\sigma=0.2,0.3, \ldots, 0.8$

Hierarchical Dirichlet process Teh et al. [2006]
A nonparametric version of Latent dirichlet allocation [Blei et al., 2003]

[Image by M. Jordan]

Hierarchical Dirichlet process Teh et al. [2006]
A nonparametric version of Latent dirichlet allocation [Blei et al., 2003]

[Image by M. Jordan]
Associated partition distr. called Chinese Restaurant Franchise.

Indian Buffet process Ghahramani and Griffiths [2006]

Feature allocation model: observations may share several features.
Generative model is as follows

Log growth for K_{n} :
$K_{n} \sim \operatorname{Poisson}(\gamma \log n)$.

Indian Buffet process Ghahramani and Griffiths [2006]

Feature allocation model: observations may share several features. Generative model is as follows

- first customer samples Poisson (γ) dishes

Poisson ($\gamma / 2$) new dishes

- ith step: K dishes have been sampled, each by n_{1}, \ldots, n_{K} customers; i th
customer chooses j th dish wp n_{j} / i, plus Poisson (γ / i) new dishes.
Log growth for K_{n} :

```
Kn ~ Poisson(\gamma log n)
```


Indian Buffet process Ghahramani and Griffiths [2006]

Feature allocation model: observations may share several features. Generative model is as follows

- first customer samples Poisson (γ) dishes
- second customer chooses every dish of first customer wp $1 / 2$, plus Poisson ($\gamma / 2$) new dishes - ith step: K dishes have been sampled, each by n_{1}, \ldots, n_{K} customers; i th customer chooses j th dish wp n_{j} / i, plus Poisson (γ / i) new dishes. Log growth for K_{n} :

Indian Buffet process Ghahramani and Griffiths [2006]

Feature allocation model: observations may share several features. Generative model is as follows

- first customer samples Poisson (γ) dishes
- second customer chooses every dish of first customer wp $1 / 2$, plus Poisson ($\gamma / 2$) new dishes customer chooses j th dish wp n_{j} / i, plus Poisson (γ / i) new dishes. Log growth for K_{n} :

Indian Buffet process Ghahramani and Griffiths [2006]

Feature allocation model: observations may share several features. Generative model is as follows

- first customer samples Poisson (γ) dishes
- second customer chooses every dish of first customer wp $1 / 2$, plus Poisson ($\gamma / 2$) new dishes
- ith step: K dishes have been sampled, each by n_{1}, \ldots, n_{K} customers; ith customer chooses j th dish wp n_{j} / i, plus Poisson (γ / i) new dishes.

Indian Buffet process Ghahramani and Griffiths [2006]

Feature allocation model: observations may share several features. Generative model is as follows

- first customer samples Poisson (γ) dishes
- second customer chooses every dish of first customer wp $1 / 2$, plus Poisson ($\gamma / 2$) new dishes
- ith step: K dishes have been sampled, each by n_{1}, \ldots, n_{K} customers; ith customer chooses j th dish wp n_{j} / i, plus Poisson (γ / i) new dishes.

Indian Buffet process Ghahramani and Griffiths [2006]

Feature allocation model: observations may share several features. Generative model is as follows

- first customer samples Poisson (γ) dishes
- second customer chooses every dish of first customer wp $1 / 2$, plus Poisson ($\gamma / 2$) new dishes
- ith step: K dishes have been sampled, each by n_{1}, \ldots, n_{K} customers; ith customer chooses j th dish $w p n_{j} / i$, plus Poisson (γ / i) new dishes.
Log growth for K_{n} :

$$
K_{n} \sim \text { Poisson }(\gamma \log n)
$$

Table of Contents

```
Motivations to go nonparametric
Introduction to Dirichlet process
Mixtures and model-based clustering
Priors beyond the DP
```


Discovery probabilities

Some research directions

Discovery problem

- Population of individuals $\left(X_{i}\right)_{i \geq 1}$ belonging to an ideally infinite number of species $\left(\theta_{j}\right)_{j \geq 1}$, respective unknown proportions $\left(p_{j}\right)_{j \geq 1}$
> - Given $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$, make inference on the probability that X_{n+1} coincides with a species whose frequency is $\ell=0,1, \ldots, n$

ℓ-discovery $=\mathbb{P}\left(X_{n+1}\right.$ is a species seen ℓ times in $\left.X^{n}\right)$

- Applications arising from ecology, biology, design of experiments, bioinformatics, genetics, linguistic, economics, network modeling,

Discovery problem

- Population of individuals $\left(X_{i}\right)_{i \geq 1}$ belonging to an ideally infinite number of species $\left(\theta_{j}\right)_{j \geq 1}$, respective unknown proportions $\left(p_{j}\right)_{j \geq 1}$
- Given $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$, make inference on the probability that X_{n+1} coincides with a species whose frequency is $\ell=0,1, \ldots, n$

$$
\ell \text {-discovery }=\mathbb{P}\left(X_{n+1} \text { is a species seen } \ell \text { times in } X^{n}\right)
$$

- Applications arising from ecology, biology, design of experiments, bioinformatics, genetics, linguistic, economics, network modeling,

Discovery problem

- Population of individuals $\left(X_{i}\right)_{i \geq 1}$ belonging to an ideally infinite number of species $\left(\theta_{j}\right)_{j \geq 1}$, respective unknown proportions $\left(p_{j}\right)_{j \geq 1}$
- Given $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$, make inference on the probability that X_{n+1} coincides with a species whose frequency is $\ell=0,1, \ldots, n$

$$
\ell \text {-discovery }=\mathbb{P}\left(X_{n+1} \text { is a species seen } \ell \text { times in } X^{n}\right)
$$

- Applications arising from ecology, biology, design of experiments, bioinformatics, genetics, linguistic, economics, network modeling, ...

