

Bayesian neural network priors at the level of units

Mariia Vladimirova, Julyan Arbel, Pablo Mesejo

To cite this version:

Mariia Vladimirova, Julyan Arbel, Pablo Mesejo. Bayesian neural network priors at the level of units. Bayesian Statistics in the Big Data Era, Nov 2018, Marseille, France. pp.1. hal-01950660

HAL Id: hal-01950660 <https://hal.science/hal-01950660>

Submitted on 11 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bayesian neural network priors at the level of units

1 Inria Grenoble Rhône-Alpes, France ²University of Granada, Spain

Mariia Vladimirova 1 , Julyan Arbel 1 and Pablo Mesejo 2

Introduction

We investigate deep Bayesian neural networks with Gaussian priors on the weights and ReLU-like nonlinearities. See Vladimirova et al. (2018).

Given an input $\boldsymbol{x} \in \mathbb{R}^N$, the ℓ -th hidden layer unit activations are defined as

> $\bm{g}^{(\ell)}(\bm{x}) = \bm{W}^{(\ell)} \bm{h}^{(\ell-1)}(\bm{x}),$ $\boldsymbol{h}^{(\ell)}(\boldsymbol{x}) = \phi(\boldsymbol{g}^{(\ell)}(\boldsymbol{x})).$

> > *W* $\mathcal{N}(0,\sigma_w^2),$

• A *nonlinearity* $\phi : \mathbb{R} \to \mathbb{R}$ is said to obey the **extended envelope property** if there exist $c_1, c_2, d_2 \geq 0, d_1 > 0$ such that

 $|\phi(u)| \geq c_1 + d_1|u|$ for $u \in \mathbb{R}_+$ or $u \in \mathbb{R}_-$, $|\phi(u)| \leq c_2 + d_2|u|$ for $u \in \mathbb{R}$.

input layer $1st$ hid. $2nd$ hid. ℓth hid. layer layer layer

Notations

The **covariance** between hidden units of the same layer is **nonnegative**. Moreover, for any ℓ -th hidden layer units $h^{(\ell)}$ and $\tilde{h}^{(\ell)}$, for $s, t \in \mathbb{N}$ it holds

Assumptions

 $\mathscr{L}(\boldsymbol{W}) \propto -\log \pi(\boldsymbol{W})$

•**Gaussian prior** on *weights*:

 $Cov\left[\left(h^{(\ell)}\right)^s\right]$ *,* $\int \widetilde{h}^{(\ell)}$ \setminus^t ≥ 0*.*

Sub-Weibull

A random variable *X*, such that $\mathbb{P}(|X| \geq x) \leq \exp(-x^{1/\theta})$ */K* have **sub-Weibull marginal prior distribution** with optimal tail parameter $\theta = \ell/2$, conditional on the input \boldsymbol{x} :

 $U^{(\ell)} \sim \mathsf{subW}(\ell/2),$

Prior distributions of layers $\ell = 1, 2, 3$

The ℓ -th hidden layer units $U^{(\ell)}$ (pre-activation $g^{(\ell)}$ or post-activation $h^{(\ell)}$) of a feed-forward Bayesian neural network with:

- •**Gaussian priors** on weights and
- ϕ **extended envelope condition** activation function ϕ

Moment property:

 $X \sim \mathsf{subW}(\theta)$ implies

 $\|X\|_k = (\mathbb{E}|X|^k)$ $\big)^{1/k} \asymp k^\theta,$

Meaning for all $k \in \mathbb{N}$ and for some $constants$ $d, D > 0$,

 $d < ||X||_k/k^{\theta} < D.$

Induction w.r.t. layer depth ℓ : $\|h^{(\ell)}\|_{k} \asymp k^{\ell/2},$

Illustration of units marginal prior distributions from the first three hidden layers. Neural network parameters: $(N, H_1, H_2, H_3) = (50, 25, 24, 4)$.

 $0 \t 2 \t 4 \t 6 \t 8 \t 10$ Value $0.00 +$ sub- $W(1/2)$ $---sub-W(1)$ sub- $\mathsf{W}(3/2)$ 0 2 4 6 8 10 Value $0.0 +$ $0.1 -$ 0.2 0.3 $0.4 0.5$ *P* \smile *X* \wedge | ' *x* \frown

Covariance theorem

which is the moment characterization of sub-Weibull variable.

