Mariia Vladimirova 
email: mariia.vladimirova@inria.fr
  
Julyan Arbel 
email: julyan.arbel@inria.fr
  
Pablo Mesejo 
email: pmesejo@decsai.ugr.es
  
  
  
Bayesian neural network priors at the level of units

Keywords: Bayesian neural network, heavy-tailed prior, sparsity

come    

Introduction

Neural networks (NNs), and their deep extensions [START_REF] Goodfellow | Deep learning[END_REF], have largely been used in many research areas such as image analysis [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], signal processing [START_REF] Graves | Speech recognition with deep recurrent neural networks[END_REF], or reinforcement learning [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF], just to name a few. The performances of such neural networks have greatly strengthened the line of research that aims at better understanding the driving mechanisms behind the effectiveness of deep neural networks. One important aspect of this line of research that has recently gained much attention is the study of distributional properties of the NNs through Bayesian inference.

Bayesian approaches investigate models by assuming a prior distribution on their parameters. Bayesian machine learning refers to extending standard machine learning approaches with posterior inference, a line of research pioneered by the works Neal (1992); MacKay (1992) on Bayesian neural networks which now extends to a broad class of models, including Bayesian Generative adversarial network [START_REF] Saatci | Bayesian GAN[END_REF]. See [START_REF] Nicholas | Deep learning: A Bayesian perspective[END_REF] for a review. The interest of the Bayesian approach to NNs is at least twofold. First, it offers a principled approach for modeling uncertainty of the training procedure, which is a limitation of standard NNs which only provide point estimates. A second main asset of Bayesian models is that they represent regularized versions of their classical counterparts. For instance, maximum a posteriori (MAP) estimation of a Bayesian regression model with double exponential (Laplace) prior is equivalent to Lasso regression [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF], while a Gaussian prior leads to ridge regression. When it comes to neural networks, the regularization mechanism is also well appreciated in the literature, since neural networks traditionally suffer from overparameterization, resulting in overfitting.

Central in the field of regularization techniques is the weight decay penalty [START_REF] Krogh | A simple weight decay can improve generalization[END_REF], which is equivalent to MAP estimation of a Bayesian neural network with independent Gaussian priors on the weights. [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] have suggested dropout as a regularization method in which neurons are randomly turned off. [START_REF] Gal | Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[END_REF] proved that the neural network trained with dropout is equivalent to a probabilistic model, i.e. a deep Gaussian process [START_REF] Damianou | Deep Gaussian processes[END_REF]. It leads to the consideration of such neural networks as Bayesian models.

Recent papers study various distributional properties of Bayesian neural networks. Matthews et al. (2018b), or its extended version Matthews et al. (2018a), and [START_REF] Lee | Deep neural networks as Gaussian processes[END_REF] showed that deep neural networks tend in distribution to the Gaussian process when the number of hidden units grows to infinity, under the assumption of Gaussian weights for properly rescaled prior variances. The work by [START_REF] Bibi | Analytic expressions for probabilistic moments of pl-dnn with gaussian input[END_REF] provides the expression of the first two moments of the output units of a one layer neural network. Obtaining the moments is a first step to characterizing a whole distribution, however the methodology of [START_REF] Bibi | Analytic expressions for probabilistic moments of pl-dnn with gaussian input[END_REF] is limited to the first two moments and to one layer neural networks. [START_REF] Vladimirova | Bayesian neural networks increasingly sparsify their units with depth[END_REF] investigate the marginal prior distribution of the network units, stating that as the depth increases, the distribution becomes more heavy-tailed. For the sake of completeness, we reproduce the result here:

Theorem 1 (Sub-Weibull units, [START_REF] Vladimirova | Bayesian neural networks increasingly sparsify their units with depth[END_REF] Consider a feed-forward Bayesian neural network with Gaussian priors on weights and activation function φ satisfying the extended envelope condition of Definition A.1, Appendix A. Consider the marginal prior distribution, conditional on the input x, induced by forward propagation on any unit before or after activation of the -th hidden layer. It is sub-Weibull with optimal tail parameter θ = /2. That is for any layer with H hidden units, a unit U ( )

m of the layer (1 ≤ m ≤ H ) U ( ) m ∼ subW( /2
), where a subW distribution is defined in Definition A.2, Appendix A.

We provide in this note an interpretation of Theorem 1 in terms of sparsity-inducing mechanism at the level of the units. We stress that the term unit and notation U ( ) refer indistinctly to units before or after activation. The notation W ( ) stands for the weight matrix including the bias vector.

Sparsity-inducing prior on the units

Shrinkage is performed by imposing a penalty on the size of the parameters. Denote the parameters by W , the loss function by R(W ), and the penalty by λL (W ), where L is some norm on the weight space and λ some positive tuning parameter. Then, the regularized problem is

min W R(W ) + λL (W ).
The choice of the L norm has considerable effects on the problem, as can be sensed geometrically. Consider for instance L q norms, with q ≥ 0. For any q > 1, the associated L q norm is differentiable and contours have a round shape without sharp angles. In that case, the penalty effect is to shrink the W coefficients towards 0. The most well-known estimator falling in this class is the ridge regression obtained with q = 2, see Figure 1, Layer 1 and 2. In contrast, for any q ∈ (0, 1], the L q norm has some non differentiable points along the axis coordinates, see Figure 1, Layer 2, 3 and 10. Such critical points are more likely to be hit by the level curves of the loss function R(W ), thus setting exactly to zero some of the parameters. A very successful approach in this class is the Lasso obtained with q = 1. Note that the problem is computationally much easier in the convex situation which occurs only for q ≥ 1. 