Discovery problem, notations

- Given X^{n}, the ℓ-discovery probability is

$$
D_{n}(\ell)=\sum_{j: \#\left(X_{i}=\theta_{j}\right)=\ell} p_{j}
$$

- $D_{n}(0)$ denotes the proportion of yet unobserved species, or the probability of discovering a new species, or the missing mass
- Let $X_{1}^{*}, \ldots, X_{k_{n}}^{*}$ be the k_{n} distinct observations featured in X^{n}, with corresponding frequencies ($n_{1, n}, \ldots, n_{k_{n}, n}$)
- The information provided by ($n_{1, n}, \ldots, n_{k_{n}, n}$) can be coded by $\mathrm{m}_{n}=\left(m_{1, n}, \ldots, m_{n, n}\right)$ where $m_{\ell, n}=$ number of species in the sample X_{n} having frequency ℓ
Under this alternative codification one obtains $\sum_{1 \leq \ell \leq n} m_{\ell, n}=k_{n}$ and $\sum_{1 \leq \ell \leq n} \ell m_{\ell, n}=n$.

Discovery problem, notations

- Given X^{n}, the ℓ-discovery probability is

$$
D_{n}(\ell)=\sum_{j: \#\left(X_{i}=\theta_{j}\right)=\ell} p_{j}
$$

- $D_{n}(0)$ denotes the proportion of yet unobserved species, or the probability of discovering a new species, or the missing mass

Discovery problem, notations

- Given X^{n}, the ℓ-discovery probability is

$$
D_{n}(\ell)=\sum_{j: \#\left(X_{i}=\theta_{j}\right)=\ell} p_{j}
$$

- $D_{n}(0)$ denotes the proportion of yet unobserved species, or the probability of discovering a new species, or the missing mass
- Let $X_{1}^{*}, \ldots, X_{k_{n}}^{*}$ be the k_{n} distinct observations featured in X^{n}, with corresponding frequencies $\left(n_{1, n}, \ldots, n_{k_{n}, n}\right)$

Discovery problem, notations

- Given X^{n}, the ℓ-discovery probability is

$$
D_{n}(\ell)=\sum_{j: \#\left(X_{i}=\theta_{j}\right)=\ell} p_{j}
$$

- $D_{n}(0)$ denotes the proportion of yet unobserved species, or the probability of discovering a new species, or the missing mass
- Let $X_{1}^{*}, \ldots, X_{k_{n}}^{*}$ be the k_{n} distinct observations featured in X^{n}, with corresponding frequencies $\left(n_{1, n}, \ldots, n_{k_{n}, n}\right)$
- The information provided by $\left(n_{1, n}, \ldots, n_{k_{n}, n}\right)$ can be coded by $\mathbf{m}_{n}=\left(m_{1, n}, \ldots, m_{n, n}\right)$ where $m_{\ell, n}=$ number of species in the sample \boldsymbol{X}_{n} having frequency ℓ
Under this alternative codification one obtains $\sum_{1 \leq \ell \leq n} m_{\ell, n}=k_{n}$ and $\sum_{1 \leq \ell \leq n} \ell m_{\ell, n}=n$.

Good-Turing estimators of discovery

Alan Turing and Irving John Good worked on this problem Bletchley Park to crack German ciphers for the Enigma machine during World War II.
proposed the empirical estimator
$\check{\mathcal{D}}_{n}(0)=\frac{\text { Number of species observed once }}{\text { Total number of observations }}$

Good (1953)

Good-Turing estimators of discovery

Alan Turing and Irving John Good worked on this problem Bletchley Park to crack German ciphers for the Enigma machine during World War II. They proposed the empirical estimator

$$
\check{\mathcal{D}}_{n}(0)=\frac{\text { Number of species observed once }}{\text { Total number of observations }}
$$

Good-Turing estimators of discovery

Alan Turing and Irving John Good worked on this problem Bletchley Park to crack German ciphers for the Enigma machine during World War II. They proposed the empirical estimator

$$
\check{\mathcal{D}}_{n}(0)=\frac{\text { Number of species observed once }}{\text { Total number of observations }}
$$

Good (1953)

Good-Turing estimators of discovery

Alan Turing and Irving John Good worked on this problem Bletchley Park to crack German ciphers for the Enigma machine during World War II. They proposed the empirical estimator

$$
\check{\mathcal{D}}_{n}(0)=\frac{\text { Number of species observed once }}{\text { Total number of observations }}
$$

$$
\check{\mathcal{D}}_{n}(0)=\frac{m_{1, n}}{n}, \quad \check{\mathcal{D}}_{n}(\ell)=\frac{(\ell+1) m_{\ell+1, n}}{n}, \quad \forall \ell \leq n
$$

Good-Turing estimators of discovery

Alan Turing and Irving John Good worked on this problem Bletchley Park to crack German ciphers for the Enigma machine during World War II. They proposed the empirical estimator

$$
\check{\mathcal{D}}_{n}(0)=\frac{\text { Number of species observed once }}{\text { Total number of observations }}
$$

$$
\check{\mathcal{D}}_{n}(0)=\frac{m_{1, n}}{n}, \quad \check{\mathcal{D}}_{n}(\ell)=\frac{(\ell+1) m_{\ell+1, n}}{n}, \quad \forall \ell \leq n
$$

BNP counterparts of these empirical estimators with appropriate uncertainty quantification?

