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I. BACKGROUND AND MOTIVATION

Figure 1: Illustration of challenges for unsupervised image segmentation: blur, noise,
color/contrast imperfection, partial volume effect (large slice thickness), anatomic variabil-
ity and complexity, number of segments...

Image segmentation in real-world applications is typically performed on noisy
images. To achieve better segmentation performance, several extensions of the
usual Bayesian nonparametric (BNP) mixture model with spatial regularization
are therefore necessary.

II. BNP PRIORS
The Dirichlet process (DP) is one of the most commonly used BNP priors. It is a
random process G defined over a probability space Y and characterized by a con-
centration parameter α and a base distributionG0, such that for any finite partition
{A1, . . . , Ap} of Y , the random vector (P (A1), . . . , P (Ap)) is Dirichlet distributed:

(P (A1), . . . , P (Ap)) ∼ Dir(αG0(A1), . . . , αG0(Ap))

which is often denoted by G ∼ DP(α,G0).

III. STICK-BREAKING CONSTRUCTION
The DP has almost surely discrete realizations. It can be built by the stick-breaking
construction:

G =
∞∑
k=1

πk(τ ) δθ∗k =
∞∑
k=1

[
τk
∏
l<k

(1− τl)

]
δθ∗k

where θ∗k
iid∼ G0 and τk

iid∼ B(1, α).

IV. DP-POTTS MIXTURE MODEL
The usual DP mixture model assumes that a set of data points y = {y1, . . . , yN}
with yi ∈ RD (e.g., pixels) can be generated through the following hierarchical rep-
resentation:

• G ∼ DP(α,G0)
• θi|G ∼ G, i = 1, . . . , N
• yi|θi ∼ F (yi|θi), i = 1, . . . , N

where θ = {θ1, ..., θN} denotes a set of model parameters. To take into account
spatial constraints, we introduce a Potts model component using a set of assignment
variables z = {z1, . . . , zN}with zi = z(θi) so as to favor spatial agregation [1]:

M(θ) ∝ exp

β∑
i∼j

δz(θi)=z(θj)


with β being the regularization parameter. The DP mixture model is thus extended
to become the DP-Potts mixture model:

• G ∼ DP(α,G0)
• θ|M,G ∼M(θ)×

∏
iG(θi)

• yi|θi ∼ F (yi|θi), i = 1, . . . , N

Accordingly, the stick-breaking construction of the DP-Potts mixture model can be
summarized as follows:

• θ∗k|G0 ∼ G0 and τk|α ∼ B(1, α), k = 1, 2, . . .

• πk(τ ) = τk
∏k−1
l=1 (1− τl), k = 1, 2, . . .

• p(z|τ ;β) ∝
∏
i πzi(τ ) exp(β

∑
i∼j δzi=zj ), zi = 1, 2, . . .

• yi|zi,θ∗ ∼ F (yi|θ∗zi), i = 1, . . . , N

V. VARIATIONAL BAYES
In a Bayesian setting, we need to evaluate the intractable posterior distribution
p(z, τ , α,θ∗|y;φ) (φ denotes a set of hyperparameters) which can be estimated by
means of the mean-field approximation:

q(z, τ , α,θ∗) ' qz(z)qτ (τ )qα(α)qθ∗(θ∗)

Variational Bayes (VB) consists of alternating maximization of free energy

F(qz, qτ , qα, qθ∗ ;φ) = Eqzqτ qαqθ∗

[
log

p(z, τ , α,θ∗,y;φ)

qzqτ qαqθ∗

]
which implies [2]

• E-steps: VE-z, VE-α, VE-τ and VE-θ∗.
• M-steps: φ updating is straightforward except for β.

Here, M-β step leads to the estimation of β:

β̂ = argmax
β

Eqzqτ [log p(z|τ ;β)]

which involves p(z|τ ;β) = K(β, τ )−1 exp (V (z; τ , β)) with the normalization con-
stant K(β, τ ) and the potential function

V (z; τ , β) =
∑
i

log πzi(τ ) + β
∑
i∼j

δzi=zj

To find the optimal value of β, further approximations, such as the mean-field-like
approximation [3] of qz and replacing τ with a fixed τ̃ = Eqτ [τ ], are required.

VI SOME EXPERIMENTS AND RESULTS
Original image DP mixture model (about 1000 superpixels) DP-Potts mixture model (about 1000 superpixels)

Experiments were performed using superpixels on a subset (154 images) of the
Berkeley segmentation data set (BSDS) [4]. Regarding the performance evaluation,
the probabilistic rand index (PRI) was computed under different conditions:

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

 10  20  30  40  50  60  70  80  90  100

P
R

I

Truncation level K

Comparison of DP and DP-Potts mixture models on BSDS

DP-Potts (500 superpixels)
DP (500 superpixels)

DP-Potts (1000 superpixels)
DP (1000 superpixels)

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

10
3

10
4

P
R

I

Approximate number of superpixels

Impact of superpixels on PRI

DP-Potts (K=50)
DP (K=50)

We also compared our best results (K = 50 and about 500 superpixels) with those
given in the literature:

Proposed models Results given in [5]
PRI DP DP-Potts iHMRF MRF-PYP Graph Cuts
Mean (%) 77.23 77.98 75.50 76.49 76.10
Median (%) 79.05 79.56 76.89 78.08 77.59

VII CONCLUSIONS AND FUTURE WORK
A general DP-Potts mixture model and the associated VB algorithm were pro-
posed. The model was successfully applied to image segmentation on different
types of datasets. We also investigated the impact of β on the segmentation results
and presented an estimation procedure for β.
In the sequel, we plan to survey how β affects the inferred number of components.
Other types of priors (Pitman-Yor process, Gibbs-type priors, etc.) and other varia-
tional approximations (truncation-free) will also be considered. On the other hand,
it is crucial to study theoretical properties of BNP priors under structural constraints
(temporal or spatial). Other applications may also be possible, such as discovery
probability and community detection in graphs.
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