MAP on weights is weight decay

These penalized methods have a simple Bayesian counterpart in the form of the maximum a posteriori (MAP) estimator. In this context, the objective function R is the negative loglikelihood, while the penalty L is the negative log-prior. The objective function takes on the form of sum-of-squared errors for regression under Gaussian errors, and of cross-entropy for classification.

For neural networks, it is well-known that an independent Gaussian prior on the weights

π(W ) ∝ L =1 i,j e -1 2 (W ( ) i,j ) 2
, is equivalent to the weight decay penalty-aka ridge penalty in regression problem-with negative log-prior:

L (W ) ∝ L =1 i,j (W ( ) i,j ) 2 = W 2 2 ,
where products and sums involving i and j above are over 1 ≤ i ≤ H -1 and 1 ≤ j ≤ H , L is a number of neural network layers, H 0 and H L representing respectively the input and output dimensions.

MAP on units induces sparsity

Now moving the point of view from weights to units leads to a radically different shrinkage effect. Let U ( ) m denote the m-th unit of the -th layer (either before or after activation). As stated in Theorem 1, [START_REF] Vladimirova | Bayesian neural networks increasingly sparsify their units with depth[END_REF] show that conditional on the input x, a Gaussian prior on the weights translates into some prior on the units U ( ) m that is marginally sub-Weibull with optimal tail index θ = /2. This means that the tails of U ( )

m satisfy P(|U ( ) m | ≥ u) ≤ exp -u 2 / /K for all u ≥ 0, (1) 
for some positive constant K. The exponent of u in the exponential term above is optimal in the sense that Equation ( 1) is not satisfied with some parameter θ smaller than /2. Thus, the marginal density of U ( )

m is approximately proportional to π ( ) m (u) ≈ e -|u| 2/ /K , u ∈ R,
where K can be chosen the same for all -th layer units as the smallest constant satisfying equations ( 1) for all m. The joint prior distribution for all the units U = (U ( ) m ) 1≤ ≤L,1≤m≤H can be expressed from all the marginal distributions by Sklar's representation theorem as

π(U ) = L =1 H m=1 π ( ) m (U ( ) m ) C(F (U )), (2) 
where C represents the copula of U (which characterizes all the dependence between the units) while F denotes its cumulative distribution function. The penalty incurred by such a prior distribution is obtained as the negative log-prior L (U ),

- L =1 H m=1 log π ( ) m (U ( ) m ) -log C(F (U )) ≈ U (1) 2 2 + • • • + U (L) 2 /L 2 /L -log C(F (U )). ( 3 
)
The first L terms in the right-hand-side of (3) indicate that some shrinkage operates at the units level: at layer , the penalty term U (L) 2 / 2 / takes the form of the L 2 / norm. Thus, the deeper the layer, the stronger the sparsity at the level of the units.

Conclusion

We offer an interpretation in terms of sparsity-inducing mechanism of the heavy-tailed units distribution result derived by [START_REF] Vladimirova | Bayesian neural networks increasingly sparsify their units with depth[END_REF] and reproduced here as Theorem 1. Heavy-tailed priors are known to induce a sparse model representation, such as the Lasso in a regression problem. We extrapolate this finding to the setting of a deep Bayesian neural network, showing that the units tend to be more sparsely represented as layers become deeper.
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 1 Figure 1: L 2/ -norm unit balls (in dimension 2) for layers = 1, 2, 3 and 10.
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Appendix A. Definitions

Definition A.1 (Extended envelope property for nonlinearities) A nonlinearity φ : R → R is said to obey the extended envelope property if there exist c 1 , c 2 , d 2 ≥ 0, d 1 > 0 such that the following inequalities hold

The interpretation of this property is that φ must shoot to infinity at least in one direction (R + or R -, at least linearly (first line of ( 4)), and also at most linearly (second line of ( 4)).

Of course, compactly supported nonlinearities such as sigmoid and tanh do not satisfy the extended envelope property but the majority of other nonlinearities do, including ReLU, ELU, SELU (see [START_REF] Klambauer | Selfnormalizing neural networks[END_REF] for details), and others.

Definition A.2 (Sub-Weibull random variable) A random variable X, that satisfies

for K > 0, is called a sub-Weibull random variable with the tail parameter θ, which is denoted by X ∼ subW(θ).

Informally, the tails of a subW(θ) distribution are dominated by (i.e. decay at least as fast as) the tails of a Weibull variable [START_REF] Rinne | The Weibull distribution: a handbook[END_REF]; in the same way as sub-Gaussian or sub-Exponential distributions correspond to distributions with tails lighter than Gaussian and Exponential distributions, respectively. Sub-Weibull distributions are parameterized by a positive tail index θ and equivalent to sub-Gaussian for θ = 1/2 and sub-Exponential for θ = 1. The larger tail parameter θ, the heavier the tails of the sub-Weibull distribution.