BNP model

BNP approach for estimating $D_{n}(\ell)$ based on randomization of unknown species proportions p_{i} 's introduced by Lijoi, Mena and Prünster (2007)

Let \mathscr{Q} denote a discrete random probability measure with random draws $P=\sum_{j \geq 1} p_{j} \delta_{\theta_{j}}$. Let $\boldsymbol{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from a population with composition P, namely

$$
\begin{aligned}
X_{i} \mid P & \stackrel{\text { iid }}{\sim} P=\sum_{j \geq 1} p_{j} \delta_{\theta_{j}} \\
P & \sim \mathscr{Q}
\end{aligned}
$$

BNP model

BNP approach for estimating $D_{n}(\ell)$ based on randomization of unknown species proportions p_{i} 's introduced by Lijoi, Mena and Prünster (2007)

Let \mathscr{Q} denote a discrete random probability measure with random draws $P=\sum_{j \geq 1} p_{j} \delta_{\theta_{j}}$. Let $\boldsymbol{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from a population with composition P, namely

$$
\begin{aligned}
X_{i} \mid P & \stackrel{\text { iid }}{\sim} P=\sum_{j \geq 1} p_{j} \delta_{\theta_{j}} \\
P & \sim \mathscr{Q}
\end{aligned}
$$

Define sets

$$
\begin{aligned}
& A_{0}=\mathbb{X} \backslash\left\{X_{1}^{*}, \ldots, X_{k_{n}}^{*}\right\} \\
& A_{\ell}=\left\{X_{j}^{*}: n_{j, n}=\ell\right\}
\end{aligned}
$$

Unknown quantities reduce to
$D_{n}(0)=P\left(A_{0}\right)$ and $D_{n}(\ell)=P\left(A_{\ell}\right)$

BNP model

BNP approach for estimating $D_{n}(\ell)$ based on randomization of unknown species proportions p_{i} 's introduced by Lijoi, Mena and Prünster (2007)

Let \mathscr{Q} denote a discrete random probability measure with random draws $P=\sum_{j \geq 1} p_{j} \delta_{\theta_{j}}$. Let $\boldsymbol{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from a population with composition P, namely

$$
\begin{aligned}
X_{i} \mid P & \stackrel{\text { iid }}{\sim} P=\sum_{j \geq 1} p_{j} \delta_{\theta_{j}} \\
P & \sim \mathscr{Q}
\end{aligned}
$$

Define sets

$$
\begin{aligned}
& A_{0}=\mathbb{X} \backslash\left\{X_{1}^{*}, \ldots, X_{k_{n}}^{*}\right\} \\
& A_{\ell}=\left\{X_{j}^{*}: n_{j, n}=\ell\right\}
\end{aligned}
$$

Unknown quantities reduce to
$D_{n}(0)=P\left(A_{0}\right)$ and $D_{n}(\ell)=P\left(A_{\ell}\right)$
Which r.p.m. \mathscr{Q} to choose?

BNP model

BNP approach for estimating $D_{n}(\ell)$ based on randomization of unknown species proportions p_{i} 's introduced by Lijoi, Mena and Prünster (2007)

Let \mathscr{Q} denote a discrete random probability measure with random draws $P=\sum_{j \geq 1} p_{j} \delta_{\theta_{j}}$. Let $\boldsymbol{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from a population with composition P, namely

$$
X_{i} \mid P \quad \stackrel{\text { iid }}{\sim} \quad P=\sum_{j \geq 1} p_{j} \delta_{\theta_{j}}
$$

$$
P \sim \mathscr{Q}
$$

Define sets

$$
\begin{aligned}
& A_{0}=\mathbb{X} \backslash\left\{X_{1}^{*}, \ldots, X_{k_{n}}^{*}\right\} \\
& A_{\ell}=\left\{X_{j}^{*}: n_{j, n}=\ell\right\}
\end{aligned}
$$

Unknown quantities reduce to

$$
D_{n}(0)=P\left(A_{0}\right) \text { and } D_{n}(\ell)=P\left(A_{\ell}\right)
$$

Which r.p.m. \mathscr{Q} to choose?

