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I. BACKGROUND AND MOTIVATION

Figure 1: Illustration of challenges for unsupervised image segmentation: blur, noise, color/contrast imperfection, partial volume effect (large slice thickness), anatomic variability and complexity, number of segments... Image segmentation in real-world applications is typically performed on noisy images. To achieve better segmentation performance, several extensions of the usual Bayesian nonparametric (BNP) mixture model with spatial regularization are therefore necessary.

II. BNP PRIORS

The Dirichlet process (DP) is one of the most commonly used BNP priors. It is a random process G defined over a probability space Y and characterized by a concentration parameter α and a base distribution G 0 , such that for any finite partition {A 1 , . . . , A p } of Y, the random vector (P (A 1 ), . . . , P (A p )) is Dirichlet distributed:

(P (A 1 ), . . . , P (A p )) ∼ Dir(αG 0 (A 1 ), . . . , αG 0 (A p )) which is often denoted by G ∼ DP(α, G 0 ).

III. STICK-BREAKING CONSTRUCTION

The DP has almost surely discrete realizations. It can be built by the stick-breaking construction:

G = ∞ k=1 π k (τ ) δ θ * k = ∞ k=1 τ k l<k (1 -τ l ) δ θ * k where θ * k iid ∼ G 0 and τ k iid ∼ B(1, α).

IV. DP-POTTS MIXTURE MODEL

The usual DP mixture model assumes that a set of data points y = {y 1 , . . . , y N } with y i ∈ R D (e.g., pixels) can be generated through the following hierarchical representation:

• G ∼ DP(α, G 0 ) • θ i |G ∼ G, i = 1, . . . , N • y i |θ i ∼ F (y i |θ i ), i = 1, . . . , N
where θ = {θ 1 , ..., θ N } denotes a set of model parameters. To take into account spatial constraints, we introduce a Potts model component using a set of assignment variables z = {z 1 , . . . , z N } with z i = z(θ i ) so as to favor spatial agregation [1]:

M (θ) ∝ exp   β i∼j δ z(θ i )=z(θ j )  
with β being the regularization parameter. The DP mixture model is thus extended to become the DP-Potts mixture model:

• G ∼ DP(α, G 0 ) • θ|M , G ∼ M (θ) × i G(θ i ) • y i |θ i ∼ F (y i |θ i ), i = 1, . . . , N
Accordingly, the stick-breaking construction of the DP-Potts mixture model can be summarized as follows:

• θ * k |G 0 ∼ G 0 and τ k |α ∼ B(1, α), k = 1, 2, . . . • π k (τ ) = τ k k-1 l=1 (1 -τ l ), k = 1, 2, . . . • p(z|τ ; β) ∝ i π z i (τ ) exp(β i∼j δ z i =z j ), z i = 1, 2, . . . • y i |z i , θ * ∼ F (y i |θ * z i ), i = 1, . . . , N

V. VARIATIONAL BAYES

In a Bayesian setting, we need to evaluate the intractable posterior distribution p(z, τ , α, θ * |y; φ) (φ denotes a set of hyperparameters) which can be estimated by means of the mean-field approximation:

q(z, τ , α, θ * ) q z (z)q τ (τ )q α (α)q θ * (θ * )

Variational Bayes (VB) consists of alternating maximization of free energy F(q z , q τ , q α , q θ * ; φ) = E q z q τ q α q θ * log p(z, τ , α, θ * , y; φ) q z q τ q α q θ * which implies [2] • E-steps: VE-z, VE-α, VE-τ and VE-θ * .

• M-steps: φ updating is straightforward except for β.

Here, M-β step leads to the estimation of β:

β = arg max β E q z q τ [log p(z|τ ; β)]
which involves p(z|τ ; β) = K(β, τ ) -1 exp (V (z; τ , β)) with the normalization constant K(β, τ ) and the potential function

V (z; τ , β) = i log π z i (τ ) + β i∼j δ z i =z j
To find the optimal value of β, further approximations, such as the mean-field-like approximation [3] of q z and replacing τ with a fixed τ = E q τ [τ ], are required.

VI SOME EXPERIMENTS AND RESULTS

Original image DP mixture model (about 1000 superpixels) DP-Potts mixture model (about 1000 superpixels)

Experiments were performed using superpixels on a subset (154 images) of the Berkeley segmentation data set (BSDS) [4]. Regarding the performance evaluation, the probabilistic rand index (PRI) was computed under different conditions: We also compared our best results (K = 50 and about 500 superpixels) with those given in the literature:

Proposed models

Results given in [ 

VII CONCLUSIONS AND FUTURE WORK

A general DP-Potts mixture model and the associated VB algorithm were proposed. The model was successfully applied to image segmentation on different types of datasets. We also investigated the impact of β on the segmentation results and presented an estimation procedure for β.

In the sequel, we plan to survey how β affects the inferred number of components.

Other types of priors (Pitman-Yor process, Gibbs-type priors, etc.) and other variational approximations (truncation-free) will also be considered. On the other hand, it is crucial to study theoretical properties of BNP priors under structural constraints (temporal or spatial). Other applications may also be possible, such as discovery probability and community detection in graphs.
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