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Introduction

We investigate deep Bayesian neural
networks with Gaussian priors on the
weights and ReLU-like nonlinearities.
See Vladimirova et al. (2018).

...
... ...

...

...

...

...

x
h(1) h(2) h(`)

input
layer

1st hid.
layer

2nd hid.
layer

`th hid.
layer

subW(1
2) subW(1) subW(`2)

Notations

Given an input x ∈ RN , the `-th hid-
den layer unit activations are defined
as

g(`)(x) = W (`)h(`−1)(x),
h(`)(x) = φ(g(`)(x)).

Assumptions

• Gaussian prior on weights:

W
(`)
i,j ∼ N (0, σ2

w),

•A nonlinearity φ : R→ R is said
to obey the extended envelope
property if there exist
c1, c2, d2 ≥ 0, d1 > 0 such that

|φ(u)| ≥ c1 + d1|u| for u ∈ R+
or u ∈ R−,

|φ(u)| ≤ c2 + d2|u| for u ∈ R.

Sub-Weibull

A random variable X , such that

P(|X| ≥ x) ≤ exp
(
−x1/θ/K

)
for all x ≥ 0 and for some K > 0, is
called a sub-Weibull random vari-
able with tail parameter θ > 0:

X ∼ subW(θ).
Moment property:
X ∼ subW(θ) implies

‖X‖k =
(
E|X|k

)1/k � kθ,

Meaning for all k ∈ N and for some
constants d,D > 0,

d < ‖X‖k/kθ < D.

Covariance theorem

The covariance between hidden
units of the same layer is non-
negative. Moreover, for any `-th
hidden layer units h(`) and h̃(`), for
s, t ∈ N it holds

Cov
[(
h(`)
)s
,
(
h̃(`)
)t]
≥ 0.

Penalized estimation

Regularized problem:
min
W

R(W ) + λL (W ), (1)

where R(W ) is a loss function,
λL (W ) is a penalty, λ > 0.
For Bayesian models with prior dis-
tribution π(W ), the maximum a
posteriori (MAP) solves (1) with:

L (W ) ∝ − log π(W )
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Theorem (Vladimirova et al., 2018)

The `-th hidden layer units U (`) (pre-activation g(`) or post-activation h(`))
of a feed-forward Bayesian neural network with:
• Gaussian priors on weights and
• extended envelope condition activation function φ
have sub-Weibull marginal prior distribution with optimal tail pa-
rameter θ = `/2, conditional on the input x:

U (`) ∼ subW(`/2),

Prior distributions of layers ` = 1, 2, 3

Illustration of units marginal prior distributions from the first three hidden
layers. Neural network parameters: (N,H1, H2, H3) = (50, 25, 24, 4).
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Proof sketch

Induction w.r.t. layer depth `:
‖h(`)‖k � k

`/2,

which is the moment characterization
of sub-Weibull variable.
•Extended envelope property implies
‖h(`)‖k � ‖g(`)‖k

• Base step: g ∼ N(0, σ2),
‖g‖k �

√
k. Thus,

‖h‖k = ‖φ(g)‖k � ‖g‖k �
√
k.

• Inductive step: suppose
‖h(`−1)‖k � k

(`− 1)/2.

•Lower bound: non-negative
covariance theorem:

Cov
[(
h(`−1)

)s
,
(
h̃(`−1)

)t]
≥ 0.

•Upper bound: Holder’s inequality
• g(`) =

∑H
j=1W

(`−1)
i,j h

(`−1)
j implies

‖h(`)‖k � ‖g(`)‖k � k
`/2.

Sparsity interpretation

MAP on weights is L2-reg.
Independent Gaussian prior

π(W ) ∝
L∏
`=1

∏
i,j

e−
1
2(W

(`)
i,j )2
,

is equivalent to the weight decay
penalty with negative log-prior :

L (W ) ∝
L∑
`=1

∑
i,j

(W (`)
i,j )2 = ‖W ‖2

2,

MAP on units induces sparsity
The joint prior distribution for all the
units can be expressed by Sklar’s rep-
resentation theorem as

π(U ) =
L∏
`=1

H∏̀
m=1

π(`)
m (U (`)

m )C(F (U )),

where C is the copula of U (charac-
terizes all the dependence between the
units), F is its cumulative distribution
function. The penalty is the negative
log-prior :

L (U ) ≈ ‖U (1)‖2
2 + · · · + ‖U (L)‖2/L

2/L

− logC(F (U )).

Layer W -penalty U -penalty

1 ‖W (1)‖2
2, L2 ‖U (1)‖2

2, L2

2 ‖W (2)‖2
2, L2 ‖U (2)‖, L1

` ‖W (`)‖2
2, L2 ‖U (`)‖2/`

2/`, L
2/`

Conclusion

We prove that the marginal prior
unit distributions are heavier-tailed as
depth increases. We further interpret
this finding, showing that the units
tend to be more sparsely represented
as layers become deeper. This result
provides new theoretical insight on
deep Bayesian neural networks, under-
pinning their natural shrinkage prop-
erties and practical potential.
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