BNP estimators of discovery

Re-write predictive distribution of Gibbs-type random probability measure

$$
\mathbb{P}\left[X_{n+1} \in A \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+1, k_{n}+1}}{V_{n, k_{n}}} G_{0}(A)+\frac{V_{n+1, k_{n}}}{V_{n, k_{n}}} \sum_{i=1}^{k_{n}}\left(n_{i, n}-\sigma\right) \delta_{X_{i}^{*}}(A)
$$

BNP estimator of $D_{n}(\ell)=P\left(A_{\ell}\right)$ take the form of posterior expectations
$\hat{\mathcal{D}}_{n}(\ell)=\mathbb{E}\left[P\left(A_{\ell}\right) \mid \boldsymbol{X}_{n}\right]$. Derived from the predictive using sets
$A_{0}=\mathbb{X} \backslash\left\{X_{1}^{*}, \ldots, X_{k_{n}^{*}}\right\}$ and $A_{\ell}=\left\{X_{i}^{*}: n_{i, n}=\ell\right\}$

The most notable difference between $\hat{\mathcal{D}}_{n}(\ell)$ and $\breve{\mathcal{D}}_{n}(\ell)$ consists in the use of the information contained in the sample $X_{n}: \mathcal{D}_{n}(\ell)$ is a function of $m_{\ell+1, n}$, and not on ($k_{n}, m_{\ell, n}$) as one would intuitively expect for an estimator of the ℓ-discovery

BNP estimators of discovery

Re-write predictive distribution of Gibbs-type random probability measure

$$
\mathbb{P}\left[X_{n+1} \in A \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+1, k_{n}+1}}{V_{n, k_{n}}} G_{0}(A)+\frac{V_{n+1, k_{n}}}{V_{n, k_{n}}} \sum_{i=1}^{k_{n}}\left(n_{i, n}-\sigma\right) \delta_{X_{i}^{*}}(A)
$$

BNP estimator of $D_{n}(\ell)=P\left(A_{\ell}\right)$ take the form of posterior expectations $\hat{\mathcal{D}}_{n}(\ell)=\mathbb{E}\left[P\left(A_{\ell}\right) \mid \boldsymbol{X}_{n}\right]$. Derived from the predictive using sets $A_{0}=\mathbb{X} \backslash\left\{X_{1}^{*}, \ldots, X_{k_{n}}^{*}\right\}$ and $A_{\ell}=\left\{X_{i}^{*}: n_{i, n}=\ell\right\}$

The most notable difference between $\hat{\mathcal{D}}_{n}(\ell)$ and $\check{\mathcal{D}}_{n}(\ell)$ consists in the use of the information contained in the sample $X_{n}: \mathcal{D}_{n}(\ell)$ is a function of $m_{\ell+1, n}$, and not on ($k_{n}, m_{\ell, n}$) as one would intuitively expect for an estimator of the ℓ-discovery

BNP estimators of discovery

Re-write predictive distribution of Gibbs-type random probability measure

$$
\mathbb{P}\left[X_{n+1} \in A \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+1, k_{n}+1}}{V_{n, k_{n}}} G_{0}(A)+\frac{V_{n+1, k_{n}}}{V_{n, k_{n}}} \sum_{i=1}^{k_{n}}\left(n_{i, n}-\sigma\right) \delta_{X_{i}^{*}}(A)
$$

BNP estimator of $D_{n}(\ell)=P\left(A_{\ell}\right)$ take the form of posterior expectations $\hat{\mathcal{D}}_{n}(\ell)=\mathbb{E}\left[P\left(A_{\ell}\right) \mid \boldsymbol{X}_{n}\right]$. Derived from the predictive using sets $A_{0}=\mathbb{X} \backslash\left\{X_{1}^{*}, \ldots, X_{k_{n}}^{*}\right\}$ and $A_{\ell}=\left\{X_{i}^{*}: n_{i, n}=\ell\right\}$

BNP

$$
\hat{\mathcal{D}}_{n}(0)=\frac{V_{n+1, k_{n}+1}}{V_{n, k_{n}}} \stackrel{P Y}{=} \frac{\alpha+\sigma k_{n}}{\alpha+n}
$$

$$
\hat{\mathcal{D}}_{n}(\ell)=(\ell-\sigma) m_{\ell, n} \frac{V_{n+1, k_{n}}}{V_{n, k_{n}}} \stackrel{P Y}{=}(\ell-\sigma) \frac{m_{\ell, n}}{\alpha+n}
$$

Good-Turing
$\check{\mathcal{D}}_{n}(0)=\frac{m_{1, n}}{n}$

$$
\check{\mathcal{D}}_{n}(\ell)=(\ell+1) \frac{m_{\ell+1, n}}{n}
$$

BNP estimators of discovery

Re-write predictive distribution of Gibbs-type random probability measure

$$
\mathbb{P}\left[X_{n+1} \in A \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+1, k_{n}+1}}{V_{n, k_{n}}} G_{0}(A)+\frac{V_{n+1, k_{n}}}{V_{n, k_{n}}} \sum_{i=1}^{k_{n}}\left(n_{i, n}-\sigma\right) \delta_{X_{i}^{*}}(A)
$$