• Extended envelope property implies $\|h^{(\ell)}\|_k \asymp \|g^{(\ell)}\|_k$

Penalized estimation

• Base step: $g \sim N(0, \sigma^2)$, $||g||_k \simeq \sqrt{k}$. Thus, √ $||h||_k = ||\phi(g)||_k \asymp ||g||_k \asymp$ √ • **Inductive step:** suppose $||h^{(\ell-1)}||_k \asymp k^{(\ell-1)/2}.$

Regularized problem:

- Lower bound: non-negative covariance theorem:
	- **Cov** \lceil $h^{(\ell-1)}$ ^s *,* $\int \tilde{h}^{(\ell-1)}$ \setminus^t ≥ 0*.*
- Upper bound: Holder's inequality $g^{(\ell)} = \sum_{i=1}^{H}$ $\frac{n}{j=1}$ W $(\ell-1)$ $\frac{\partial f(\ell-1)}{\partial x_j}h_j$ $(\ell-1)$ $j^{(\ell-1)}$ implies $||h^{(\ell)}||_k \asymp ||g^{(\ell)}||_k \asymp k^{\ell/2}.$

min *W* $\mathscr{R}(\boldsymbol{W}) + \lambda \mathscr{L}(\boldsymbol{W}),$ (1) where $\mathscr{R}(\boldsymbol{W})$ is a **loss function**, $\lambda \mathscr{L}(\boldsymbol{W})$ is a **penalty**, $\lambda > 0$. For Bayesian models with prior distribution $\pi(\boldsymbol{W})$, the **maximum a posteriori** (MAP) solves (1) with:

where C is the copula of U (characterizes all the dependence between the units), *F* is its cumulative distribution function. The penalty is the *negative log-prior*:

 $\mathscr{L}(\bm{U}) \approx \|\bm{U}^{(1)}\|_2^2 + \cdots + \|\bm{U}^{(L)}\|_2^2$ $\frac{2}{L}$ $2/L$ $-\log C(F(\boldsymbol{U})).$ Layer *W*-penalty *U*-penalty 1 $\|W^{(1)}\|_2^2$ $\frac{2}{2}$, \mathcal{L}^2 $\| \bm{U}^{(1)} \|_2^2$ 2 $,$ ${\cal L}^2$ 2 $\|{\bm{W}}^{(2)}\|_2^2$ $_2^2$, $\boldsymbol{\mathcal{L}}^2$ $\parallel \boldsymbol{U}^{(2)}$ $\|\, , \qquad {\cal L}^1$ $\ell = \|\boldsymbol{W}^{(\ell)}\|_2^2$ \int_2^2 , \mathcal{L}^2 $||\mathbf{U}^{(\ell)}||$ $2/\ell$ $2/\ell$ $, \mathcal{L}^{2/\ell}$

Theorem (Vladimirova et al., 2018)

0.05

0.10

 $0.15 -$

Density

Proof sketch

k.

Sparsity interpretation

MAP on weights is L2-reg. Independent Gaussian prior

is equivalent to the weight decay

penalty with *negative log-prior*:

$$
\mathscr{L}(\boldsymbol{W}) \propto \sum_{\ell=1}^{L} \sum_{i,j} (W_{i,j}^{(\ell)})^2 = ||\boldsymbol{W}||_2^2,
$$

MAP on units induces *sparsity* The joint prior distribution for all the units can be expressed by Sklar's representation theorem as

 $\pi(\boldsymbol{U})=% {\textstyle\int\nolimits_{-\infty}^{+\infty}} dt~g\left(\tau\right) \left[\tau\right] =\pi\left(\tau\right) \left[\tau\right] . \label{eq-qt:U}$ $\Pi\Pi$ *L* ℓ =1 m =1 H_{ℓ} $\pi_{m}^{(\ell)}(U_{m}^{(\ell)})\, C(F(\boldsymbol{U})),$

Conclusion

We prove that the marginal prior unit distributions are heavier-tailed as depth increases. We further interpret this finding, showing that the units tend to be more sparsely represented as layers become deeper. This result provides new theoretical insight on deep Bayesian neural networks, underpinning their natural shrinkage properties and practical potential.

for all $x \geq 0$ and for some $K > 0$, is called a **sub-Weibull** random variable with tail parameter $\theta > 0$:

 $X \sim \mathsf{subW}(\theta)$.

References

Vladimirova, M., Arbel, J., and Mesejo, P. (2018). Bayesian neural networks increasingly sparsify their units with depth. *arXiv preprint arXiv:1810.05193*.