BNP estimator of $D_{n}(\ell)=P\left(A_{\ell}\right)$ take the form of posterior expectations $\hat{\mathcal{D}}_{n}(\ell)=\mathbb{E}\left[P\left(A_{\ell}\right) \mid \boldsymbol{X}_{n}\right]$. Derived from the predictive using sets $A_{0}=\mathbb{X} \backslash\left\{X_{1}^{*}, \ldots, X_{k_{n}}^{*}\right\}$ and $A_{\ell}=\left\{X_{i}^{*}: n_{i, n}=\ell\right\}$

$$
\begin{array}{cc}
\text { BNP } & \text { Good-Turing } \\
\hat{\mathcal{D}}_{n}(0)=\frac{V_{n+1, k_{n}+1}}{V_{n, k_{n}}} \stackrel{\stackrel{P Y}{=}}{=} \frac{\alpha+\sigma k_{n}}{\alpha+n} & \check{\mathcal{D}}_{n}(0)=\frac{m_{1, n}}{n} \\
\hat{\mathcal{D}}_{n}(\ell)=(\ell-\sigma) m_{\ell, n} \frac{v_{n+1, k_{n}}}{V_{n, k_{n}}} \stackrel{P Y}{=}(\ell-\sigma) \frac{m_{\ell, n}}{\alpha+n} & \check{\mathcal{D}}_{n}(\ell)=(\ell+1) \frac{m_{\ell+1, n}}{n}
\end{array}
$$

The most notable difference between $\hat{\mathcal{D}}_{n}(\ell)$ and $\check{\mathcal{D}}_{n}(\ell)$ consists in the use of the information contained in the sample $X_{n}: \check{\mathcal{D}}_{n}(\ell)$ is a function of $m_{\ell+1, n}$, and not on ($k_{n}, m_{\ell, n}$) as one would intuitively expect for an estimator of the ℓ-discovery

Credible intervals for discovery

- Arbel et al. [2017]; Arbel and Favaro [2018] Under specification of Pitman-Yor process prior, the posterior distribution of $D_{n}(\ell)$ is a simple Beta distribution

$$
D_{n}(0)=P\left(A_{0}\right) \mid \boldsymbol{X}_{n} \sim B_{\alpha+\sigma k_{n}, n-\sigma k_{n}}
$$

and

$$
D_{n}(\ell)=P\left(A_{\ell}\right) \mid \boldsymbol{X}_{n} \sim B_{(\ell-\sigma) m_{\ell, n}, \alpha+n-(\ell-\sigma) m_{\ell, n}}
$$

- Similar results in the general Gibbs class
- Practical tool for deriving credible intervals for the BNP estimator $\hat{\mathcal{D}}_{n}(\ell)$, for any $\ell=0,1, \ldots, n$: numerical evaluation of appropriate quantiles of the distribution of $P\left(A_{0}\right) \mid X_{n}$

Credible intervals for discovery

- Arbel et al. [2017]; Arbel and Favaro [2018] Under specification of Pitman-Yor process prior, the posterior distribution of $D_{n}(\ell)$ is a simple Beta distribution

$$
D_{n}(0)=P\left(A_{0}\right) \mid \boldsymbol{X}_{n} \sim B_{\alpha+\sigma k_{n}, n-\sigma k_{n}}
$$

and

$$
D_{n}(\ell)=P\left(A_{\ell}\right) \mid \boldsymbol{X}_{n} \sim B_{(\ell-\sigma) m_{\ell, n}, \alpha+n-(\ell-\sigma) m_{\ell, n}}
$$

- Similar results in the general Gibbs class

Credible intervals for discovery

- Arbel et al. [2017]; Arbel and Favaro [2018] Under specification of Pitman-Yor process prior, the posterior distribution of $D_{n}(\ell)$ is a simple Beta distribution

$$
D_{n}(0)=P\left(A_{0}\right) \mid \boldsymbol{X}_{n} \sim B_{\alpha+\sigma k_{n}, n-\sigma k_{n}}
$$

and

$$
D_{n}(\ell)=P\left(A_{\ell}\right) \mid \boldsymbol{X}_{n} \sim B_{(\ell-\sigma) m_{\ell, n}, \alpha+n-(\ell-\sigma) m_{\ell, n}}
$$

- Similar results in the general Gibbs class
- Practical tool for deriving credible intervals for the BNP estimator $\hat{\mathcal{D}}_{n}(\ell)$, for any $\ell=0,1, \ldots, n$: numerical evaluation of appropriate quantiles of the distribution of $P\left(A_{\ell}\right) \mid \boldsymbol{X}_{n}$

Credible intervals: sketch of proof

Steps:

1. Compute by induction the posterior moments of $P(A)$ for any set A
2. Evaluate the expressions on the sets A_{0} and A_{ℓ} to get posterior moments of $D_{n}(0)$ and $D_{n}(\ell)$

$$
\mathbb{E}\left[\left(P\left(A_{\ell}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+r, k_{n}}}{V_{n, k_{n}}}\left((\ell-\sigma) m_{\ell, n}\right)_{r}
$$

3. Identify the moments with moments of known distributions

Credible intervals: sketch of proof

Steps:

1. Compute by induction the posterior moments of $P(A)$ for any set A
2. Evaluate the expressions on the sets A_{0} and A_{ℓ} to get posterior moments of $D_{n}(0)$ and $D_{n}(\ell)$

$$
\begin{aligned}
& \mathbb{E}\left[\left(P\left(A_{0}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} \frac{V_{n+i, k_{n}}}{V_{n, k_{n}}}\left(n-\sigma k_{n}\right)_{i} \\
& \mathbb{E}\left[\left(P\left(\boldsymbol{A}_{\ell}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+r, k_{n}}}{V_{n, k_{n}}}\left((\ell-\sigma) m_{\ell, n}\right)_{r}
\end{aligned}
$$

3. Identify the moments with moments of known distributions

Credible intervals: sketch of proof

Steps:

1. Compute by induction the posterior moments of $P(A)$ for any set A
2. Evaluate the expressions on the sets A_{0} and A_{ℓ} to get posterior moments of $D_{n}(0)$ and $D_{n}(\ell)$

$$
\begin{aligned}
& \mathbb{E}\left[\left(P\left(A_{0}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} \frac{V_{n+i, k_{n}}}{V_{n, k_{n}}}\left(n-\sigma k_{n}\right)_{i} \\
& \mathbb{E}\left[\left(P\left(A_{\ell}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+r, k_{n}}}{V_{n, k_{n}}}\left((\ell-\sigma) m_{\ell, n}\right)_{r}
\end{aligned}
$$

3. Identify the moments with moments of known distributions
[^1]
Credible intervals: sketch of proof

Steps:

1. Compute by induction the posterior moments of $P(A)$ for any set A
2. Evaluate the expressions on the sets A_{0} and A_{ℓ} to get posterior moments of $D_{n}(0)$ and $D_{n}(\ell)$

$$
\begin{aligned}
& \mathbb{E}\left[\left(P\left(A_{0}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} \frac{V_{n+i, k_{n}}}{V_{n, k_{n}}}\left(n-\sigma k_{n}\right)_{i} \\
& \mathbb{E}\left[\left(P\left(A_{\ell}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+r, k_{n}}}{V_{n, k_{n}}}\left((\ell-\sigma) m_{\ell, n}\right)_{r}
\end{aligned}
$$

3. Identify the moments with moments of known distributions

- Beta for Pitman-Yor
- Mixture of simple r.v. otherwise

Credible intervals: sketch of proof

Steps:

1. Compute by induction the posterior moments of $P(A)$ for any set A
2. Evaluate the expressions on the sets A_{0} and A_{ℓ} to get posterior moments of $D_{n}(0)$ and $D_{n}(\ell)$

$$
\begin{aligned}
& \mathbb{E}\left[\left(P\left(A_{0}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} \frac{V_{n+i, k_{n}}}{V_{n, k_{n}}}\left(n-\sigma k_{n}\right)_{i} \\
& \mathbb{E}\left[\left(P\left(A_{\ell}\right)\right)^{r} \mid \boldsymbol{X}_{n}\right]=\frac{V_{n+r, k_{n}}}{V_{n, k_{n}}}\left((\ell-\sigma) m_{\ell, n}\right)_{r}
\end{aligned}
$$

3. Identify the moments with moments of known distributions

- Beta for Pitman-Yor
- Mixture of simple r.v. otherwise

Application to EST libraries

Application to genomic datasets called Expressed Sequence Tags (EST) libraries for unicellular organisms sequenced recently

- Naegleria gruberi aerobic library consists of $n=959$ ESTs with $k_{n}=473$ distinct genes and $m_{\ell, 959}=346,57,19,12,9,5,4,2,4,5,4,1,1,1,1,1,1$, for $\ell \in\{1,2, \ldots, 12\} \cup\{16,17,18\} \cup\{27\} \cup\{55\}$
- Naegleria gruberi anaerobic library consists of $n=969$ ESTs with $k_{n}=631$ distinct genes and $m_{\ell, 969}=491,72,30,9,13,5,3,1,2,0,1,0,1$, for $\ell \in\{1,2, \ldots, 13\}$
Prior specification: Pitman-Yor process, with empirical Bayes procedure for estimating (σ, α)
- $\hat{\sigma}=0.67, \hat{\alpha}=46$ for the Naegleria gruberi aerobic library
- $\hat{\sigma}=0.65, \hat{\alpha}=155$ for the Naegleria gruberi anaerobic library

Application to EST libraries

Application to genomic datasets called Expressed Sequence Tags (EST) libraries for unicellular organisms sequenced recently

- Naegleria gruberi aerobic library consists of $n=959$ ESTs with $k_{n}=473$ distinct genes and $m_{\ell, 959}=346,57,19,12,9,5,4,2,4,5,4,1,1,1,1,1,1$, for $\ell \in\{1,2, \ldots, 12\} \cup\{16,17,18\} \cup\{27\} \cup\{55\}$
- Naegleria gruberi anaerobic library consists of $n=969$ ESTs with $k_{n}=631$ distinct genes and $m_{\ell, 969}=491,72,30,9,13,5,3,1,2,0,1,0,1$, for $\ell \in\{1,2, \ldots, 13\}$
Prior specification: Pitman-Yor process, with empirical Bayes procedure for estimating (σ, α)
- $\hat{\sigma}=0.67, \hat{\alpha}=46$ for the Naegleria gruberi aerobic library
- $\hat{\sigma}=0.65, \hat{\alpha}=155$ for the Naeglería gruberi anaerobic library

Application to EST libraries

Application to genomic datasets called Expressed Sequence Tags (EST) libraries for unicellular organisms sequenced recently

- Naegleria gruberi aerobic library consists of $n=959$ ESTs with $k_{n}=473$ distinct genes and $m_{\ell, 959}=346,57,19,12,9,5,4,2,4,5,4,1,1,1,1,1,1$, for $\ell \in\{1,2, \ldots, 12\} \cup\{16,17,18\} \cup\{27\} \cup\{55\}$
- Naegleria gruberi anaerobic library consists of $n=969$ ESTs with $k_{n}=631$ distinct genes and $m_{\ell, 969}=491,72,30,9,13,5,3,1,2,0,1,0,1$, for $\ell \in\{1,2, \ldots, 13\}$
Prior specification: Pitman-Yor process, with empirical Bayes procedure for estimating (σ, α)
- $\hat{\sigma}=0.67, \hat{\alpha}=46$ for the Naegleria gruberi aerobic library
- $\hat{\sigma}=0.65, \hat{\alpha}=155$ for the Naegleria gruberi anaerobic library

Application to EST libraries

Posterior distributions of discovery probabilities $D_{n}(\ell)$, for $\ell \in\{0,1,5\}$ dashed curve for aerobic, solid curve for anaerobic

Application to EST libraries

Posterior distributions of discovery probabilities $D_{n}(\ell)$, for $\ell \in\{0,1,5\}$: dashed curve for aerobic, solid curve for anaerobic

Application to EST libraries

Posterior distributions of discovery probabilities $D_{n}(\ell)$, for $\ell \in\{0,1,5\}$: dashed curve for aerobic, solid curve for anaerobic

Table of Contents

> Motivations to go nonparametric

> Introduction to Dirichlet process

> Mixtures and model-based clustering

> Priors beyond the DP

> Discovery probabilities

Some research directions

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, netimorks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory

Some research directions in BNP

Methodological

- Mixture models: density, regression, survival analysis, clustering
- Feature allocation models: Indian Buffet process
- Hierarchical model: hierarchical Dirichlet process
- Dependent priors (dependent Dirichlet process), multivariate processes, non exchangeable data, copulas
- Gaussian processes
- Model selection, high dimensional setting, sparsity
- Relational data, networks, random graphs
- Structured data, segmentation of images, graphs, time series
- Extreme value theory
- ...

Some research directions in BNP

Theoretical

- Theoretical validation, eg asymptotic behavior of the posterior: consistency, rates of convergence, Bernstein-von Mises theorem
- Support properties for priors: full support
- Model misspecification

Some research directions in BNP

Theoretical

- Theoretical validation, eg asymptotic behavior of the posterior: consistency, rates of convergence, Bernstein-von Mises theorem
- Support properties for priors: full support
- Model misspecification

Some research directions in BNP

Theoretical

- Theoretical validation, eg asymptotic behavior of the posterior: consistency, rates of convergence, Bernstein-von Mises theorem
- Support properties for priors: full support
- Model misspecification

Some research directions in BNP

Theoretical

- Theoretical validation, eg asymptotic behavior of the posterior: consistency, rates of convergence, Bernstein-von Mises theorem
- Support properties for priors: full support
- Model misspecification
- ...

Some research directions in BNP

Computational

- Markov chain Monte Carlo algorithms
- Scalable algorithms in the context of Big Data: variational inference
- Links with Machine Learning, Bayesian Deep Learning and Deep Bayesian Learning

Some research directions in BNP

Computational

- Markov chain Monte Carlo algorithms
- Scalable algorithms in the context of Big Data: variational inference
- Links with Machine Learning, Bayesian Deep Learning and Deep Bayesian Learning

Some research directions in BNP

Computational

- Markov chain Monte Carlo algorithms
- Scalable algorithms in the context of Big Data: variational inference
- Links with Machine Learning, Bayesian Deep Learning and Deep Bayesian Learning

Some research directions in BNP

Computational

- Markov chain Monte Carlo algorithms
- Scalable algorithms in the context of Big Data: variational inference
- Links with Machine Learning, Bayesian Deep Learning and Deep Bayesian Learning
- ...

Some research directions in BNP

Applications

- Biostatistics
- Environmental science, ecotoxicology
- Neurosciences, neuroimaging
- Astrophysics
- Linguistics

Some research directions in BNP

Applications

- Biostatistics
- Environmental science, ecotoxicology
- Neurosciences, neuroimaging
- Astrophysics
- Linguistics

Some research directions in BNP

Applications

- Biostatistics
- Environmental science, ecotoxicology
- Neurosciences, neuroimaging
- Astrophysics
- Linguistics

Some research directions in BNP

Applications

- Biostatistics
- Environmental science, ecotoxicology
- Neurosciences, neuroimaging
- Astrophysics
- Linguistics

Some research directions in BNP

Applications

- Biostatistics
- Environmental science, ecotoxicology
- Neurosciences, neuroimaging
- Astrophysics
- Linguistics

Some research directions in BNP

Applications

- Biostatistics
- Environmental science, ecotoxicology
- Neurosciences, neuroimaging
- Astrophysics
- Linguistics
...

References I

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, pages 1152-1174.
Arbel, J., Corradin, R., and Nipoti, B. (2018a). Dirichlet process mixtures under affine transformations of the data. Submitted.

Arbel, J., De Blasi, P., and Prünster, I. (2018b). Stochastic approximations to the Pitman-Yor process. Bayesian Analysis.
Arbel, J. and Favaro, S. (2018). Approximating predictive probabilities of Gibbs-type priors. Submitted.

Arbel, J., Favaro, S., Nipoti, B., and Teh, Y. W. (2017). Bayesian nonparametric inference for discovery probabilities: credible intervals and large sample asymptotics. Statistica Sinica, 27:839-858.
Arbel, J., Gayraud, G., and Rousseau, J. (2013). Bayesian optimal adaptive estimation using a sieve prior. Scandinavian Journal of Statistics, 40(3):549-570.
Arbel, J., Lijoi, A., and Nipoti, B. (2016a). Full Bayesian inference with hazard mixture models. Computational Statistics \& Data Analysis, 93:359-372.

References II

Arbel, J., Mengersen, K., Raymond, B., Winsley, T., and King, C. (2015). Application of a Bayesian nonparametric model to derive toxicity estimates based on the response of Antarctic microbial communities to fuel contaminated soil. Ecology and Evolution, 5(13):2633-2645.
Arbel, J., Mengersen, K., and Rousseau, J. (2016b). Bayesian nonparametric dependent model for partially replicated data: the influence of fuel spills on species diversity. Annals of Applied Statistics, 10(3):1496-1516.
Arbel, J. and Prünster, I. (2017). A moment-matching Ferguson \& Klass algorithm. Statistics and Computing, 27(1):3-17.
Barrios, E., Lijoi, A., Nieto-Barajas, L. E., and Prünster, I. (2013). Modeling with normalized random measure mixture models. Statistical Science, 28(3):313-334.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of machine Learning research, 3(Jan):993-1022.
Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Advances in Applied Probability, pages 929-953.

Clauset, A., Shalizi, C. R., and Newman, M. E. (2009). Power-law distributions in empirical data. SIAM review, 51(4):661-703.

References III

Dahl, D. B. (2006). Model-based clustering for expression data via a Dirichlet process mixture model. Bayesian inference for gene expression and proteomics, pages 201-218.
De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I., and Ruggiero, M. (2015). Are Gibbs-type priors the most natural generalization of the Dirichlet process? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(2):212-229.
Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoretical population biology, 3(1):87-112.
Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2):209-230.
Ferguson, T. S. and Klass, M. J. (1972). A representation of independent increment processes without gaussian components. The Annals of Mathematical Statistics, 43(5):1634-1643.
Ghahramani, Z. and Griffiths, T. L. (2006). Infinite latent feature models and the Indian buffet process. In Advances in neural information processing systems, pages 475-482.

Ishwaran, H. and James, L. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453):161-173.

References IV

Jara, A., Hanson, T., Quintana, F., Müller, P., and Rosner, G. (2011). DPpackage: Bayesian non-and semi-parametric modelling in R. Journal of statistical software, 40(5):1.
Lawless, C. and Arbel, J. (2018). A simple proof of Pitman-Yor's Chinese restaurant process from its stick-breaking representation. Preprint.
Lü, H., Arbel, J., and Forbes, F. (2018). Bayesian Nonparametric Priors for Hidden Markov Random Fields. Preprint.
Marchal, O. and Arbel, J. (2017). On the sub-Gaussianity of the Beta and Dirichlet distributions. Electronic Communications in Probability, 22:1-14.
Meilă, M. (2007). Comparing clusterings-an information based distance. Journal of Multivariate Analysis, 98(5):873-895.
Miller, J. W. and Harrison, M. T. (2013). A simple example of Dirichlet process mixture inconsistency for the number of components. In Advances in neural information processing systems, pages 199-206.
Muliere, P. and Tardella, L. (1998). Approximating distributions of random functionals of ferguson-dirichlet priors. Canadian Journal of Statistics, 26(2):283-297.

References V

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of computational and graphical statistics, 9(2):249-265.
Newman, M. E. (2005). Power laws, Pareto distributions and Zipf's law. Contemporary physics, 46(5):323-351.
Papaspiliopoulos, O. and Roberts, G. (2008). Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika, 95(1):169.
Rajkowski, Ł. (2016). Analysis of MAP in CRP Normal-Normal model. arXiv preprint arXiv:1606.03275.
Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650.

Teh, Y., Jordan, M., Beal, M., and Blei, D. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566-1581.
Wade, S. and Ghahramani, Z. (2018). Bayesian cluster analysis: Point estimation and credible balls. Bayesian Analysis.
Walker, S. G. (2007). Sampling the dirichlet mixture model with slices. Communications in Statistics—Simulation and Computation $®, 36(1): 45-54$.

[^0]: Theorem
 If X_{1}, X_{2}, \ldots is a Polya sequence then exists random probability measure P such that $X_{i} \mid P \stackrel{i . i . d .}{\sim} P$ and $P \sim D P\left(\alpha, P_{0}\right)$.
 Proof
 We can consider Polya sequence as an outcome of Polya urn, we see that it is exchangeable. By de Finetti theorem exists such probability measure P such that $X_{i} \mid P \stackrel{i . i . d .}{\sim} P$. So far we have proved existence of the DP and know that DP generates a Polya sequence. Since the RPM given by de Finetti's theorem is unique this proves that $P \sim D P\left(\alpha, P_{0}\right)$.

[^1]: - Mixture of simple r.v. otherwise

